Maxime Coquelin 755fb0887f baseband/fpga_lte_fec: fix crash with debug
When RTE_LIBRTE_BBDEV_DEBUG is enabled, rte_device's driver
pointer is dereferenced twice in fpga_lte_fec's probe callback.
It causes a segmentation fault because this pointer is only
assigned after probe callback call.

This patch makes use of rte_pci_driver pointer instead

Fixes: efd453698c49 ("baseband/fpga_lte_fec: add driver for FEC on FPGA")
Cc: stable@dpdk.org

Signed-off-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Acked-by: Nicolas Chautru <nicolas.chautru@intel.com>
2020-10-14 21:32:11 +02:00

2668 lines
74 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include <unistd.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_errno.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_byteorder.h>
#ifdef RTE_BBDEV_OFFLOAD_COST
#include <rte_cycles.h>
#endif
#include <rte_bbdev.h>
#include <rte_bbdev_pmd.h>
#include "fpga_lte_fec.h"
#ifdef RTE_LIBRTE_BBDEV_DEBUG
RTE_LOG_REGISTER(fpga_lte_fec_logtype, pmd.bb.fpga_lte_fec, DEBUG);
#else
RTE_LOG_REGISTER(fpga_lte_fec_logtype, pmd.bb.fpga_lte_fec, NOTICE);
#endif
/* Helper macro for logging */
#define rte_bbdev_log(level, fmt, ...) \
rte_log(RTE_LOG_ ## level, fpga_lte_fec_logtype, fmt "\n", \
##__VA_ARGS__)
#ifdef RTE_LIBRTE_BBDEV_DEBUG
#define rte_bbdev_log_debug(fmt, ...) \
rte_bbdev_log(DEBUG, "fpga_lte_fec: " fmt, \
##__VA_ARGS__)
#else
#define rte_bbdev_log_debug(fmt, ...)
#endif
/* FPGA LTE FEC driver names */
#define FPGA_LTE_FEC_PF_DRIVER_NAME intel_fpga_lte_fec_pf
#define FPGA_LTE_FEC_VF_DRIVER_NAME intel_fpga_lte_fec_vf
/* FPGA LTE FEC PCI vendor & device IDs */
#define FPGA_LTE_FEC_VENDOR_ID (0x1172)
#define FPGA_LTE_FEC_PF_DEVICE_ID (0x5052)
#define FPGA_LTE_FEC_VF_DEVICE_ID (0x5050)
/* Align DMA descriptors to 256 bytes - cache-aligned */
#define FPGA_RING_DESC_ENTRY_LENGTH (8)
/* Ring size is in 256 bits (32 bytes) units */
#define FPGA_RING_DESC_LEN_UNIT_BYTES (32)
/* Maximum size of queue */
#define FPGA_RING_MAX_SIZE (1024)
#define FPGA_FLR_TIMEOUT_UNIT (16.384)
#define FPGA_NUM_UL_QUEUES (32)
#define FPGA_NUM_DL_QUEUES (32)
#define FPGA_TOTAL_NUM_QUEUES (FPGA_NUM_UL_QUEUES + FPGA_NUM_DL_QUEUES)
#define FPGA_NUM_INTR_VEC (FPGA_TOTAL_NUM_QUEUES - RTE_INTR_VEC_RXTX_OFFSET)
#define FPGA_INVALID_HW_QUEUE_ID (0xFFFFFFFF)
#define FPGA_QUEUE_FLUSH_TIMEOUT_US (1000)
#define FPGA_TIMEOUT_CHECK_INTERVAL (5)
/* FPGA LTE FEC Register mapping on BAR0 */
enum {
FPGA_LTE_FEC_VERSION_ID = 0x00000000, /* len: 4B */
FPGA_LTE_FEC_CONFIGURATION = 0x00000004, /* len: 2B */
FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE = 0x00000008, /* len: 1B */
FPGA_LTE_FEC_LOAD_BALANCE_FACTOR = 0x0000000a, /* len: 2B */
FPGA_LTE_FEC_RING_DESC_LEN = 0x0000000c, /* len: 2B */
FPGA_LTE_FEC_FLR_TIME_OUT = 0x0000000e, /* len: 2B */
FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW = 0x00000018, /* len: 4B */
FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI = 0x0000001c, /* len: 4B */
FPGA_LTE_FEC_VF0_DEBUG = 0x00000020, /* len: 4B */
FPGA_LTE_FEC_VF1_DEBUG = 0x00000024, /* len: 4B */
FPGA_LTE_FEC_VF2_DEBUG = 0x00000028, /* len: 4B */
FPGA_LTE_FEC_VF3_DEBUG = 0x0000002c, /* len: 4B */
FPGA_LTE_FEC_VF4_DEBUG = 0x00000030, /* len: 4B */
FPGA_LTE_FEC_VF5_DEBUG = 0x00000034, /* len: 4B */
FPGA_LTE_FEC_VF6_DEBUG = 0x00000038, /* len: 4B */
FPGA_LTE_FEC_VF7_DEBUG = 0x0000003c, /* len: 4B */
FPGA_LTE_FEC_QUEUE_MAP = 0x00000040, /* len: 256B */
FPGA_LTE_FEC_RING_CTRL_REGS = 0x00000200 /* len: 2048B */
};
/* FPGA LTE FEC Ring Control Registers */
enum {
FPGA_LTE_FEC_RING_HEAD_ADDR = 0x00000008,
FPGA_LTE_FEC_RING_SIZE = 0x00000010,
FPGA_LTE_FEC_RING_MISC = 0x00000014,
FPGA_LTE_FEC_RING_ENABLE = 0x00000015,
FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN = 0x00000016,
FPGA_LTE_FEC_RING_SHADOW_TAIL = 0x00000018,
FPGA_LTE_FEC_RING_HEAD_POINT = 0x0000001C
};
/* FPGA LTE FEC DESCRIPTOR ERROR */
enum {
DESC_ERR_NO_ERR = 0x0,
DESC_ERR_K_OUT_OF_RANGE = 0x1,
DESC_ERR_K_NOT_NORMAL = 0x2,
DESC_ERR_KPAI_NOT_NORMAL = 0x3,
DESC_ERR_DESC_OFFSET_ERR = 0x4,
DESC_ERR_DESC_READ_FAIL = 0x8,
DESC_ERR_DESC_READ_TIMEOUT = 0x9,
DESC_ERR_DESC_READ_TLP_POISONED = 0xA,
DESC_ERR_CB_READ_FAIL = 0xC,
DESC_ERR_CB_READ_TIMEOUT = 0xD,
DESC_ERR_CB_READ_TLP_POISONED = 0xE
};
/* FPGA LTE FEC DMA Encoding Request Descriptor */
struct __rte_packed fpga_dma_enc_desc {
uint32_t done:1,
rsrvd0:11,
error:4,
rsrvd1:16;
uint32_t ncb:16,
rsrvd2:14,
rv:2;
uint32_t bypass_rm:1,
irq_en:1,
crc_en:1,
rsrvd3:13,
offset:10,
rsrvd4:6;
uint16_t e;
uint16_t k;
uint32_t out_addr_lw;
uint32_t out_addr_hi;
uint32_t in_addr_lw;
uint32_t in_addr_hi;
union {
struct {
/* Virtual addresses used to retrieve SW context info */
void *op_addr;
/* Stores information about total number of Code Blocks
* in currently processed Transport Block
*/
uint64_t cbs_in_op;
};
uint8_t sw_ctxt[FPGA_RING_DESC_LEN_UNIT_BYTES *
(FPGA_RING_DESC_ENTRY_LENGTH - 1)];
};
};
/* FPGA LTE FEC DMA Decoding Request Descriptor */
struct __rte_packed fpga_dma_dec_desc {
uint32_t done:1,
iter:5,
rsrvd0:2,
crc_pass:1,
rsrvd1:3,
error:4,
crc_type:1,
rsrvd2:7,
max_iter:5,
rsrvd3:3;
uint32_t rsrvd4;
uint32_t bypass_rm:1,
irq_en:1,
drop_crc:1,
rsrvd5:13,
offset:10,
rsrvd6:6;
uint16_t k;
uint16_t in_len;
uint32_t out_addr_lw;
uint32_t out_addr_hi;
uint32_t in_addr_lw;
uint32_t in_addr_hi;
union {
struct {
/* Virtual addresses used to retrieve SW context info */
void *op_addr;
/* Stores information about total number of Code Blocks
* in currently processed Transport Block
*/
uint8_t cbs_in_op;
};
uint32_t sw_ctxt[8 * (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
};
};
/* FPGA LTE DMA Descriptor */
union fpga_dma_desc {
struct fpga_dma_enc_desc enc_req;
struct fpga_dma_dec_desc dec_req;
};
/* FPGA LTE FEC Ring Control Register */
struct __rte_packed fpga_ring_ctrl_reg {
uint64_t ring_base_addr;
uint64_t ring_head_addr;
uint16_t ring_size:11;
uint16_t rsrvd0;
union { /* Miscellaneous register */
uint8_t misc;
uint8_t max_ul_dec:5,
max_ul_dec_en:1,
rsrvd1:2;
};
uint8_t enable;
uint8_t flush_queue_en;
uint8_t rsrvd2;
uint16_t shadow_tail;
uint16_t rsrvd3;
uint16_t head_point;
uint16_t rsrvd4;
};
/* Private data structure for each FPGA FEC device */
struct fpga_lte_fec_device {
/** Base address of MMIO registers (BAR0) */
void *mmio_base;
/** Base address of memory for sw rings */
void *sw_rings;
/** Physical address of sw_rings */
rte_iova_t sw_rings_phys;
/** Number of bytes available for each queue in device. */
uint32_t sw_ring_size;
/** Max number of entries available for each queue in device */
uint32_t sw_ring_max_depth;
/** Base address of response tail pointer buffer */
uint32_t *tail_ptrs;
/** Physical address of tail pointers */
rte_iova_t tail_ptr_phys;
/** Queues flush completion flag */
uint64_t *flush_queue_status;
/* Bitmap capturing which Queues are bound to the PF/VF */
uint64_t q_bound_bit_map;
/* Bitmap capturing which Queues have already been assigned */
uint64_t q_assigned_bit_map;
/** True if this is a PF FPGA FEC device */
bool pf_device;
};
/* Structure associated with each queue. */
struct __rte_cache_aligned fpga_queue {
struct fpga_ring_ctrl_reg ring_ctrl_reg; /* Ring Control Register */
union fpga_dma_desc *ring_addr; /* Virtual address of software ring */
uint64_t *ring_head_addr; /* Virtual address of completion_head */
uint64_t shadow_completion_head; /* Shadow completion head value */
uint16_t head_free_desc; /* Ring head */
uint16_t tail; /* Ring tail */
/* Mask used to wrap enqueued descriptors on the sw ring */
uint32_t sw_ring_wrap_mask;
uint32_t irq_enable; /* Enable ops dequeue interrupts if set to 1 */
uint8_t q_idx; /* Queue index */
struct fpga_lte_fec_device *d;
/* MMIO register of shadow_tail used to enqueue descriptors */
void *shadow_tail_addr;
};
/* Write to 16 bit MMIO register address */
static inline void
mmio_write_16(void *addr, uint16_t value)
{
*((volatile uint16_t *)(addr)) = rte_cpu_to_le_16(value);
}
/* Write to 32 bit MMIO register address */
static inline void
mmio_write_32(void *addr, uint32_t value)
{
*((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
}
/* Write to 64 bit MMIO register address */
static inline void
mmio_write_64(void *addr, uint64_t value)
{
*((volatile uint64_t *)(addr)) = rte_cpu_to_le_64(value);
}
/* Write a 8 bit register of a FPGA LTE FEC device */
static inline void
fpga_reg_write_8(void *mmio_base, uint32_t offset, uint8_t payload)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
*((volatile uint8_t *)(reg_addr)) = payload;
}
/* Write a 16 bit register of a FPGA LTE FEC device */
static inline void
fpga_reg_write_16(void *mmio_base, uint32_t offset, uint16_t payload)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
mmio_write_16(reg_addr, payload);
}
/* Write a 32 bit register of a FPGA LTE FEC device */
static inline void
fpga_reg_write_32(void *mmio_base, uint32_t offset, uint32_t payload)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
mmio_write_32(reg_addr, payload);
}
/* Write a 64 bit register of a FPGA LTE FEC device */
static inline void
fpga_reg_write_64(void *mmio_base, uint32_t offset, uint64_t payload)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
mmio_write_64(reg_addr, payload);
}
/* Write a ring control register of a FPGA LTE FEC device */
static inline void
fpga_ring_reg_write(void *mmio_base, uint32_t offset,
struct fpga_ring_ctrl_reg payload)
{
fpga_reg_write_64(mmio_base, offset, payload.ring_base_addr);
fpga_reg_write_64(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_ADDR,
payload.ring_head_addr);
fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SIZE,
payload.ring_size);
fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
payload.head_point);
fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN,
payload.flush_queue_en);
fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
payload.shadow_tail);
fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_MISC,
payload.misc);
fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
payload.enable);
}
/* Read a register of FPGA LTE FEC device */
static uint32_t
fpga_reg_read_32(void *mmio_base, uint32_t offset)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
uint32_t ret = *((volatile uint32_t *)(reg_addr));
return rte_le_to_cpu_32(ret);
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Read a register of FPGA LTE FEC device */
static uint8_t
fpga_reg_read_8(void *mmio_base, uint32_t offset)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
return *((volatile uint8_t *)(reg_addr));
}
/* Read a register of FPGA LTE FEC device */
static uint16_t
fpga_reg_read_16(void *mmio_base, uint32_t offset)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
uint16_t ret = *((volatile uint16_t *)(reg_addr));
return rte_le_to_cpu_16(ret);
}
/* Read a register of FPGA LTE FEC device */
static uint64_t
fpga_reg_read_64(void *mmio_base, uint32_t offset)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
uint64_t ret = *((volatile uint64_t *)(reg_addr));
return rte_le_to_cpu_64(ret);
}
/* Read Ring Control Register of FPGA LTE FEC device */
static inline void
print_ring_reg_debug_info(void *mmio_base, uint32_t offset)
{
rte_bbdev_log_debug(
"FPGA MMIO base address @ %p | Ring Control Register @ offset = 0x%08"
PRIx32, mmio_base, offset);
rte_bbdev_log_debug(
"RING_BASE_ADDR = 0x%016"PRIx64,
fpga_reg_read_64(mmio_base, offset));
rte_bbdev_log_debug(
"RING_HEAD_ADDR = 0x%016"PRIx64,
fpga_reg_read_64(mmio_base, offset +
FPGA_LTE_FEC_RING_HEAD_ADDR));
rte_bbdev_log_debug(
"RING_SIZE = 0x%04"PRIx16,
fpga_reg_read_16(mmio_base, offset +
FPGA_LTE_FEC_RING_SIZE));
rte_bbdev_log_debug(
"RING_MISC = 0x%02"PRIx8,
fpga_reg_read_8(mmio_base, offset +
FPGA_LTE_FEC_RING_MISC));
rte_bbdev_log_debug(
"RING_ENABLE = 0x%02"PRIx8,
fpga_reg_read_8(mmio_base, offset +
FPGA_LTE_FEC_RING_ENABLE));
rte_bbdev_log_debug(
"RING_FLUSH_QUEUE_EN = 0x%02"PRIx8,
fpga_reg_read_8(mmio_base, offset +
FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN));
rte_bbdev_log_debug(
"RING_SHADOW_TAIL = 0x%04"PRIx16,
fpga_reg_read_16(mmio_base, offset +
FPGA_LTE_FEC_RING_SHADOW_TAIL));
rte_bbdev_log_debug(
"RING_HEAD_POINT = 0x%04"PRIx16,
fpga_reg_read_16(mmio_base, offset +
FPGA_LTE_FEC_RING_HEAD_POINT));
}
/* Read Static Register of FPGA LTE FEC device */
static inline void
print_static_reg_debug_info(void *mmio_base)
{
uint16_t config = fpga_reg_read_16(mmio_base,
FPGA_LTE_FEC_CONFIGURATION);
uint8_t qmap_done = fpga_reg_read_8(mmio_base,
FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE);
uint16_t lb_factor = fpga_reg_read_16(mmio_base,
FPGA_LTE_FEC_LOAD_BALANCE_FACTOR);
uint16_t ring_desc_len = fpga_reg_read_16(mmio_base,
FPGA_LTE_FEC_RING_DESC_LEN);
uint16_t flr_time_out = fpga_reg_read_16(mmio_base,
FPGA_LTE_FEC_FLR_TIME_OUT);
rte_bbdev_log_debug("UL.DL Weights = %u.%u",
((uint8_t)config), ((uint8_t)(config >> 8)));
rte_bbdev_log_debug("UL.DL Load Balance = %u.%u",
((uint8_t)lb_factor), ((uint8_t)(lb_factor >> 8)));
rte_bbdev_log_debug("Queue-PF/VF Mapping Table = %s",
(qmap_done > 0) ? "READY" : "NOT-READY");
rte_bbdev_log_debug("Ring Descriptor Size = %u bytes",
ring_desc_len*FPGA_RING_DESC_LEN_UNIT_BYTES);
rte_bbdev_log_debug("FLR Timeout = %f usec",
(float)flr_time_out*FPGA_FLR_TIMEOUT_UNIT);
}
/* Print decode DMA Descriptor of FPGA LTE FEC device */
static void
print_dma_dec_desc_debug_info(union fpga_dma_desc *desc)
{
rte_bbdev_log_debug("DMA response desc %p\n"
"\t-- done(%"PRIu32") | iter(%"PRIu32") | crc_pass(%"PRIu32")"
" | error (%"PRIu32") | crc_type(%"PRIu32")\n"
"\t-- max_iter(%"PRIu32") | bypass_rm(%"PRIu32") | "
"irq_en (%"PRIu32") | drop_crc(%"PRIu32") | offset(%"PRIu32")\n"
"\t-- k(%"PRIu32") | in_len (%"PRIu16") | op_add(%p)\n"
"\t-- cbs_in_op(%"PRIu32") | in_add (0x%08"PRIx32"%08"PRIx32") | "
"out_add (0x%08"PRIx32"%08"PRIx32")",
desc,
(uint32_t)desc->dec_req.done,
(uint32_t)desc->dec_req.iter,
(uint32_t)desc->dec_req.crc_pass,
(uint32_t)desc->dec_req.error,
(uint32_t)desc->dec_req.crc_type,
(uint32_t)desc->dec_req.max_iter,
(uint32_t)desc->dec_req.bypass_rm,
(uint32_t)desc->dec_req.irq_en,
(uint32_t)desc->dec_req.drop_crc,
(uint32_t)desc->dec_req.offset,
(uint32_t)desc->dec_req.k,
(uint16_t)desc->dec_req.in_len,
desc->dec_req.op_addr,
(uint32_t)desc->dec_req.cbs_in_op,
(uint32_t)desc->dec_req.in_addr_hi,
(uint32_t)desc->dec_req.in_addr_lw,
(uint32_t)desc->dec_req.out_addr_hi,
(uint32_t)desc->dec_req.out_addr_lw);
}
#endif
static int
fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
{
/* Number of queues bound to a PF/VF */
uint32_t hw_q_num = 0;
uint32_t ring_size, payload, address, q_id, offset;
rte_iova_t phys_addr;
struct fpga_ring_ctrl_reg ring_reg;
struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) {
rte_bbdev_log(ERR,
"Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?",
dev->data->name);
return -EPERM;
}
/* Clear queue registers structure */
memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
/* Scan queue map.
* If a queue is valid and mapped to a calling PF/VF the read value is
* replaced with a queue ID and if it's not then
* FPGA_INVALID_HW_QUEUE_ID is returned.
*/
for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base,
FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u",
dev->device->name, q_id, hw_q_id);
if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) {
fpga_dev->q_bound_bit_map |= (1ULL << q_id);
/* Clear queue register of found queue */
offset = FPGA_LTE_FEC_RING_CTRL_REGS +
(sizeof(struct fpga_ring_ctrl_reg) * q_id);
fpga_ring_reg_write(fpga_dev->mmio_base,
offset, ring_reg);
++hw_q_num;
}
}
if (hw_q_num == 0) {
rte_bbdev_log(ERR,
"No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!");
return -ENODEV;
}
if (num_queues > hw_q_num) {
rte_bbdev_log(ERR,
"Not enough queues for device %s! Requested: %u, available: %u",
dev->device->name, num_queues, hw_q_num);
return -EINVAL;
}
ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc);
/* Enforce 32 byte alignment */
RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0);
/* Allocate memory for SW descriptor rings */
fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name,
num_queues * ring_size, RTE_CACHE_LINE_SIZE,
socket_id);
if (fpga_dev->sw_rings == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate memory for %s:%u sw_rings",
dev->device->driver->name, dev->data->dev_id);
return -ENOMEM;
}
fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings);
fpga_dev->sw_ring_size = ring_size;
fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE;
/* Allocate memory for ring flush status */
fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL,
sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id);
if (fpga_dev->flush_queue_status == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate memory for %s:%u flush_queue_status",
dev->device->driver->name, dev->data->dev_id);
return -ENOMEM;
}
/* Set the flush status address registers */
phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status);
address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW;
payload = (uint32_t)(phys_addr);
fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI;
payload = (uint32_t)(phys_addr >> 32);
fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
return 0;
}
static int
fpga_dev_close(struct rte_bbdev *dev)
{
struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
rte_free(fpga_dev->sw_rings);
rte_free(fpga_dev->flush_queue_status);
return 0;
}
static void
fpga_dev_info_get(struct rte_bbdev *dev,
struct rte_bbdev_driver_info *dev_info)
{
struct fpga_lte_fec_device *d = dev->data->dev_private;
uint32_t q_id = 0;
/* TODO RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN and numbers of buffers are set
* to temporary values as they are required by test application while
* validation phase.
*/
static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
{
.type = RTE_BBDEV_OP_TURBO_DEC,
.cap.turbo_dec = {
.capability_flags =
RTE_BBDEV_TURBO_CRC_TYPE_24B |
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
RTE_BBDEV_TURBO_DEC_INTERRUPTS |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP,
.max_llr_modulus = INT8_MAX,
.num_buffers_src =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_hard_out =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_soft_out = 0
}
},
{
.type = RTE_BBDEV_OP_TURBO_ENC,
.cap.turbo_enc = {
.capability_flags =
RTE_BBDEV_TURBO_CRC_24B_ATTACH |
RTE_BBDEV_TURBO_RATE_MATCH |
RTE_BBDEV_TURBO_ENC_INTERRUPTS,
.num_buffers_src =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_dst =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS
}
},
RTE_BBDEV_END_OF_CAPABILITIES_LIST()
};
static struct rte_bbdev_queue_conf default_queue_conf;
default_queue_conf.socket = dev->data->socket_id;
default_queue_conf.queue_size = FPGA_RING_MAX_SIZE;
dev_info->driver_name = dev->device->driver->name;
dev_info->queue_size_lim = FPGA_RING_MAX_SIZE;
dev_info->hardware_accelerated = true;
dev_info->min_alignment = 64;
dev_info->default_queue_conf = default_queue_conf;
dev_info->capabilities = bbdev_capabilities;
dev_info->cpu_flag_reqs = NULL;
/* Calculates number of queues assigned to device */
dev_info->max_num_queues = 0;
for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
uint32_t hw_q_id = fpga_reg_read_32(d->mmio_base,
FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID)
dev_info->max_num_queues++;
}
}
/**
* Find index of queue bound to current PF/VF which is unassigned. Return -1
* when there is no available queue
*/
static int
fpga_find_free_queue_idx(struct rte_bbdev *dev,
const struct rte_bbdev_queue_conf *conf)
{
struct fpga_lte_fec_device *d = dev->data->dev_private;
uint64_t q_idx;
uint8_t i = 0;
uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1;
if (conf->op_type == RTE_BBDEV_OP_TURBO_ENC) {
i = FPGA_NUM_DL_QUEUES;
range = FPGA_TOTAL_NUM_QUEUES;
}
for (; i < range; ++i) {
q_idx = 1ULL << i;
/* Check if index of queue is bound to current PF/VF */
if (d->q_bound_bit_map & q_idx)
/* Check if found queue was not already assigned */
if (!(d->q_assigned_bit_map & q_idx)) {
d->q_assigned_bit_map |= q_idx;
return i;
}
}
rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name);
return -1;
}
static int
fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
const struct rte_bbdev_queue_conf *conf)
{
uint32_t address, ring_offset;
struct fpga_lte_fec_device *d = dev->data->dev_private;
struct fpga_queue *q;
int8_t q_idx;
/* Check if there is a free queue to assign */
q_idx = fpga_find_free_queue_idx(dev, conf);
if (q_idx == -1)
return -1;
/* Allocate the queue data structure. */
q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
RTE_CACHE_LINE_SIZE, conf->socket);
if (q == NULL) {
/* Mark queue as un-assigned */
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
rte_bbdev_log(ERR, "Failed to allocate queue memory");
return -ENOMEM;
}
q->d = d;
q->q_idx = q_idx;
/* Set ring_base_addr */
q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys +
(d->sw_ring_size * queue_id);
/* Allocate memory for Completion Head variable*/
q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name,
sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket);
if (q->ring_head_addr == NULL) {
/* Mark queue as un-assigned */
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
rte_free(q);
rte_bbdev_log(ERR,
"Failed to allocate memory for %s:%u completion_head",
dev->device->driver->name, dev->data->dev_id);
return -ENOMEM;
}
/* Set ring_head_addr */
q->ring_ctrl_reg.ring_head_addr =
rte_malloc_virt2iova(q->ring_head_addr);
/* Clear shadow_completion_head */
q->shadow_completion_head = 0;
/* Set ring_size */
if (conf->queue_size > FPGA_RING_MAX_SIZE) {
/* Mark queue as un-assigned */
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
rte_free(q->ring_head_addr);
rte_free(q);
rte_bbdev_log(ERR,
"Size of queue is too big %d (MAX: %d ) for %s:%u",
conf->queue_size, FPGA_RING_MAX_SIZE,
dev->device->driver->name, dev->data->dev_id);
return -EINVAL;
}
q->ring_ctrl_reg.ring_size = conf->queue_size;
/* Set Miscellaneous FPGA register*/
/* Max iteration number for TTI mitigation - todo */
q->ring_ctrl_reg.max_ul_dec = 0;
/* Enable max iteration number for TTI - todo */
q->ring_ctrl_reg.max_ul_dec_en = 0;
/* Enable the ring */
q->ring_ctrl_reg.enable = 1;
/* Set FPGA head_point and tail registers */
q->ring_ctrl_reg.head_point = q->tail = 0;
/* Set FPGA shadow_tail register */
q->ring_ctrl_reg.shadow_tail = q->tail;
/* Calculates the ring offset for found queue */
ring_offset = FPGA_LTE_FEC_RING_CTRL_REGS +
(sizeof(struct fpga_ring_ctrl_reg) * q_idx);
/* Set FPGA Ring Control Registers */
fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg);
/* Store MMIO register of shadow_tail */
address = ring_offset + FPGA_LTE_FEC_RING_SHADOW_TAIL;
q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address);
q->head_free_desc = q->tail;
/* Set wrap mask */
q->sw_ring_wrap_mask = conf->queue_size - 1;
rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u",
dev->data->dev_id, queue_id, q->q_idx);
dev->data->queues[queue_id].queue_private = q;
rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]",
queue_id, q_idx);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Read FPGA Ring Control Registers after configuration*/
print_ring_reg_debug_info(d->mmio_base, ring_offset);
#endif
return 0;
}
static int
fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id)
{
struct fpga_lte_fec_device *d = dev->data->dev_private;
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
struct fpga_ring_ctrl_reg ring_reg;
uint32_t offset;
rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id);
if (q != NULL) {
memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
offset = FPGA_LTE_FEC_RING_CTRL_REGS +
(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
/* Disable queue */
fpga_reg_write_8(d->mmio_base,
offset + FPGA_LTE_FEC_RING_ENABLE, 0x00);
/* Clear queue registers */
fpga_ring_reg_write(d->mmio_base, offset, ring_reg);
/* Mark the Queue as un-assigned */
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx));
rte_free(q->ring_head_addr);
rte_free(q);
dev->data->queues[queue_id].queue_private = NULL;
}
return 0;
}
/* Function starts a device queue. */
static int
fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id)
{
struct fpga_lte_fec_device *d = dev->data->dev_private;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (d == NULL) {
rte_bbdev_log(ERR, "Invalid device pointer");
return -1;
}
#endif
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
uint8_t enable = 0x01;
uint16_t zero = 0x0000;
/* Clear queue head and tail variables */
q->tail = q->head_free_desc = 0;
/* Clear FPGA head_point and tail registers */
fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
zero);
fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
zero);
/* Enable queue */
fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
enable);
rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id);
return 0;
}
/* Function stops a device queue. */
static int
fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
{
struct fpga_lte_fec_device *d = dev->data->dev_private;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (d == NULL) {
rte_bbdev_log(ERR, "Invalid device pointer");
return -1;
}
#endif
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
uint8_t payload = 0x01;
uint8_t counter = 0;
uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US /
FPGA_TIMEOUT_CHECK_INTERVAL;
/* Set flush_queue_en bit to trigger queue flushing */
fpga_reg_write_8(d->mmio_base,
offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN, payload);
/** Check if queue flush is completed.
* FPGA will update the completion flag after queue flushing is
* completed. If completion flag is not updated within 1ms it is
* considered as a failure.
*/
while (!(*((volatile uint8_t *)d->flush_queue_status + q->q_idx) & payload)) {
if (counter > timeout) {
rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d",
queue_id);
return -1;
}
usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
counter++;
}
/* Disable queue */
payload = 0x00;
fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
payload);
rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id);
return 0;
}
static inline uint16_t
get_queue_id(struct rte_bbdev_data *data, uint8_t q_idx)
{
uint16_t queue_id;
for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
struct fpga_queue *q = data->queues[queue_id].queue_private;
if (q != NULL && q->q_idx == q_idx)
return queue_id;
}
return -1;
}
/* Interrupt handler triggered by FPGA dev for handling specific interrupt */
static void
fpga_dev_interrupt_handler(void *cb_arg)
{
struct rte_bbdev *dev = cb_arg;
struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
struct fpga_queue *q;
uint64_t ring_head;
uint64_t q_idx;
uint16_t queue_id;
uint8_t i;
/* Scan queue assigned to this device */
for (i = 0; i < FPGA_TOTAL_NUM_QUEUES; ++i) {
q_idx = 1ULL << i;
if (fpga_dev->q_bound_bit_map & q_idx) {
queue_id = get_queue_id(dev->data, i);
if (queue_id == (uint16_t) -1)
continue;
/* Check if completion head was changed */
q = dev->data->queues[queue_id].queue_private;
ring_head = *q->ring_head_addr;
if (q->shadow_completion_head != ring_head &&
q->irq_enable == 1) {
q->shadow_completion_head = ring_head;
rte_bbdev_pmd_callback_process(
dev,
RTE_BBDEV_EVENT_DEQUEUE,
&queue_id);
}
}
}
}
static int
fpga_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
{
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
if (!rte_intr_cap_multiple(dev->intr_handle))
return -ENOTSUP;
q->irq_enable = 1;
return 0;
}
static int
fpga_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
{
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
q->irq_enable = 0;
return 0;
}
static int
fpga_intr_enable(struct rte_bbdev *dev)
{
int ret;
uint8_t i;
if (!rte_intr_cap_multiple(dev->intr_handle)) {
rte_bbdev_log(ERR, "Multiple intr vector is not supported by FPGA (%s)",
dev->data->name);
return -ENOTSUP;
}
/* Create event file descriptors for each of 64 queue. Event fds will be
* mapped to FPGA IRQs in rte_intr_enable(). This is a 1:1 mapping where
* the IRQ number is a direct translation to the queue number.
*
* 63 (FPGA_NUM_INTR_VEC) event fds are created as rte_intr_enable()
* mapped the first IRQ to already created interrupt event file
* descriptor (intr_handle->fd).
*/
if (rte_intr_efd_enable(dev->intr_handle, FPGA_NUM_INTR_VEC)) {
rte_bbdev_log(ERR, "Failed to create fds for %u queues",
dev->data->num_queues);
return -1;
}
/* TODO Each event file descriptor is overwritten by interrupt event
* file descriptor. That descriptor is added to epoll observed list.
* It ensures that callback function assigned to that descriptor will
* invoked when any FPGA queue issues interrupt.
*/
for (i = 0; i < FPGA_NUM_INTR_VEC; ++i)
dev->intr_handle->efds[i] = dev->intr_handle->fd;
if (!dev->intr_handle->intr_vec) {
dev->intr_handle->intr_vec = rte_zmalloc("intr_vec",
dev->data->num_queues * sizeof(int), 0);
if (!dev->intr_handle->intr_vec) {
rte_bbdev_log(ERR, "Failed to allocate %u vectors",
dev->data->num_queues);
return -ENOMEM;
}
}
ret = rte_intr_enable(dev->intr_handle);
if (ret < 0) {
rte_bbdev_log(ERR,
"Couldn't enable interrupts for device: %s",
dev->data->name);
return ret;
}
ret = rte_intr_callback_register(dev->intr_handle,
fpga_dev_interrupt_handler, dev);
if (ret < 0) {
rte_bbdev_log(ERR,
"Couldn't register interrupt callback for device: %s",
dev->data->name);
return ret;
}
return 0;
}
static const struct rte_bbdev_ops fpga_ops = {
.setup_queues = fpga_setup_queues,
.intr_enable = fpga_intr_enable,
.close = fpga_dev_close,
.info_get = fpga_dev_info_get,
.queue_setup = fpga_queue_setup,
.queue_stop = fpga_queue_stop,
.queue_start = fpga_queue_start,
.queue_release = fpga_queue_release,
.queue_intr_enable = fpga_queue_intr_enable,
.queue_intr_disable = fpga_queue_intr_disable
};
static inline void
fpga_dma_enqueue(struct fpga_queue *q, uint16_t num_desc,
struct rte_bbdev_stats *queue_stats)
{
#ifdef RTE_BBDEV_OFFLOAD_COST
uint64_t start_time = 0;
queue_stats->acc_offload_cycles = 0;
#else
RTE_SET_USED(queue_stats);
#endif
/* Update tail and shadow_tail register */
q->tail = (q->tail + num_desc) & q->sw_ring_wrap_mask;
rte_wmb();
#ifdef RTE_BBDEV_OFFLOAD_COST
/* Start time measurement for enqueue function offload. */
start_time = rte_rdtsc_precise();
#endif
mmio_write_16(q->shadow_tail_addr, q->tail);
#ifdef RTE_BBDEV_OFFLOAD_COST
rte_wmb();
queue_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
#endif
}
/* Calculates number of CBs in processed encoder TB based on 'r' and input
* length.
*/
static inline uint8_t
get_num_cbs_in_op_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
{
uint8_t c, c_neg, r, crc24_bits = 0;
uint16_t k, k_neg, k_pos;
uint8_t cbs_in_op = 0;
int32_t length;
length = turbo_enc->input.length;
r = turbo_enc->tb_params.r;
c = turbo_enc->tb_params.c;
c_neg = turbo_enc->tb_params.c_neg;
k_neg = turbo_enc->tb_params.k_neg;
k_pos = turbo_enc->tb_params.k_pos;
crc24_bits = 24;
while (length > 0 && r < c) {
k = (r < c_neg) ? k_neg : k_pos;
length -= (k - crc24_bits) >> 3;
r++;
cbs_in_op++;
}
return cbs_in_op;
}
/* Calculates number of CBs in processed decoder TB based on 'r' and input
* length.
*/
static inline uint16_t
get_num_cbs_in_op_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
{
uint8_t c, c_neg, r = 0;
uint16_t kw, k, k_neg, k_pos, cbs_in_op = 0;
int32_t length;
length = turbo_dec->input.length;
r = turbo_dec->tb_params.r;
c = turbo_dec->tb_params.c;
c_neg = turbo_dec->tb_params.c_neg;
k_neg = turbo_dec->tb_params.k_neg;
k_pos = turbo_dec->tb_params.k_pos;
while (length > 0 && r < c) {
k = (r < c_neg) ? k_neg : k_pos;
kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
length -= kw;
r++;
cbs_in_op++;
}
return cbs_in_op;
}
/* Read flag value 0/1/ from bitmap */
static inline bool
check_bit(uint32_t bitmap, uint32_t bitmask)
{
return bitmap & bitmask;
}
/* Print an error if a descriptor error has occurred.
* Return 0 on success, 1 on failure
*/
static inline int
check_desc_error(uint32_t error_code) {
switch (error_code) {
case DESC_ERR_NO_ERR:
return 0;
case DESC_ERR_K_OUT_OF_RANGE:
rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144)");
break;
case DESC_ERR_K_NOT_NORMAL:
rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range");
break;
case DESC_ERR_KPAI_NOT_NORMAL:
rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only");
break;
case DESC_ERR_DESC_OFFSET_ERR:
rte_bbdev_log(ERR, "Queue offset does not meet the expectation in the FPGA");
break;
case (DESC_ERR_K_OUT_OF_RANGE | DESC_ERR_DESC_OFFSET_ERR):
rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144) and queue offset error");
break;
case (DESC_ERR_K_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range and queue offset error");
break;
case (DESC_ERR_KPAI_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only and queue offset error");
break;
case DESC_ERR_DESC_READ_FAIL:
rte_bbdev_log(ERR, "Unsuccessful completion for descriptor read");
break;
case DESC_ERR_DESC_READ_TIMEOUT:
rte_bbdev_log(ERR, "Descriptor read time-out");
break;
case DESC_ERR_DESC_READ_TLP_POISONED:
rte_bbdev_log(ERR, "Descriptor read TLP poisoned");
break;
case DESC_ERR_CB_READ_FAIL:
rte_bbdev_log(ERR, "Unsuccessful completion for code block");
break;
case DESC_ERR_CB_READ_TIMEOUT:
rte_bbdev_log(ERR, "Code block read time-out");
break;
case DESC_ERR_CB_READ_TLP_POISONED:
rte_bbdev_log(ERR, "Code block read TLP poisoned");
break;
default:
rte_bbdev_log(ERR, "Descriptor error unknown error code %u",
error_code);
break;
}
return 1;
}
/**
* Set DMA descriptor for encode operation (1 Code Block)
*
* @param op
* Pointer to a single encode operation.
* @param desc
* Pointer to DMA descriptor.
* @param input
* Pointer to pointer to input data which will be decoded.
* @param k
* K value (length of input in bits).
* @param e
* E value (length of output in bits).
* @param ncb
* Ncb value (size of the soft buffer).
* @param out_length
* Length of output buffer
* @param in_offset
* Input offset in rte_mbuf structure. It is used for calculating the point
* where data is starting.
* @param out_offset
* Output offset in rte_mbuf structure. It is used for calculating the point
* where hard output data will be stored.
* @param cbs_in_op
* Number of CBs contained in one operation.
*/
static inline int
fpga_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
struct fpga_dma_enc_desc *desc, struct rte_mbuf *input,
struct rte_mbuf *output, uint16_t k, uint16_t e, uint16_t ncb,
uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
uint8_t cbs_in_op)
{
/* reset */
desc->done = 0;
desc->crc_en = check_bit(op->turbo_enc.op_flags,
RTE_BBDEV_TURBO_CRC_24B_ATTACH);
desc->bypass_rm = !check_bit(op->turbo_enc.op_flags,
RTE_BBDEV_TURBO_RATE_MATCH);
desc->k = k;
desc->e = e;
desc->ncb = ncb;
desc->rv = op->turbo_enc.rv_index;
desc->offset = desc_offset;
/* Set inbound data buffer address */
desc->in_addr_hi = (uint32_t)(
rte_pktmbuf_iova_offset(input, in_offset) >> 32);
desc->in_addr_lw = (uint32_t)(
rte_pktmbuf_iova_offset(input, in_offset));
desc->out_addr_hi = (uint32_t)(
rte_pktmbuf_iova_offset(output, out_offset) >> 32);
desc->out_addr_lw = (uint32_t)(
rte_pktmbuf_iova_offset(output, out_offset));
/* Save software context needed for dequeue */
desc->op_addr = op;
/* Set total number of CBs in an op */
desc->cbs_in_op = cbs_in_op;
return 0;
}
/**
* Set DMA descriptor for encode operation (1 Code Block)
*
* @param op
* Pointer to a single encode operation.
* @param desc
* Pointer to DMA descriptor.
* @param input
* Pointer to pointer to input data which will be decoded.
* @param in_length
* Length of an input.
* @param k
* K value (length of an output in bits).
* @param in_offset
* Input offset in rte_mbuf structure. It is used for calculating the point
* where data is starting.
* @param out_offset
* Output offset in rte_mbuf structure. It is used for calculating the point
* where hard output data will be stored.
* @param cbs_in_op
* Number of CBs contained in one operation.
*/
static inline int
fpga_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
struct fpga_dma_dec_desc *desc, struct rte_mbuf *input,
struct rte_mbuf *output, uint16_t in_length, uint16_t k,
uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
uint8_t cbs_in_op)
{
/* reset */
desc->done = 0;
/* Set inbound data buffer address */
desc->in_addr_hi = (uint32_t)(
rte_pktmbuf_iova_offset(input, in_offset) >> 32);
desc->in_addr_lw = (uint32_t)(
rte_pktmbuf_iova_offset(input, in_offset));
desc->in_len = in_length;
desc->k = k;
desc->crc_type = !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_CRC_TYPE_24B);
if ((op->turbo_dec.code_block_mode == 0)
&& !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
desc->drop_crc = 1;
desc->max_iter = op->turbo_dec.iter_max * 2;
desc->offset = desc_offset;
desc->out_addr_hi = (uint32_t)(
rte_pktmbuf_iova_offset(output, out_offset) >> 32);
desc->out_addr_lw = (uint32_t)(
rte_pktmbuf_iova_offset(output, out_offset));
/* Save software context needed for dequeue */
desc->op_addr = op;
/* Set total number of CBs in an op */
desc->cbs_in_op = cbs_in_op;
return 0;
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validates turbo encoder parameters */
static int
validate_enc_op(struct rte_bbdev_enc_op *op)
{
struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL;
struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL;
uint16_t kw, kw_neg, kw_pos;
if (turbo_enc->input.length >
RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
turbo_enc->input.length,
RTE_BBDEV_TURBO_MAX_TB_SIZE);
op->status = 1 << RTE_BBDEV_DATA_ERROR;
return -1;
}
if (op->mempool == NULL) {
rte_bbdev_log(ERR, "Invalid mempool pointer");
return -1;
}
if (turbo_enc->input.data == NULL) {
rte_bbdev_log(ERR, "Invalid input pointer");
return -1;
}
if (turbo_enc->output.data == NULL) {
rte_bbdev_log(ERR, "Invalid output pointer");
return -1;
}
if (turbo_enc->rv_index > 3) {
rte_bbdev_log(ERR,
"rv_index (%u) is out of range 0 <= value <= 3",
turbo_enc->rv_index);
return -1;
}
if (turbo_enc->code_block_mode != 0 &&
turbo_enc->code_block_mode != 1) {
rte_bbdev_log(ERR,
"code_block_mode (%u) is out of range 0 <= value <= 1",
turbo_enc->code_block_mode);
return -1;
}
if (turbo_enc->code_block_mode == 0) {
tb = &turbo_enc->tb_params;
if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
&& tb->c_neg > 0) {
rte_bbdev_log(ERR,
"k_neg (%u) is out of range %u <= value <= %u",
tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
if (tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
rte_bbdev_log(ERR,
"k_pos (%u) is out of range %u <= value <= %u",
tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
rte_bbdev_log(ERR,
"c_neg (%u) is out of range 0 <= value <= %u",
tb->c_neg,
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
rte_bbdev_log(ERR,
"c (%u) is out of range 1 <= value <= %u",
tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
return -1;
}
if (tb->cab > tb->c) {
rte_bbdev_log(ERR,
"cab (%u) is greater than c (%u)",
tb->cab, tb->c);
return -1;
}
if ((tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->ea % 2))
&& tb->r < tb->cab) {
rte_bbdev_log(ERR,
"ea (%u) is less than %u or it is not even",
tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
return -1;
}
if ((tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->eb % 2))
&& tb->c > tb->cab) {
rte_bbdev_log(ERR,
"eb (%u) is less than %u or it is not even",
tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
return -1;
}
kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
RTE_BBDEV_TURBO_C_SUBBLOCK);
if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
rte_bbdev_log(ERR,
"ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
tb->ncb_neg, tb->k_neg, kw_neg);
return -1;
}
kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
RTE_BBDEV_TURBO_C_SUBBLOCK);
if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
rte_bbdev_log(ERR,
"ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
tb->ncb_pos, tb->k_pos, kw_pos);
return -1;
}
if (tb->r > (tb->c - 1)) {
rte_bbdev_log(ERR,
"r (%u) is greater than c - 1 (%u)",
tb->r, tb->c - 1);
return -1;
}
} else {
cb = &turbo_enc->cb_params;
if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
rte_bbdev_log(ERR,
"k (%u) is out of range %u <= value <= %u",
cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
if (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || (cb->e % 2)) {
rte_bbdev_log(ERR,
"e (%u) is less than %u or it is not even",
cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
return -1;
}
kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
if (cb->ncb < cb->k || cb->ncb > kw) {
rte_bbdev_log(ERR,
"ncb (%u) is out of range (%u) k <= value <= (%u) kw",
cb->ncb, cb->k, kw);
return -1;
}
}
return 0;
}
#endif
static inline char *
mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
{
if (unlikely(len > rte_pktmbuf_tailroom(m)))
return NULL;
char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
m->data_len = (uint16_t)(m->data_len + len);
m_head->pkt_len = (m_head->pkt_len + len);
return tail;
}
static inline int
enqueue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
uint16_t desc_offset)
{
union fpga_dma_desc *desc;
struct rte_mbuf *input;
struct rte_mbuf *output;
int ret;
uint16_t k, e, ncb, ring_offset;
uint32_t total_left, in_length, out_length, in_offset, out_offset;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_enc_op(op) == -1) {
rte_bbdev_log(ERR, "Turbo encoder validation failed");
return -EINVAL;
}
#endif
input = op->turbo_enc.input.data;
output = op->turbo_enc.output.data;
in_offset = op->turbo_enc.input.offset;
out_offset = op->turbo_enc.output.offset;
total_left = op->turbo_enc.input.length;
k = op->turbo_enc.cb_params.k;
e = op->turbo_enc.cb_params.e;
ncb = op->turbo_enc.cb_params.ncb;
if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
in_length = ((k - 24) >> 3);
else
in_length = k >> 3;
if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
out_length = (e + 7) >> 3;
else
out_length = (k >> 3) * 3 + 2;
mbuf_append(output, output, out_length);
/* Offset into the ring */
ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
/* Setup DMA Descriptor */
desc = q->ring_addr + ring_offset;
ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output, k, e,
ncb, in_offset, out_offset, ring_offset, 1);
if (unlikely(ret < 0))
return ret;
/* Update lengths */
total_left -= in_length;
op->turbo_enc.output.length += out_length;
if (total_left > 0) {
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
total_left, in_length);
return -1;
}
return 1;
}
static inline int
enqueue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
uint16_t desc_offset, uint8_t cbs_in_op)
{
union fpga_dma_desc *desc;
struct rte_mbuf *input, *output_head, *output;
int ret;
uint8_t r, c, crc24_bits = 0;
uint16_t k, e, ncb, ring_offset;
uint32_t mbuf_total_left, in_length, out_length, in_offset, out_offset;
uint32_t seg_total_left;
uint16_t current_enqueued_cbs = 0;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_enc_op(op) == -1) {
rte_bbdev_log(ERR, "Turbo encoder validation failed");
return -EINVAL;
}
#endif
input = op->turbo_enc.input.data;
output_head = output = op->turbo_enc.output.data;
in_offset = op->turbo_enc.input.offset;
out_offset = op->turbo_enc.output.offset;
mbuf_total_left = op->turbo_enc.input.length;
c = op->turbo_enc.tb_params.c;
r = op->turbo_enc.tb_params.r;
if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
crc24_bits = 24;
while (mbuf_total_left > 0 && r < c && input != NULL) {
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
e = (r < op->turbo_enc.tb_params.cab) ?
op->turbo_enc.tb_params.ea :
op->turbo_enc.tb_params.eb;
k = (r < op->turbo_enc.tb_params.c_neg) ?
op->turbo_enc.tb_params.k_neg :
op->turbo_enc.tb_params.k_pos;
ncb = (r < op->turbo_enc.tb_params.c_neg) ?
op->turbo_enc.tb_params.ncb_neg :
op->turbo_enc.tb_params.ncb_pos;
in_length = ((k - crc24_bits) >> 3);
if (check_bit(op->turbo_enc.op_flags,
RTE_BBDEV_TURBO_RATE_MATCH))
out_length = (e + 7) >> 3;
else
out_length = (k >> 3) * 3 + 2;
mbuf_append(output_head, output, out_length);
/* Setup DMA Descriptor */
ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
desc = q->ring_addr + ring_offset;
ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output,
k, e, ncb, in_offset, out_offset, ring_offset,
cbs_in_op);
if (unlikely(ret < 0))
return ret;
rte_bbdev_log_debug("DMA request desc %p", desc);
/* Update lengths */
op->turbo_enc.output.length += out_length;
mbuf_total_left -= in_length;
/* Update offsets */
if (seg_total_left == in_length) {
/* Go to the next mbuf */
input = input->next;
output = output->next;
in_offset = 0;
out_offset = 0;
} else {
in_offset += in_length;
out_offset += out_length;
}
r++;
desc_offset++;
current_enqueued_cbs++;
}
if (mbuf_total_left > 0) {
rte_bbdev_log(ERR,
"Some date still left for processing: mbuf_total_left = %u",
mbuf_total_left);
return -1;
}
return current_enqueued_cbs;
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validates turbo decoder parameters */
static int
validate_dec_op(struct rte_bbdev_dec_op *op)
{
struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL;
struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL;
if (op->mempool == NULL) {
rte_bbdev_log(ERR, "Invalid mempool pointer");
return -1;
}
if (turbo_dec->input.data == NULL) {
rte_bbdev_log(ERR, "Invalid input pointer");
return -1;
}
if (turbo_dec->hard_output.data == NULL) {
rte_bbdev_log(ERR, "Invalid hard_output pointer");
return -1;
}
if (turbo_dec->rv_index > 3) {
rte_bbdev_log(ERR,
"rv_index (%u) is out of range 0 <= value <= 3",
turbo_dec->rv_index);
return -1;
}
if (turbo_dec->iter_min < 1) {
rte_bbdev_log(ERR,
"iter_min (%u) is less than 1",
turbo_dec->iter_min);
return -1;
}
if (turbo_dec->iter_max <= 2) {
rte_bbdev_log(ERR,
"iter_max (%u) is less than or equal to 2",
turbo_dec->iter_max);
return -1;
}
if (turbo_dec->iter_min > turbo_dec->iter_max) {
rte_bbdev_log(ERR,
"iter_min (%u) is greater than iter_max (%u)",
turbo_dec->iter_min, turbo_dec->iter_max);
return -1;
}
if (turbo_dec->code_block_mode != 0 &&
turbo_dec->code_block_mode != 1) {
rte_bbdev_log(ERR,
"code_block_mode (%u) is out of range 0 <= value <= 1",
turbo_dec->code_block_mode);
return -1;
}
if (turbo_dec->code_block_mode == 0) {
if ((turbo_dec->op_flags &
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) &&
!(turbo_dec->op_flags & RTE_BBDEV_TURBO_CRC_TYPE_24B)) {
rte_bbdev_log(ERR,
"RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP should accompany RTE_BBDEV_TURBO_CRC_TYPE_24B");
return -1;
}
tb = &turbo_dec->tb_params;
if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
&& tb->c_neg > 0) {
rte_bbdev_log(ERR,
"k_neg (%u) is out of range %u <= value <= %u",
tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
if ((tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE)
&& tb->c > tb->c_neg) {
rte_bbdev_log(ERR,
"k_pos (%u) is out of range %u <= value <= %u",
tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
rte_bbdev_log(ERR,
"c_neg (%u) is out of range 0 <= value <= %u",
tb->c_neg,
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
rte_bbdev_log(ERR,
"c (%u) is out of range 1 <= value <= %u",
tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
return -1;
}
if (tb->cab > tb->c) {
rte_bbdev_log(ERR,
"cab (%u) is greater than c (%u)",
tb->cab, tb->c);
return -1;
}
} else {
if (turbo_dec->op_flags & RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) {
rte_bbdev_log(ERR,
"RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP is invalid in CB-mode");
return -1;
}
cb = &turbo_dec->cb_params;
if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
rte_bbdev_log(ERR,
"k (%u) is out of range %u <= value <= %u",
cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
}
return 0;
}
#endif
static inline int
enqueue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
uint16_t desc_offset)
{
union fpga_dma_desc *desc;
struct rte_mbuf *input;
struct rte_mbuf *output;
int ret;
uint16_t k, kw, ring_offset;
uint32_t total_left, in_length, out_length, in_offset, out_offset;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_dec_op(op) == -1) {
rte_bbdev_log(ERR, "Turbo decoder validation failed");
return -EINVAL;
}
#endif
input = op->turbo_dec.input.data;
output = op->turbo_dec.hard_output.data;
total_left = op->turbo_dec.input.length;
in_offset = op->turbo_dec.input.offset;
out_offset = op->turbo_dec.hard_output.offset;
k = op->turbo_dec.cb_params.k;
kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
in_length = kw;
out_length = k >> 3;
mbuf_append(output, output, out_length);
/* Setup DMA Descriptor */
ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
desc = q->ring_addr + ring_offset;
ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
in_length, k, in_offset, out_offset, ring_offset, 1);
if (unlikely(ret < 0))
return ret;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
print_dma_dec_desc_debug_info(desc);
#endif
/* Update lengths */
total_left -= in_length;
op->turbo_dec.hard_output.length += out_length;
if (total_left > 0) {
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
total_left, in_length);
return -1;
}
return 1;
}
static inline int
enqueue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
uint16_t desc_offset, uint8_t cbs_in_op)
{
union fpga_dma_desc *desc;
struct rte_mbuf *input, *output_head, *output;
int ret;
uint8_t r, c;
uint16_t k, kw, in_length, out_length, ring_offset;
uint32_t mbuf_total_left, seg_total_left, in_offset, out_offset;
uint16_t current_enqueued_cbs = 0;
uint16_t crc24_overlap = 0;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_dec_op(op) == -1) {
rte_bbdev_log(ERR, "Turbo decoder validation failed");
return -EINVAL;
}
#endif
input = op->turbo_dec.input.data;
output_head = output = op->turbo_dec.hard_output.data;
mbuf_total_left = op->turbo_dec.input.length;
in_offset = op->turbo_dec.input.offset;
out_offset = op->turbo_dec.hard_output.offset;
if (!check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
crc24_overlap = 24;
c = op->turbo_dec.tb_params.c;
r = op->turbo_dec.tb_params.r;
while (mbuf_total_left > 0 && r < c && input != NULL) {
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
k = (r < op->turbo_dec.tb_params.c_neg) ?
op->turbo_dec.tb_params.k_neg :
op->turbo_dec.tb_params.k_pos;
kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
in_length = kw;
out_length = (k - crc24_overlap) >> 3;
mbuf_append(output_head, output, out_length);
if (seg_total_left < in_length) {
rte_bbdev_log(ERR,
"Partial CB found in a TB. FPGA Driver doesn't support scatter-gather operations!");
return -1;
}
/* Setup DMA Descriptor */
ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
desc = q->ring_addr + ring_offset;
ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
in_length, k, in_offset, out_offset,
ring_offset, cbs_in_op);
if (unlikely(ret < 0))
return ret;
/* Update lengths */
ret = rte_pktmbuf_trim(op->turbo_dec.hard_output.data,
(crc24_overlap >> 3));
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (ret < 0) {
rte_bbdev_log(ERR,
"The length to remove is greater than the length of the last segment");
return -EINVAL;
}
#endif
op->turbo_dec.hard_output.length += out_length;
mbuf_total_left -= in_length;
/* Update offsets */
if (seg_total_left == in_length) {
/* Go to the next mbuf */
input = input->next;
output = output->next;
in_offset = 0;
out_offset = 0;
} else {
in_offset += in_length;
out_offset += out_length;
}
r++;
desc_offset++;
current_enqueued_cbs++;
}
if (mbuf_total_left > 0) {
rte_bbdev_log(ERR,
"Some date still left for processing: mbuf_total_left = %u",
mbuf_total_left);
return -1;
}
return current_enqueued_cbs;
}
static uint16_t
fpga_enqueue_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
uint8_t cbs_in_op;
uint16_t i, total_enqueued_cbs = 0;
int32_t avail;
int enqueued_cbs;
struct fpga_queue *q = q_data->queue_private;
union fpga_dma_desc *desc;
/* Check if queue is not full */
if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
q->head_free_desc))
return 0;
/* Calculates available space */
avail = (q->head_free_desc > q->tail) ?
q->head_free_desc - q->tail - 1 :
q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
for (i = 0; i < num; ++i) {
if (ops[i]->turbo_enc.code_block_mode == 0) {
cbs_in_op = get_num_cbs_in_op_enc(&ops[i]->turbo_enc);
/* Check if there is available space for further
* processing
*/
if (unlikely(avail - cbs_in_op < 0))
break;
avail -= cbs_in_op;
enqueued_cbs = enqueue_enc_one_op_tb(q, ops[i],
total_enqueued_cbs, cbs_in_op);
} else {
/* Check if there is available space for further
* processing
*/
if (unlikely(avail - 1 < 0))
break;
avail -= 1;
enqueued_cbs = enqueue_enc_one_op_cb(q, ops[i],
total_enqueued_cbs);
}
if (enqueued_cbs < 0)
break;
total_enqueued_cbs += enqueued_cbs;
rte_bbdev_log_debug("enqueuing enc ops [%d/%d] | head %d | tail %d",
total_enqueued_cbs, num,
q->head_free_desc, q->tail);
}
/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
* only when all previous CBs were already processed.
*/
desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
& q->sw_ring_wrap_mask);
desc->enc_req.irq_en = q->irq_enable;
fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
static uint16_t
fpga_enqueue_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
uint8_t cbs_in_op;
uint16_t i, total_enqueued_cbs = 0;
int32_t avail;
int enqueued_cbs;
struct fpga_queue *q = q_data->queue_private;
union fpga_dma_desc *desc;
/* Check if queue is not full */
if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
q->head_free_desc))
return 0;
/* Calculates available space */
avail = (q->head_free_desc > q->tail) ?
q->head_free_desc - q->tail - 1 :
q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
for (i = 0; i < num; ++i) {
if (ops[i]->turbo_dec.code_block_mode == 0) {
cbs_in_op = get_num_cbs_in_op_dec(&ops[i]->turbo_dec);
/* Check if there is available space for further
* processing
*/
if (unlikely(avail - cbs_in_op < 0))
break;
avail -= cbs_in_op;
enqueued_cbs = enqueue_dec_one_op_tb(q, ops[i],
total_enqueued_cbs, cbs_in_op);
} else {
/* Check if there is available space for further
* processing
*/
if (unlikely(avail - 1 < 0))
break;
avail -= 1;
enqueued_cbs = enqueue_dec_one_op_cb(q, ops[i],
total_enqueued_cbs);
}
if (enqueued_cbs < 0)
break;
total_enqueued_cbs += enqueued_cbs;
rte_bbdev_log_debug("enqueuing dec ops [%d/%d] | head %d | tail %d",
total_enqueued_cbs, num,
q->head_free_desc, q->tail);
}
/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
* only when all previous CBs were already processed.
*/
desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
& q->sw_ring_wrap_mask);
desc->dec_req.irq_en = q->irq_enable;
fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
static inline int
dequeue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
uint16_t desc_offset)
{
union fpga_dma_desc *desc;
int desc_error = 0;
/* Set current desc */
desc = q->ring_addr + ((q->head_free_desc + desc_offset)
& q->sw_ring_wrap_mask);
/*check if done */
if (desc->enc_req.done == 0)
return -1;
/* make sure the response is read atomically */
rte_smp_rmb();
rte_bbdev_log_debug("DMA response desc %p", desc);
*op = desc->enc_req.op_addr;
/* Check the decriptor error field, return 1 on error */
desc_error = check_desc_error(desc->enc_req.error);
(*op)->status = desc_error << RTE_BBDEV_DATA_ERROR;
return 1;
}
static inline int
dequeue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
uint16_t desc_offset)
{
union fpga_dma_desc *desc;
uint8_t cbs_in_op, cb_idx;
int desc_error = 0;
int status = 0;
/* Set descriptor */
desc = q->ring_addr + ((q->head_free_desc + desc_offset)
& q->sw_ring_wrap_mask);
/* Verify if done bit is set */
if (desc->enc_req.done == 0)
return -1;
/* Make sure the response is read atomically */
rte_smp_rmb();
/* Verify if done bit in all CBs is set */
cbs_in_op = desc->enc_req.cbs_in_op;
for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
desc = q->ring_addr + ((q->head_free_desc + desc_offset +
cb_idx) & q->sw_ring_wrap_mask);
if (desc->enc_req.done == 0)
return -1;
}
/* Make sure the response is read atomically */
rte_smp_rmb();
for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
desc = q->ring_addr + ((q->head_free_desc + desc_offset +
cb_idx) & q->sw_ring_wrap_mask);
/* Check the decriptor error field, return 1 on error */
desc_error = check_desc_error(desc->enc_req.error);
status |= desc_error << RTE_BBDEV_DATA_ERROR;
rte_bbdev_log_debug("DMA response desc %p", desc);
}
*op = desc->enc_req.op_addr;
(*op)->status = status;
return cbs_in_op;
}
static inline int
dequeue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
uint16_t desc_offset)
{
union fpga_dma_desc *desc;
int desc_error = 0;
/* Set descriptor */
desc = q->ring_addr + ((q->head_free_desc + desc_offset)
& q->sw_ring_wrap_mask);
/* Verify done bit is set */
if (desc->dec_req.done == 0)
return -1;
/* make sure the response is read atomically */
rte_smp_rmb();
#ifdef RTE_LIBRTE_BBDEV_DEBUG
print_dma_dec_desc_debug_info(desc);
#endif
*op = desc->dec_req.op_addr;
/* FPGA reports in half-iterations, from 0 to 31. get ceiling */
(*op)->turbo_dec.iter_count = (desc->dec_req.iter + 2) >> 1;
/* crc_pass = 0 when decoder fails */
(*op)->status = !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
/* Check the decriptor error field, return 1 on error */
desc_error = check_desc_error(desc->enc_req.error);
(*op)->status |= desc_error << RTE_BBDEV_DATA_ERROR;
return 1;
}
static inline int
dequeue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
uint16_t desc_offset)
{
union fpga_dma_desc *desc;
uint8_t cbs_in_op, cb_idx, iter_count = 0;
int status = 0;
int desc_error = 0;
/* Set descriptor */
desc = q->ring_addr + ((q->head_free_desc + desc_offset)
& q->sw_ring_wrap_mask);
/* Verify if done bit is set */
if (desc->dec_req.done == 0)
return -1;
/* Make sure the response is read atomically */
rte_smp_rmb();
/* Verify if done bit in all CBs is set */
cbs_in_op = desc->dec_req.cbs_in_op;
for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
desc = q->ring_addr + ((q->head_free_desc + desc_offset +
cb_idx) & q->sw_ring_wrap_mask);
if (desc->dec_req.done == 0)
return -1;
}
/* Make sure the response is read atomically */
rte_smp_rmb();
for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
desc = q->ring_addr + ((q->head_free_desc + desc_offset +
cb_idx) & q->sw_ring_wrap_mask);
/* get max iter_count for all CBs in op */
iter_count = RTE_MAX(iter_count, (uint8_t) desc->dec_req.iter);
/* crc_pass = 0 when decoder fails, one fails all */
status |= !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
/* Check the decriptor error field, return 1 on error */
desc_error = check_desc_error(desc->enc_req.error);
status |= desc_error << RTE_BBDEV_DATA_ERROR;
rte_bbdev_log_debug("DMA response desc %p", desc);
}
*op = desc->dec_req.op_addr;
/* FPGA reports in half-iterations, get ceiling */
(*op)->turbo_dec.iter_count = (iter_count + 2) >> 1;
(*op)->status = status;
return cbs_in_op;
}
static uint16_t
fpga_dequeue_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct fpga_queue *q = q_data->queue_private;
uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
uint16_t i;
uint16_t dequeued_cbs = 0;
struct rte_bbdev_enc_op *op;
int ret;
for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
& q->sw_ring_wrap_mask))->enc_req.op_addr;
if (op->turbo_enc.code_block_mode == 0)
ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs);
else
ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs);
if (ret < 0)
break;
dequeued_cbs += ret;
rte_bbdev_log_debug("dequeuing enc ops [%d/%d] | head %d | tail %d",
dequeued_cbs, num, q->head_free_desc, q->tail);
}
/* Update head */
q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
q->sw_ring_wrap_mask;
/* Update stats */
q_data->queue_stats.dequeued_count += i;
return i;
}
static uint16_t
fpga_dequeue_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct fpga_queue *q = q_data->queue_private;
uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
uint16_t i;
uint16_t dequeued_cbs = 0;
struct rte_bbdev_dec_op *op;
int ret;
for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
& q->sw_ring_wrap_mask))->dec_req.op_addr;
if (op->turbo_dec.code_block_mode == 0)
ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs);
else
ret = dequeue_dec_one_op_cb(q, &ops[i], dequeued_cbs);
if (ret < 0)
break;
dequeued_cbs += ret;
rte_bbdev_log_debug("dequeuing dec ops [%d/%d] | head %d | tail %d",
dequeued_cbs, num, q->head_free_desc, q->tail);
}
/* Update head */
q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
q->sw_ring_wrap_mask;
/* Update stats */
q_data->queue_stats.dequeued_count += i;
return i;
}
/* Initialization Function */
static void
fpga_lte_fec_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
{
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
dev->dev_ops = &fpga_ops;
dev->enqueue_enc_ops = fpga_enqueue_enc;
dev->enqueue_dec_ops = fpga_enqueue_dec;
dev->dequeue_enc_ops = fpga_dequeue_enc;
dev->dequeue_dec_ops = fpga_dequeue_dec;
((struct fpga_lte_fec_device *) dev->data->dev_private)->pf_device =
!strcmp(drv->driver.name,
RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME));
((struct fpga_lte_fec_device *) dev->data->dev_private)->mmio_base =
pci_dev->mem_resource[0].addr;
rte_bbdev_log_debug(
"Init device %s [%s] @ virtaddr %p phyaddr %#"PRIx64,
drv->driver.name, dev->data->name,
(void *)pci_dev->mem_resource[0].addr,
pci_dev->mem_resource[0].phys_addr);
}
static int
fpga_lte_fec_probe(struct rte_pci_driver *pci_drv,
struct rte_pci_device *pci_dev)
{
struct rte_bbdev *bbdev = NULL;
char dev_name[RTE_BBDEV_NAME_MAX_LEN];
if (pci_dev == NULL) {
rte_bbdev_log(ERR, "NULL PCI device");
return -EINVAL;
}
rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
/* Allocate memory to be used privately by drivers */
bbdev = rte_bbdev_allocate(pci_dev->device.name);
if (bbdev == NULL)
return -ENODEV;
/* allocate device private memory */
bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
sizeof(struct fpga_lte_fec_device), RTE_CACHE_LINE_SIZE,
pci_dev->device.numa_node);
if (bbdev->data->dev_private == NULL) {
rte_bbdev_log(CRIT,
"Allocate of %zu bytes for device \"%s\" failed",
sizeof(struct fpga_lte_fec_device), dev_name);
rte_bbdev_release(bbdev);
return -ENOMEM;
}
/* Fill HW specific part of device structure */
bbdev->device = &pci_dev->device;
bbdev->intr_handle = &pci_dev->intr_handle;
bbdev->data->socket_id = pci_dev->device.numa_node;
/* Invoke FEC FPGA device initialization function */
fpga_lte_fec_init(bbdev, pci_drv);
rte_bbdev_log_debug("bbdev id = %u [%s]",
bbdev->data->dev_id, dev_name);
struct fpga_lte_fec_device *d = bbdev->data->dev_private;
uint32_t version_id = fpga_reg_read_32(d->mmio_base,
FPGA_LTE_FEC_VERSION_ID);
rte_bbdev_log(INFO, "FEC FPGA RTL v%u.%u",
((uint16_t)(version_id >> 16)), ((uint16_t)version_id));
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (!strcmp(pci_drv->driver.name,
RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME)))
print_static_reg_debug_info(d->mmio_base);
#endif
return 0;
}
static int
fpga_lte_fec_remove(struct rte_pci_device *pci_dev)
{
struct rte_bbdev *bbdev;
int ret;
uint8_t dev_id;
if (pci_dev == NULL)
return -EINVAL;
/* Find device */
bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
if (bbdev == NULL) {
rte_bbdev_log(CRIT,
"Couldn't find HW dev \"%s\" to uninitialise it",
pci_dev->device.name);
return -ENODEV;
}
dev_id = bbdev->data->dev_id;
/* free device private memory before close */
rte_free(bbdev->data->dev_private);
/* Close device */
ret = rte_bbdev_close(dev_id);
if (ret < 0)
rte_bbdev_log(ERR,
"Device %i failed to close during uninit: %i",
dev_id, ret);
/* release bbdev from library */
ret = rte_bbdev_release(bbdev);
if (ret)
rte_bbdev_log(ERR, "Device %i failed to uninit: %i", dev_id,
ret);
rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
return 0;
}
static inline void
set_default_fpga_conf(struct rte_fpga_lte_fec_conf *def_conf)
{
/* clear default configuration before initialization */
memset(def_conf, 0, sizeof(struct rte_fpga_lte_fec_conf));
/* Set pf mode to true */
def_conf->pf_mode_en = true;
/* Set ratio between UL and DL to 1:1 (unit of weight is 3 CBs) */
def_conf->ul_bandwidth = 3;
def_conf->dl_bandwidth = 3;
/* Set Load Balance Factor to 64 */
def_conf->dl_load_balance = 64;
def_conf->ul_load_balance = 64;
}
/* Initial configuration of FPGA LTE FEC device */
int
rte_fpga_lte_fec_configure(const char *dev_name,
const struct rte_fpga_lte_fec_conf *conf)
{
uint32_t payload_32, address;
uint16_t payload_16;
uint8_t payload_8;
uint16_t q_id, vf_id, total_q_id, total_ul_q_id, total_dl_q_id;
struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
struct rte_fpga_lte_fec_conf def_conf;
if (bbdev == NULL) {
rte_bbdev_log(ERR,
"Invalid dev_name (%s), or device is not yet initialised",
dev_name);
return -ENODEV;
}
struct fpga_lte_fec_device *d = bbdev->data->dev_private;
if (conf == NULL) {
rte_bbdev_log(ERR,
"FPGA Configuration was not provided. Default configuration will be loaded.");
set_default_fpga_conf(&def_conf);
conf = &def_conf;
}
/*
* Configure UL:DL ratio.
* [7:0]: UL weight
* [15:8]: DL weight
*/
payload_16 = (conf->dl_bandwidth << 8) | conf->ul_bandwidth;
address = FPGA_LTE_FEC_CONFIGURATION;
fpga_reg_write_16(d->mmio_base, address, payload_16);
/* Clear all queues registers */
payload_32 = FPGA_INVALID_HW_QUEUE_ID;
for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
fpga_reg_write_32(d->mmio_base, address, payload_32);
}
/*
* If PF mode is enabled allocate all queues for PF only.
*
* For VF mode each VF can have different number of UL and DL queues.
* Total number of queues to configure cannot exceed FPGA
* capabilities - 64 queues - 32 queues for UL and 32 queues for DL.
* Queues mapping is done according to configuration:
*
* UL queues:
* | Q_ID | VF_ID |
* | 0 | 0 |
* | ... | 0 |
* | conf->vf_dl_queues_number[0] - 1 | 0 |
* | conf->vf_dl_queues_number[0] | 1 |
* | ... | 1 |
* | conf->vf_dl_queues_number[1] - 1 | 1 |
* | ... | ... |
* | conf->vf_dl_queues_number[7] - 1 | 7 |
*
* DL queues:
* | Q_ID | VF_ID |
* | 32 | 0 |
* | ... | 0 |
* | conf->vf_ul_queues_number[0] - 1 | 0 |
* | conf->vf_ul_queues_number[0] | 1 |
* | ... | 1 |
* | conf->vf_ul_queues_number[1] - 1 | 1 |
* | ... | ... |
* | conf->vf_ul_queues_number[7] - 1 | 7 |
*
* Example of configuration:
* conf->vf_ul_queues_number[0] = 4; -> 4 UL queues for VF0
* conf->vf_dl_queues_number[0] = 4; -> 4 DL queues for VF0
* conf->vf_ul_queues_number[1] = 2; -> 2 UL queues for VF1
* conf->vf_dl_queues_number[1] = 2; -> 2 DL queues for VF1
*
* UL:
* | Q_ID | VF_ID |
* | 0 | 0 |
* | 1 | 0 |
* | 2 | 0 |
* | 3 | 0 |
* | 4 | 1 |
* | 5 | 1 |
*
* DL:
* | Q_ID | VF_ID |
* | 32 | 0 |
* | 33 | 0 |
* | 34 | 0 |
* | 35 | 0 |
* | 36 | 1 |
* | 37 | 1 |
*/
if (conf->pf_mode_en) {
payload_32 = 0x1;
for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
fpga_reg_write_32(d->mmio_base, address, payload_32);
}
} else {
/* Calculate total number of UL and DL queues to configure */
total_ul_q_id = total_dl_q_id = 0;
for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
total_ul_q_id += conf->vf_ul_queues_number[vf_id];
total_dl_q_id += conf->vf_dl_queues_number[vf_id];
}
total_q_id = total_dl_q_id + total_ul_q_id;
/*
* Check if total number of queues to configure does not exceed
* FPGA capabilities (64 queues - 32 UL and 32 DL queues)
*/
if ((total_ul_q_id > FPGA_NUM_UL_QUEUES) ||
(total_dl_q_id > FPGA_NUM_DL_QUEUES) ||
(total_q_id > FPGA_TOTAL_NUM_QUEUES)) {
rte_bbdev_log(ERR,
"FPGA Configuration failed. Too many queues to configure: UL_Q %u, DL_Q %u, FPGA_Q %u",
total_ul_q_id, total_dl_q_id,
FPGA_TOTAL_NUM_QUEUES);
return -EINVAL;
}
total_ul_q_id = 0;
for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
for (q_id = 0; q_id < conf->vf_ul_queues_number[vf_id];
++q_id, ++total_ul_q_id) {
address = (total_ul_q_id << 2) +
FPGA_LTE_FEC_QUEUE_MAP;
payload_32 = ((0x80 + vf_id) << 16) | 0x1;
fpga_reg_write_32(d->mmio_base, address,
payload_32);
}
}
total_dl_q_id = 0;
for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
for (q_id = 0; q_id < conf->vf_dl_queues_number[vf_id];
++q_id, ++total_dl_q_id) {
address = ((total_dl_q_id + FPGA_NUM_UL_QUEUES)
<< 2) + FPGA_LTE_FEC_QUEUE_MAP;
payload_32 = ((0x80 + vf_id) << 16) | 0x1;
fpga_reg_write_32(d->mmio_base, address,
payload_32);
}
}
}
/* Setting Load Balance Factor */
payload_16 = (conf->dl_load_balance << 8) | (conf->ul_load_balance);
address = FPGA_LTE_FEC_LOAD_BALANCE_FACTOR;
fpga_reg_write_16(d->mmio_base, address, payload_16);
/* Setting length of ring descriptor entry */
payload_16 = FPGA_RING_DESC_ENTRY_LENGTH;
address = FPGA_LTE_FEC_RING_DESC_LEN;
fpga_reg_write_16(d->mmio_base, address, payload_16);
/* Setting FLR timeout value */
payload_16 = conf->flr_time_out;
address = FPGA_LTE_FEC_FLR_TIME_OUT;
fpga_reg_write_16(d->mmio_base, address, payload_16);
/* Queue PF/VF mapping table is ready */
payload_8 = 0x1;
address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
fpga_reg_write_8(d->mmio_base, address, payload_8);
rte_bbdev_log_debug("PF FPGA LTE FEC configuration complete for %s",
dev_name);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
print_static_reg_debug_info(d->mmio_base);
#endif
return 0;
}
/* FPGA LTE FEC PCI PF address map */
static struct rte_pci_id pci_id_fpga_lte_fec_pf_map[] = {
{
RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
FPGA_LTE_FEC_PF_DEVICE_ID)
},
{.device_id = 0},
};
static struct rte_pci_driver fpga_lte_fec_pci_pf_driver = {
.probe = fpga_lte_fec_probe,
.remove = fpga_lte_fec_remove,
.id_table = pci_id_fpga_lte_fec_pf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
};
/* FPGA LTE FEC PCI VF address map */
static struct rte_pci_id pci_id_fpga_lte_fec_vf_map[] = {
{
RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
FPGA_LTE_FEC_VF_DEVICE_ID)
},
{.device_id = 0},
};
static struct rte_pci_driver fpga_lte_fec_pci_vf_driver = {
.probe = fpga_lte_fec_probe,
.remove = fpga_lte_fec_remove,
.id_table = pci_id_fpga_lte_fec_vf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
};
RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_PF_DRIVER_NAME, fpga_lte_fec_pci_pf_driver);
RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_PF_DRIVER_NAME,
pci_id_fpga_lte_fec_pf_map);
RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_VF_DRIVER_NAME, fpga_lte_fec_pci_vf_driver);
RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_VF_DRIVER_NAME,
pci_id_fpga_lte_fec_vf_map);