numam-dpdk/drivers/net/pcap/rte_eth_pcap.c
Stephen Hemminger 22aeb6c706 net/pcap: remove redundant declaration
The rte_vdev_driver is declared twice.
The first one is not necessary.

Fixes: 050fe6e9ff ("drivers/net: use ethdev allocation helper for vdev")
Cc: stable@dpdk.org

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-07-23 14:31:35 +02:00

1582 lines
38 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation.
* Copyright(c) 2014 6WIND S.A.
* All rights reserved.
*/
#include <time.h>
#include <net/if.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <unistd.h>
#if defined(RTE_EXEC_ENV_FREEBSD)
#include <sys/sysctl.h>
#include <net/if_dl.h>
#endif
#include <pcap.h>
#include <rte_cycles.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_vdev.h>
#include <rte_kvargs.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_bus_vdev.h>
#include <rte_string_fns.h>
#define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
#define RTE_ETH_PCAP_SNAPLEN RTE_ETHER_MAX_JUMBO_FRAME_LEN
#define RTE_ETH_PCAP_PROMISC 1
#define RTE_ETH_PCAP_TIMEOUT -1
#define ETH_PCAP_RX_PCAP_ARG "rx_pcap"
#define ETH_PCAP_TX_PCAP_ARG "tx_pcap"
#define ETH_PCAP_RX_IFACE_ARG "rx_iface"
#define ETH_PCAP_RX_IFACE_IN_ARG "rx_iface_in"
#define ETH_PCAP_TX_IFACE_ARG "tx_iface"
#define ETH_PCAP_IFACE_ARG "iface"
#define ETH_PCAP_PHY_MAC_ARG "phy_mac"
#define ETH_PCAP_INFINITE_RX_ARG "infinite_rx"
#define ETH_PCAP_ARG_MAXLEN 64
#define RTE_PMD_PCAP_MAX_QUEUES 16
static char errbuf[PCAP_ERRBUF_SIZE];
static unsigned char tx_pcap_data[RTE_ETH_PCAP_SNAPLEN];
static struct timeval start_time;
static uint64_t start_cycles;
static uint64_t hz;
static uint8_t iface_idx;
struct queue_stat {
volatile unsigned long pkts;
volatile unsigned long bytes;
volatile unsigned long err_pkts;
};
struct pcap_rx_queue {
uint16_t port_id;
uint16_t queue_id;
struct rte_mempool *mb_pool;
struct queue_stat rx_stat;
char name[PATH_MAX];
char type[ETH_PCAP_ARG_MAXLEN];
/* Contains pre-generated packets to be looped through */
struct rte_ring *pkts;
};
struct pcap_tx_queue {
uint16_t port_id;
uint16_t queue_id;
struct queue_stat tx_stat;
char name[PATH_MAX];
char type[ETH_PCAP_ARG_MAXLEN];
};
struct pmd_internals {
struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
char devargs[ETH_PCAP_ARG_MAXLEN];
struct rte_ether_addr eth_addr;
int if_index;
int single_iface;
int phy_mac;
unsigned int infinite_rx;
};
struct pmd_process_private {
pcap_t *rx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
pcap_t *tx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
pcap_dumper_t *tx_dumper[RTE_PMD_PCAP_MAX_QUEUES];
};
struct pmd_devargs {
unsigned int num_of_queue;
struct devargs_queue {
pcap_dumper_t *dumper;
pcap_t *pcap;
const char *name;
const char *type;
} queue[RTE_PMD_PCAP_MAX_QUEUES];
int phy_mac;
};
struct pmd_devargs_all {
struct pmd_devargs rx_queues;
struct pmd_devargs tx_queues;
int single_iface;
unsigned int is_tx_pcap;
unsigned int is_tx_iface;
unsigned int infinite_rx;
};
static const char *valid_arguments[] = {
ETH_PCAP_RX_PCAP_ARG,
ETH_PCAP_TX_PCAP_ARG,
ETH_PCAP_RX_IFACE_ARG,
ETH_PCAP_RX_IFACE_IN_ARG,
ETH_PCAP_TX_IFACE_ARG,
ETH_PCAP_IFACE_ARG,
ETH_PCAP_PHY_MAC_ARG,
ETH_PCAP_INFINITE_RX_ARG,
NULL
};
static struct rte_eth_link pmd_link = {
.link_speed = ETH_SPEED_NUM_10G,
.link_duplex = ETH_LINK_FULL_DUPLEX,
.link_status = ETH_LINK_DOWN,
.link_autoneg = ETH_LINK_FIXED,
};
static int eth_pcap_logtype;
#define PMD_LOG(level, fmt, args...) \
rte_log(RTE_LOG_ ## level, eth_pcap_logtype, \
"%s(): " fmt "\n", __func__, ##args)
static int
eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
const u_char *data, uint16_t data_len)
{
/* Copy the first segment. */
uint16_t len = rte_pktmbuf_tailroom(mbuf);
struct rte_mbuf *m = mbuf;
rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
data_len -= len;
data += len;
while (data_len > 0) {
/* Allocate next mbuf and point to that. */
m->next = rte_pktmbuf_alloc(mb_pool);
if (unlikely(!m->next))
return -1;
m = m->next;
/* Headroom is not needed in chained mbufs. */
rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
m->pkt_len = 0;
m->data_len = 0;
/* Copy next segment. */
len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
rte_memcpy(rte_pktmbuf_append(m, len), data, len);
mbuf->nb_segs++;
data_len -= len;
data += len;
}
return mbuf->nb_segs;
}
/* Copy data from mbuf chain to a buffer suitable for writing to a PCAP file. */
static void
eth_pcap_gather_data(unsigned char *data, struct rte_mbuf *mbuf)
{
uint16_t data_len = 0;
while (mbuf) {
rte_memcpy(data + data_len, rte_pktmbuf_mtod(mbuf, void *),
mbuf->data_len);
data_len += mbuf->data_len;
mbuf = mbuf->next;
}
}
static uint16_t
eth_pcap_rx_infinite(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
int i;
struct pcap_rx_queue *pcap_q = queue;
uint32_t rx_bytes = 0;
if (unlikely(nb_pkts == 0))
return 0;
if (rte_pktmbuf_alloc_bulk(pcap_q->mb_pool, bufs, nb_pkts) != 0)
return 0;
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *pcap_buf;
int err = rte_ring_dequeue(pcap_q->pkts, (void **)&pcap_buf);
if (err)
return i;
rte_memcpy(rte_pktmbuf_mtod(bufs[i], void *),
rte_pktmbuf_mtod(pcap_buf, void *),
pcap_buf->data_len);
bufs[i]->data_len = pcap_buf->data_len;
bufs[i]->pkt_len = pcap_buf->pkt_len;
bufs[i]->port = pcap_q->port_id;
rx_bytes += pcap_buf->data_len;
/* Enqueue packet back on ring to allow infinite rx. */
rte_ring_enqueue(pcap_q->pkts, pcap_buf);
}
pcap_q->rx_stat.pkts += i;
pcap_q->rx_stat.bytes += rx_bytes;
return i;
}
static uint16_t
eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
unsigned int i;
struct pcap_pkthdr header;
struct pmd_process_private *pp;
const u_char *packet;
struct rte_mbuf *mbuf;
struct pcap_rx_queue *pcap_q = queue;
uint16_t num_rx = 0;
uint16_t buf_size;
uint32_t rx_bytes = 0;
pcap_t *pcap;
pp = rte_eth_devices[pcap_q->port_id].process_private;
pcap = pp->rx_pcap[pcap_q->queue_id];
if (unlikely(pcap == NULL || nb_pkts == 0))
return 0;
/* Reads the given number of packets from the pcap file one by one
* and copies the packet data into a newly allocated mbuf to return.
*/
for (i = 0; i < nb_pkts; i++) {
/* Get the next PCAP packet */
packet = pcap_next(pcap, &header);
if (unlikely(packet == NULL))
break;
mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
if (unlikely(mbuf == NULL))
break;
/* Now get the space available for data in the mbuf */
buf_size = rte_pktmbuf_data_room_size(pcap_q->mb_pool) -
RTE_PKTMBUF_HEADROOM;
if (header.caplen <= buf_size) {
/* pcap packet will fit in the mbuf, can copy it */
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
header.caplen);
mbuf->data_len = (uint16_t)header.caplen;
} else {
/* Try read jumbo frame into multi mbufs. */
if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
mbuf,
packet,
header.caplen) == -1)) {
rte_pktmbuf_free(mbuf);
break;
}
}
mbuf->pkt_len = (uint16_t)header.caplen;
mbuf->port = pcap_q->port_id;
bufs[num_rx] = mbuf;
num_rx++;
rx_bytes += header.caplen;
}
pcap_q->rx_stat.pkts += num_rx;
pcap_q->rx_stat.bytes += rx_bytes;
return num_rx;
}
static inline void
calculate_timestamp(struct timeval *ts) {
uint64_t cycles;
struct timeval cur_time;
cycles = rte_get_timer_cycles() - start_cycles;
cur_time.tv_sec = cycles / hz;
cur_time.tv_usec = (cycles % hz) * 1e6 / hz;
timeradd(&start_time, &cur_time, ts);
}
/*
* Callback to handle writing packets to a pcap file.
*/
static uint16_t
eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
unsigned int i;
struct rte_mbuf *mbuf;
struct pmd_process_private *pp;
struct pcap_tx_queue *dumper_q = queue;
uint16_t num_tx = 0;
uint32_t tx_bytes = 0;
struct pcap_pkthdr header;
pcap_dumper_t *dumper;
pp = rte_eth_devices[dumper_q->port_id].process_private;
dumper = pp->tx_dumper[dumper_q->queue_id];
if (dumper == NULL || nb_pkts == 0)
return 0;
/* writes the nb_pkts packets to the previously opened pcap file
* dumper */
for (i = 0; i < nb_pkts; i++) {
mbuf = bufs[i];
calculate_timestamp(&header.ts);
header.len = mbuf->pkt_len;
header.caplen = header.len;
if (likely(mbuf->nb_segs == 1)) {
pcap_dump((u_char *)dumper, &header,
rte_pktmbuf_mtod(mbuf, void*));
} else {
if (mbuf->pkt_len <= RTE_ETHER_MAX_JUMBO_FRAME_LEN) {
eth_pcap_gather_data(tx_pcap_data, mbuf);
pcap_dump((u_char *)dumper, &header,
tx_pcap_data);
} else {
PMD_LOG(ERR,
"Dropping PCAP packet. Size (%d) > max jumbo size (%d).",
mbuf->pkt_len,
RTE_ETHER_MAX_JUMBO_FRAME_LEN);
rte_pktmbuf_free(mbuf);
break;
}
}
num_tx++;
tx_bytes += mbuf->pkt_len;
rte_pktmbuf_free(mbuf);
}
/*
* Since there's no place to hook a callback when the forwarding
* process stops and to make sure the pcap file is actually written,
* we flush the pcap dumper within each burst.
*/
pcap_dump_flush(dumper);
dumper_q->tx_stat.pkts += num_tx;
dumper_q->tx_stat.bytes += tx_bytes;
dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
return num_tx;
}
/*
* Callback to handle dropping packets in the infinite rx case.
*/
static uint16_t
eth_tx_drop(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
unsigned int i;
uint32_t tx_bytes = 0;
struct pcap_tx_queue *tx_queue = queue;
if (unlikely(nb_pkts == 0))
return 0;
for (i = 0; i < nb_pkts; i++) {
tx_bytes += bufs[i]->data_len;
rte_pktmbuf_free(bufs[i]);
}
tx_queue->tx_stat.pkts += nb_pkts;
tx_queue->tx_stat.bytes += tx_bytes;
return i;
}
/*
* Callback to handle sending packets through a real NIC.
*/
static uint16_t
eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
unsigned int i;
int ret;
struct rte_mbuf *mbuf;
struct pmd_process_private *pp;
struct pcap_tx_queue *tx_queue = queue;
uint16_t num_tx = 0;
uint32_t tx_bytes = 0;
pcap_t *pcap;
pp = rte_eth_devices[tx_queue->port_id].process_private;
pcap = pp->tx_pcap[tx_queue->queue_id];
if (unlikely(nb_pkts == 0 || pcap == NULL))
return 0;
for (i = 0; i < nb_pkts; i++) {
mbuf = bufs[i];
if (likely(mbuf->nb_segs == 1)) {
ret = pcap_sendpacket(pcap,
rte_pktmbuf_mtod(mbuf, u_char *),
mbuf->pkt_len);
} else {
if (mbuf->pkt_len <= RTE_ETHER_MAX_JUMBO_FRAME_LEN) {
eth_pcap_gather_data(tx_pcap_data, mbuf);
ret = pcap_sendpacket(pcap,
tx_pcap_data, mbuf->pkt_len);
} else {
PMD_LOG(ERR,
"Dropping PCAP packet. Size (%d) > max jumbo size (%d).",
mbuf->pkt_len,
RTE_ETHER_MAX_JUMBO_FRAME_LEN);
rte_pktmbuf_free(mbuf);
break;
}
}
if (unlikely(ret != 0))
break;
num_tx++;
tx_bytes += mbuf->pkt_len;
rte_pktmbuf_free(mbuf);
}
tx_queue->tx_stat.pkts += num_tx;
tx_queue->tx_stat.bytes += tx_bytes;
tx_queue->tx_stat.err_pkts += nb_pkts - num_tx;
return num_tx;
}
/*
* pcap_open_live wrapper function
*/
static inline int
open_iface_live(const char *iface, pcap_t **pcap) {
*pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
if (*pcap == NULL) {
PMD_LOG(ERR, "Couldn't open %s: %s", iface, errbuf);
return -1;
}
return 0;
}
static int
open_single_iface(const char *iface, pcap_t **pcap)
{
if (open_iface_live(iface, pcap) < 0) {
PMD_LOG(ERR, "Couldn't open interface %s", iface);
return -1;
}
return 0;
}
static int
open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
{
pcap_t *tx_pcap;
/*
* We need to create a dummy empty pcap_t to use it
* with pcap_dump_open(). We create big enough an Ethernet
* pcap holder.
*/
tx_pcap = pcap_open_dead(DLT_EN10MB, RTE_ETH_PCAP_SNAPSHOT_LEN);
if (tx_pcap == NULL) {
PMD_LOG(ERR, "Couldn't create dead pcap");
return -1;
}
/* The dumper is created using the previous pcap_t reference */
*dumper = pcap_dump_open(tx_pcap, pcap_filename);
if (*dumper == NULL) {
pcap_close(tx_pcap);
PMD_LOG(ERR, "Couldn't open %s for writing.",
pcap_filename);
return -1;
}
pcap_close(tx_pcap);
return 0;
}
static int
open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
{
*pcap = pcap_open_offline(pcap_filename, errbuf);
if (*pcap == NULL) {
PMD_LOG(ERR, "Couldn't open %s: %s", pcap_filename,
errbuf);
return -1;
}
return 0;
}
static uint64_t
count_packets_in_pcap(pcap_t **pcap, struct pcap_rx_queue *pcap_q)
{
const u_char *packet;
struct pcap_pkthdr header;
uint64_t pcap_pkt_count = 0;
while ((packet = pcap_next(*pcap, &header)))
pcap_pkt_count++;
/* The pcap is reopened so it can be used as normal later. */
pcap_close(*pcap);
*pcap = NULL;
open_single_rx_pcap(pcap_q->name, pcap);
return pcap_pkt_count;
}
static int
eth_dev_start(struct rte_eth_dev *dev)
{
unsigned int i;
struct pmd_internals *internals = dev->data->dev_private;
struct pmd_process_private *pp = dev->process_private;
struct pcap_tx_queue *tx;
struct pcap_rx_queue *rx;
/* Special iface case. Single pcap is open and shared between tx/rx. */
if (internals->single_iface) {
tx = &internals->tx_queue[0];
rx = &internals->rx_queue[0];
if (!pp->tx_pcap[0] &&
strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
if (open_single_iface(tx->name, &pp->tx_pcap[0]) < 0)
return -1;
pp->rx_pcap[0] = pp->tx_pcap[0];
}
goto status_up;
}
/* If not open already, open tx pcaps/dumpers */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
tx = &internals->tx_queue[i];
if (!pp->tx_dumper[i] &&
strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
if (open_single_tx_pcap(tx->name,
&pp->tx_dumper[i]) < 0)
return -1;
} else if (!pp->tx_pcap[i] &&
strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
if (open_single_iface(tx->name, &pp->tx_pcap[i]) < 0)
return -1;
}
}
/* If not open already, open rx pcaps */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rx = &internals->rx_queue[i];
if (pp->rx_pcap[i] != NULL)
continue;
if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
if (open_single_rx_pcap(rx->name, &pp->rx_pcap[i]) < 0)
return -1;
} else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
if (open_single_iface(rx->name, &pp->rx_pcap[i]) < 0)
return -1;
}
}
status_up:
for (i = 0; i < dev->data->nb_rx_queues; i++)
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
for (i = 0; i < dev->data->nb_tx_queues; i++)
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
dev->data->dev_link.link_status = ETH_LINK_UP;
return 0;
}
/*
* This function gets called when the current port gets stopped.
* Is the only place for us to close all the tx streams dumpers.
* If not called the dumpers will be flushed within each tx burst.
*/
static void
eth_dev_stop(struct rte_eth_dev *dev)
{
unsigned int i;
struct pmd_internals *internals = dev->data->dev_private;
struct pmd_process_private *pp = dev->process_private;
/* Special iface case. Single pcap is open and shared between tx/rx. */
if (internals->single_iface) {
pcap_close(pp->tx_pcap[0]);
pp->tx_pcap[0] = NULL;
pp->rx_pcap[0] = NULL;
goto status_down;
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (pp->tx_dumper[i] != NULL) {
pcap_dump_close(pp->tx_dumper[i]);
pp->tx_dumper[i] = NULL;
}
if (pp->tx_pcap[i] != NULL) {
pcap_close(pp->tx_pcap[i]);
pp->tx_pcap[i] = NULL;
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (pp->rx_pcap[i] != NULL) {
pcap_close(pp->rx_pcap[i]);
pp->rx_pcap[i] = NULL;
}
}
status_down:
for (i = 0; i < dev->data->nb_rx_queues; i++)
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
for (i = 0; i < dev->data->nb_tx_queues; i++)
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
dev->data->dev_link.link_status = ETH_LINK_DOWN;
}
static int
eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
{
return 0;
}
static void
eth_dev_info(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct pmd_internals *internals = dev->data->dev_private;
dev_info->if_index = internals->if_index;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_pktlen = (uint32_t) -1;
dev_info->max_rx_queues = dev->data->nb_rx_queues;
dev_info->max_tx_queues = dev->data->nb_tx_queues;
dev_info->min_rx_bufsize = 0;
}
static int
eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
unsigned int i;
unsigned long rx_packets_total = 0, rx_bytes_total = 0;
unsigned long tx_packets_total = 0, tx_bytes_total = 0;
unsigned long tx_packets_err_total = 0;
const struct pmd_internals *internal = dev->data->dev_private;
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
i < dev->data->nb_rx_queues; i++) {
stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
rx_packets_total += stats->q_ipackets[i];
rx_bytes_total += stats->q_ibytes[i];
}
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
i < dev->data->nb_tx_queues; i++) {
stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
tx_packets_total += stats->q_opackets[i];
tx_bytes_total += stats->q_obytes[i];
tx_packets_err_total += internal->tx_queue[i].tx_stat.err_pkts;
}
stats->ipackets = rx_packets_total;
stats->ibytes = rx_bytes_total;
stats->opackets = tx_packets_total;
stats->obytes = tx_bytes_total;
stats->oerrors = tx_packets_err_total;
return 0;
}
static void
eth_stats_reset(struct rte_eth_dev *dev)
{
unsigned int i;
struct pmd_internals *internal = dev->data->dev_private;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
internal->rx_queue[i].rx_stat.pkts = 0;
internal->rx_queue[i].rx_stat.bytes = 0;
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
internal->tx_queue[i].tx_stat.pkts = 0;
internal->tx_queue[i].tx_stat.bytes = 0;
internal->tx_queue[i].tx_stat.err_pkts = 0;
}
}
static void
eth_dev_close(struct rte_eth_dev *dev)
{
unsigned int i;
struct pmd_internals *internals = dev->data->dev_private;
/* Device wide flag, but cleanup must be performed per queue. */
if (internals->infinite_rx) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct pcap_rx_queue *pcap_q = &internals->rx_queue[i];
struct rte_mbuf *pcap_buf;
while (!rte_ring_dequeue(pcap_q->pkts,
(void **)&pcap_buf))
rte_pktmbuf_free(pcap_buf);
rte_ring_free(pcap_q->pkts);
}
}
}
static void
eth_queue_release(void *q __rte_unused)
{
}
static int
eth_link_update(struct rte_eth_dev *dev __rte_unused,
int wait_to_complete __rte_unused)
{
return 0;
}
static int
eth_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mb_pool)
{
struct pmd_internals *internals = dev->data->dev_private;
struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
pcap_q->mb_pool = mb_pool;
pcap_q->port_id = dev->data->port_id;
pcap_q->queue_id = rx_queue_id;
dev->data->rx_queues[rx_queue_id] = pcap_q;
if (internals->infinite_rx) {
struct pmd_process_private *pp;
char ring_name[NAME_MAX];
static uint32_t ring_number;
uint64_t pcap_pkt_count = 0;
struct rte_mbuf *bufs[1];
pcap_t **pcap;
pp = rte_eth_devices[pcap_q->port_id].process_private;
pcap = &pp->rx_pcap[pcap_q->queue_id];
if (unlikely(*pcap == NULL))
return -ENOENT;
pcap_pkt_count = count_packets_in_pcap(pcap, pcap_q);
snprintf(ring_name, sizeof(ring_name), "PCAP_RING%" PRIu16,
ring_number);
pcap_q->pkts = rte_ring_create(ring_name,
rte_align64pow2(pcap_pkt_count + 1), 0,
RING_F_SP_ENQ | RING_F_SC_DEQ);
ring_number++;
if (!pcap_q->pkts)
return -ENOENT;
/* Fill ring with packets from PCAP file one by one. */
while (eth_pcap_rx(pcap_q, bufs, 1)) {
/* Check for multiseg mbufs. */
if (bufs[0]->nb_segs != 1) {
rte_pktmbuf_free(*bufs);
while (!rte_ring_dequeue(pcap_q->pkts,
(void **)bufs))
rte_pktmbuf_free(*bufs);
rte_ring_free(pcap_q->pkts);
PMD_LOG(ERR, "Multiseg mbufs are not supported in infinite_rx "
"mode.");
return -EINVAL;
}
rte_ring_enqueue_bulk(pcap_q->pkts,
(void * const *)bufs, 1, NULL);
}
/*
* Reset the stats for this queue since eth_pcap_rx calls above
* didn't result in the application receiving packets.
*/
pcap_q->rx_stat.pkts = 0;
pcap_q->rx_stat.bytes = 0;
}
return 0;
}
static int
eth_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct pmd_internals *internals = dev->data->dev_private;
struct pcap_tx_queue *pcap_q = &internals->tx_queue[tx_queue_id];
pcap_q->port_id = dev->data->port_id;
pcap_q->queue_id = tx_queue_id;
dev->data->tx_queues[tx_queue_id] = pcap_q;
return 0;
}
static int
eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static int
eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static int
eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static const struct eth_dev_ops ops = {
.dev_start = eth_dev_start,
.dev_stop = eth_dev_stop,
.dev_close = eth_dev_close,
.dev_configure = eth_dev_configure,
.dev_infos_get = eth_dev_info,
.rx_queue_setup = eth_rx_queue_setup,
.tx_queue_setup = eth_tx_queue_setup,
.rx_queue_start = eth_rx_queue_start,
.tx_queue_start = eth_tx_queue_start,
.rx_queue_stop = eth_rx_queue_stop,
.tx_queue_stop = eth_tx_queue_stop,
.rx_queue_release = eth_queue_release,
.tx_queue_release = eth_queue_release,
.link_update = eth_link_update,
.stats_get = eth_stats_get,
.stats_reset = eth_stats_reset,
};
static int
add_queue(struct pmd_devargs *pmd, const char *name, const char *type,
pcap_t *pcap, pcap_dumper_t *dumper)
{
if (pmd->num_of_queue >= RTE_PMD_PCAP_MAX_QUEUES)
return -1;
if (pcap)
pmd->queue[pmd->num_of_queue].pcap = pcap;
if (dumper)
pmd->queue[pmd->num_of_queue].dumper = dumper;
pmd->queue[pmd->num_of_queue].name = name;
pmd->queue[pmd->num_of_queue].type = type;
pmd->num_of_queue++;
return 0;
}
/*
* Function handler that opens the pcap file for reading a stores a
* reference of it for use it later on.
*/
static int
open_rx_pcap(const char *key, const char *value, void *extra_args)
{
const char *pcap_filename = value;
struct pmd_devargs *rx = extra_args;
pcap_t *pcap = NULL;
if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
return -1;
if (add_queue(rx, pcap_filename, key, pcap, NULL) < 0) {
pcap_close(pcap);
return -1;
}
return 0;
}
/*
* Opens a pcap file for writing and stores a reference to it
* for use it later on.
*/
static int
open_tx_pcap(const char *key, const char *value, void *extra_args)
{
const char *pcap_filename = value;
struct pmd_devargs *dumpers = extra_args;
pcap_dumper_t *dumper;
if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
return -1;
if (add_queue(dumpers, pcap_filename, key, NULL, dumper) < 0) {
pcap_dump_close(dumper);
return -1;
}
return 0;
}
/*
* Opens an interface for reading and writing
*/
static inline int
open_rx_tx_iface(const char *key, const char *value, void *extra_args)
{
const char *iface = value;
struct pmd_devargs *tx = extra_args;
pcap_t *pcap = NULL;
if (open_single_iface(iface, &pcap) < 0)
return -1;
tx->queue[0].pcap = pcap;
tx->queue[0].name = iface;
tx->queue[0].type = key;
return 0;
}
static inline int
set_iface_direction(const char *iface, pcap_t *pcap,
pcap_direction_t direction)
{
const char *direction_str = (direction == PCAP_D_IN) ? "IN" : "OUT";
if (pcap_setdirection(pcap, direction) < 0) {
PMD_LOG(ERR, "Setting %s pcap direction %s failed - %s\n",
iface, direction_str, pcap_geterr(pcap));
return -1;
}
PMD_LOG(INFO, "Setting %s pcap direction %s\n",
iface, direction_str);
return 0;
}
static inline int
open_iface(const char *key, const char *value, void *extra_args)
{
const char *iface = value;
struct pmd_devargs *pmd = extra_args;
pcap_t *pcap = NULL;
if (open_single_iface(iface, &pcap) < 0)
return -1;
if (add_queue(pmd, iface, key, pcap, NULL) < 0) {
pcap_close(pcap);
return -1;
}
return 0;
}
/*
* Opens a NIC for reading packets from it
*/
static inline int
open_rx_iface(const char *key, const char *value, void *extra_args)
{
int ret = open_iface(key, value, extra_args);
if (ret < 0)
return ret;
if (strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0) {
struct pmd_devargs *pmd = extra_args;
unsigned int qid = pmd->num_of_queue - 1;
set_iface_direction(pmd->queue[qid].name,
pmd->queue[qid].pcap,
PCAP_D_IN);
}
return 0;
}
static inline int
rx_iface_args_process(const char *key, const char *value, void *extra_args)
{
if (strcmp(key, ETH_PCAP_RX_IFACE_ARG) == 0 ||
strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0)
return open_rx_iface(key, value, extra_args);
return 0;
}
/*
* Opens a NIC for writing packets to it
*/
static int
open_tx_iface(const char *key, const char *value, void *extra_args)
{
return open_iface(key, value, extra_args);
}
static int
select_phy_mac(const char *key __rte_unused, const char *value,
void *extra_args)
{
if (extra_args) {
const int phy_mac = atoi(value);
int *enable_phy_mac = extra_args;
if (phy_mac)
*enable_phy_mac = 1;
}
return 0;
}
static int
get_infinite_rx_arg(const char *key __rte_unused,
const char *value, void *extra_args)
{
if (extra_args) {
const int infinite_rx = atoi(value);
int *enable_infinite_rx = extra_args;
if (infinite_rx > 0)
*enable_infinite_rx = 1;
}
return 0;
}
static int
pmd_init_internals(struct rte_vdev_device *vdev,
const unsigned int nb_rx_queues,
const unsigned int nb_tx_queues,
struct pmd_internals **internals,
struct rte_eth_dev **eth_dev)
{
struct rte_eth_dev_data *data;
struct pmd_process_private *pp;
unsigned int numa_node = vdev->device.numa_node;
PMD_LOG(INFO, "Creating pcap-backed ethdev on numa socket %d",
numa_node);
pp = (struct pmd_process_private *)
rte_zmalloc(NULL, sizeof(struct pmd_process_private),
RTE_CACHE_LINE_SIZE);
if (pp == NULL) {
PMD_LOG(ERR,
"Failed to allocate memory for process private");
return -1;
}
/* reserve an ethdev entry */
*eth_dev = rte_eth_vdev_allocate(vdev, sizeof(**internals));
if (!(*eth_dev)) {
rte_free(pp);
return -1;
}
(*eth_dev)->process_private = pp;
/* now put it all together
* - store queue data in internals,
* - store numa_node info in eth_dev
* - point eth_dev_data to internals
* - and point eth_dev structure to new eth_dev_data structure
*/
*internals = (*eth_dev)->data->dev_private;
/*
* Interface MAC = 02:70:63:61:70:<iface_idx>
* derived from: 'locally administered':'p':'c':'a':'p':'iface_idx'
* where the middle 4 characters are converted to hex.
*/
(*internals)->eth_addr = (struct rte_ether_addr) {
.addr_bytes = { 0x02, 0x70, 0x63, 0x61, 0x70, iface_idx++ }
};
(*internals)->phy_mac = 0;
data = (*eth_dev)->data;
data->nb_rx_queues = (uint16_t)nb_rx_queues;
data->nb_tx_queues = (uint16_t)nb_tx_queues;
data->dev_link = pmd_link;
data->mac_addrs = &(*internals)->eth_addr;
/*
* NOTE: we'll replace the data element, of originally allocated
* eth_dev so the rings are local per-process
*/
(*eth_dev)->dev_ops = &ops;
strlcpy((*internals)->devargs, rte_vdev_device_args(vdev),
ETH_PCAP_ARG_MAXLEN);
return 0;
}
static int
eth_pcap_update_mac(const char *if_name, struct rte_eth_dev *eth_dev,
const unsigned int numa_node)
{
#if defined(RTE_EXEC_ENV_LINUX)
void *mac_addrs;
struct ifreq ifr;
int if_fd = socket(AF_INET, SOCK_DGRAM, 0);
if (if_fd == -1)
return -1;
rte_strscpy(ifr.ifr_name, if_name, sizeof(ifr.ifr_name));
if (ioctl(if_fd, SIOCGIFHWADDR, &ifr)) {
close(if_fd);
return -1;
}
mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
if (!mac_addrs) {
close(if_fd);
return -1;
}
PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
eth_dev->data->mac_addrs = mac_addrs;
rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
ifr.ifr_hwaddr.sa_data, RTE_ETHER_ADDR_LEN);
close(if_fd);
return 0;
#elif defined(RTE_EXEC_ENV_FREEBSD)
void *mac_addrs;
struct if_msghdr *ifm;
struct sockaddr_dl *sdl;
int mib[6];
size_t len = 0;
char *buf;
mib[0] = CTL_NET;
mib[1] = AF_ROUTE;
mib[2] = 0;
mib[3] = AF_LINK;
mib[4] = NET_RT_IFLIST;
mib[5] = if_nametoindex(if_name);
if (sysctl(mib, 6, NULL, &len, NULL, 0) < 0)
return -1;
if (len == 0)
return -1;
buf = rte_malloc(NULL, len, 0);
if (!buf)
return -1;
if (sysctl(mib, 6, buf, &len, NULL, 0) < 0) {
rte_free(buf);
return -1;
}
ifm = (struct if_msghdr *)buf;
sdl = (struct sockaddr_dl *)(ifm + 1);
mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
if (!mac_addrs) {
rte_free(buf);
return -1;
}
PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
eth_dev->data->mac_addrs = mac_addrs;
rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
LLADDR(sdl), RTE_ETHER_ADDR_LEN);
rte_free(buf);
return 0;
#else
return -1;
#endif
}
static int
eth_from_pcaps_common(struct rte_vdev_device *vdev,
struct pmd_devargs_all *devargs_all,
struct pmd_internals **internals, struct rte_eth_dev **eth_dev)
{
struct pmd_process_private *pp;
struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
struct pmd_devargs *tx_queues = &devargs_all->tx_queues;
const unsigned int nb_rx_queues = rx_queues->num_of_queue;
const unsigned int nb_tx_queues = tx_queues->num_of_queue;
unsigned int i;
/* do some parameter checking */
if (rx_queues == NULL && nb_rx_queues > 0)
return -1;
if (tx_queues == NULL && nb_tx_queues > 0)
return -1;
if (pmd_init_internals(vdev, nb_rx_queues, nb_tx_queues, internals,
eth_dev) < 0)
return -1;
pp = (*eth_dev)->process_private;
for (i = 0; i < nb_rx_queues; i++) {
struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
struct devargs_queue *queue = &rx_queues->queue[i];
pp->rx_pcap[i] = queue->pcap;
strlcpy(rx->name, queue->name, sizeof(rx->name));
strlcpy(rx->type, queue->type, sizeof(rx->type));
}
for (i = 0; i < nb_tx_queues; i++) {
struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
struct devargs_queue *queue = &tx_queues->queue[i];
pp->tx_dumper[i] = queue->dumper;
pp->tx_pcap[i] = queue->pcap;
strlcpy(tx->name, queue->name, sizeof(tx->name));
strlcpy(tx->type, queue->type, sizeof(tx->type));
}
return 0;
}
static int
eth_from_pcaps(struct rte_vdev_device *vdev,
struct pmd_devargs_all *devargs_all)
{
struct pmd_internals *internals = NULL;
struct rte_eth_dev *eth_dev = NULL;
struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
int single_iface = devargs_all->single_iface;
unsigned int infinite_rx = devargs_all->infinite_rx;
int ret;
ret = eth_from_pcaps_common(vdev, devargs_all, &internals, &eth_dev);
if (ret < 0)
return ret;
/* store weather we are using a single interface for rx/tx or not */
internals->single_iface = single_iface;
if (single_iface) {
internals->if_index = if_nametoindex(rx_queues->queue[0].name);
/* phy_mac arg is applied only only if "iface" devarg is provided */
if (rx_queues->phy_mac) {
int ret = eth_pcap_update_mac(rx_queues->queue[0].name,
eth_dev, vdev->device.numa_node);
if (ret == 0)
internals->phy_mac = 1;
}
}
internals->infinite_rx = infinite_rx;
/* Assign rx ops. */
if (infinite_rx)
eth_dev->rx_pkt_burst = eth_pcap_rx_infinite;
else
eth_dev->rx_pkt_burst = eth_pcap_rx;
/* Assign tx ops. */
if (devargs_all->is_tx_pcap)
eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
else if (devargs_all->is_tx_iface)
eth_dev->tx_pkt_burst = eth_pcap_tx;
else
eth_dev->tx_pkt_burst = eth_tx_drop;
rte_eth_dev_probing_finish(eth_dev);
return 0;
}
static int
pmd_pcap_probe(struct rte_vdev_device *dev)
{
const char *name;
unsigned int is_rx_pcap = 0;
struct rte_kvargs *kvlist;
struct pmd_devargs pcaps = {0};
struct pmd_devargs dumpers = {0};
struct rte_eth_dev *eth_dev = NULL;
struct pmd_internals *internal;
int ret;
struct pmd_devargs_all devargs_all = {
.single_iface = 0,
.is_tx_pcap = 0,
.is_tx_iface = 0,
.infinite_rx = 0,
};
name = rte_vdev_device_name(dev);
PMD_LOG(INFO, "Initializing pmd_pcap for %s", name);
gettimeofday(&start_time, NULL);
start_cycles = rte_get_timer_cycles();
hz = rte_get_timer_hz();
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
eth_dev = rte_eth_dev_attach_secondary(name);
if (!eth_dev) {
PMD_LOG(ERR, "Failed to probe %s", name);
return -1;
}
internal = eth_dev->data->dev_private;
kvlist = rte_kvargs_parse(internal->devargs, valid_arguments);
if (kvlist == NULL)
return -1;
} else {
kvlist = rte_kvargs_parse(rte_vdev_device_args(dev),
valid_arguments);
if (kvlist == NULL)
return -1;
}
/*
* If iface argument is passed we open the NICs and use them for
* reading / writing
*/
if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
&open_rx_tx_iface, &pcaps);
if (ret < 0)
goto free_kvlist;
dumpers.queue[0] = pcaps.queue[0];
ret = rte_kvargs_process(kvlist, ETH_PCAP_PHY_MAC_ARG,
&select_phy_mac, &pcaps.phy_mac);
if (ret < 0)
goto free_kvlist;
dumpers.phy_mac = pcaps.phy_mac;
devargs_all.single_iface = 1;
pcaps.num_of_queue = 1;
dumpers.num_of_queue = 1;
goto create_eth;
}
/*
* We check whether we want to open a RX stream from a real NIC or a
* pcap file
*/
is_rx_pcap = rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG) ? 1 : 0;
pcaps.num_of_queue = 0;
if (is_rx_pcap) {
/*
* We check whether we want to infinitely rx the pcap file.
*/
unsigned int infinite_rx_arg_cnt = rte_kvargs_count(kvlist,
ETH_PCAP_INFINITE_RX_ARG);
if (infinite_rx_arg_cnt == 1) {
ret = rte_kvargs_process(kvlist,
ETH_PCAP_INFINITE_RX_ARG,
&get_infinite_rx_arg,
&devargs_all.infinite_rx);
if (ret < 0)
goto free_kvlist;
PMD_LOG(INFO, "infinite_rx has been %s for %s",
devargs_all.infinite_rx ? "enabled" : "disabled",
name);
} else if (infinite_rx_arg_cnt > 1) {
PMD_LOG(WARNING, "infinite_rx has not been enabled since the "
"argument has been provided more than once "
"for %s", name);
}
ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
&open_rx_pcap, &pcaps);
} else {
ret = rte_kvargs_process(kvlist, NULL,
&rx_iface_args_process, &pcaps);
}
if (ret < 0)
goto free_kvlist;
/*
* We check whether we want to open a TX stream to a real NIC,
* a pcap file, or drop packets on tx
*/
devargs_all.is_tx_pcap =
rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) ? 1 : 0;
devargs_all.is_tx_iface =
rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG) ? 1 : 0;
dumpers.num_of_queue = 0;
if (devargs_all.is_tx_pcap) {
ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
&open_tx_pcap, &dumpers);
} else if (devargs_all.is_tx_iface) {
ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
&open_tx_iface, &dumpers);
} else {
unsigned int i;
PMD_LOG(INFO, "Dropping packets on tx since no tx queues were provided.");
/* Add 1 dummy queue per rxq which counts and drops packets. */
for (i = 0; i < pcaps.num_of_queue; i++)
ret = add_queue(&dumpers, "dummy", "tx_drop", NULL,
NULL);
}
if (ret < 0)
goto free_kvlist;
create_eth:
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
struct pmd_process_private *pp;
unsigned int i;
internal = eth_dev->data->dev_private;
pp = (struct pmd_process_private *)
rte_zmalloc(NULL,
sizeof(struct pmd_process_private),
RTE_CACHE_LINE_SIZE);
if (pp == NULL) {
PMD_LOG(ERR,
"Failed to allocate memory for process private");
ret = -1;
goto free_kvlist;
}
eth_dev->dev_ops = &ops;
eth_dev->device = &dev->device;
/* setup process private */
for (i = 0; i < pcaps.num_of_queue; i++)
pp->rx_pcap[i] = pcaps.queue[i].pcap;
for (i = 0; i < dumpers.num_of_queue; i++) {
pp->tx_dumper[i] = dumpers.queue[i].dumper;
pp->tx_pcap[i] = dumpers.queue[i].pcap;
}
eth_dev->process_private = pp;
eth_dev->rx_pkt_burst = eth_pcap_rx;
if (devargs_all.is_tx_pcap)
eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
else
eth_dev->tx_pkt_burst = eth_pcap_tx;
rte_eth_dev_probing_finish(eth_dev);
goto free_kvlist;
}
devargs_all.rx_queues = pcaps;
devargs_all.tx_queues = dumpers;
ret = eth_from_pcaps(dev, &devargs_all);
free_kvlist:
rte_kvargs_free(kvlist);
return ret;
}
static int
pmd_pcap_remove(struct rte_vdev_device *dev)
{
struct pmd_internals *internals = NULL;
struct rte_eth_dev *eth_dev = NULL;
PMD_LOG(INFO, "Closing pcap ethdev on numa socket %d",
rte_socket_id());
if (!dev)
return -1;
/* reserve an ethdev entry */
eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
if (eth_dev == NULL)
return -1;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
internals = eth_dev->data->dev_private;
if (internals != NULL && internals->phy_mac == 0)
/* not dynamically allocated, must not be freed */
eth_dev->data->mac_addrs = NULL;
}
eth_dev_close(eth_dev);
rte_free(eth_dev->process_private);
rte_eth_dev_release_port(eth_dev);
return 0;
}
static struct rte_vdev_driver pmd_pcap_drv = {
.probe = pmd_pcap_probe,
.remove = pmd_pcap_remove,
};
RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
ETH_PCAP_RX_PCAP_ARG "=<string> "
ETH_PCAP_TX_PCAP_ARG "=<string> "
ETH_PCAP_RX_IFACE_ARG "=<ifc> "
ETH_PCAP_RX_IFACE_IN_ARG "=<ifc> "
ETH_PCAP_TX_IFACE_ARG "=<ifc> "
ETH_PCAP_IFACE_ARG "=<ifc> "
ETH_PCAP_PHY_MAC_ARG "=<int>"
ETH_PCAP_INFINITE_RX_ARG "=<0|1>");
RTE_INIT(eth_pcap_init_log)
{
eth_pcap_logtype = rte_log_register("pmd.net.pcap");
if (eth_pcap_logtype >= 0)
rte_log_set_level(eth_pcap_logtype, RTE_LOG_NOTICE);
}