Guinan Sun bc05f34e95 net/e1000/base: modify copyright
Modify the copyright of the file header.

Signed-off-by: Guinan Sun <guinanx.sun@intel.com>
Reviewed-by: Wei Zhao <wei.zhao1@intel.com>
2020-07-07 23:38:27 +02:00

563 lines
15 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2020 Intel Corporation
*/
#include "e1000_api.h"
STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
STATIC void e1000_release_vf(struct e1000_hw *hw);
STATIC s32 e1000_acquire_vf(struct e1000_hw *hw);
STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw);
STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw);
STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
u16 *duplex);
STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw);
STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw);
STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
STATIC int e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *);
/**
* e1000_init_phy_params_vf - Inits PHY params
* @hw: pointer to the HW structure
*
* Doesn't do much - there's no PHY available to the VF.
**/
STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_init_phy_params_vf");
hw->phy.type = e1000_phy_vf;
hw->phy.ops.acquire = e1000_acquire_vf;
hw->phy.ops.release = e1000_release_vf;
return E1000_SUCCESS;
}
/**
* e1000_init_nvm_params_vf - Inits NVM params
* @hw: pointer to the HW structure
*
* Doesn't do much - there's no NVM available to the VF.
**/
STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_init_nvm_params_vf");
hw->nvm.type = e1000_nvm_none;
hw->nvm.ops.acquire = e1000_acquire_vf;
hw->nvm.ops.release = e1000_release_vf;
return E1000_SUCCESS;
}
/**
* e1000_init_mac_params_vf - Inits MAC params
* @hw: pointer to the HW structure
**/
STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
DEBUGFUNC("e1000_init_mac_params_vf");
/* Set media type */
/*
* Virtual functions don't care what they're media type is as they
* have no direct access to the PHY, or the media. That is handled
* by the physical function driver.
*/
hw->phy.media_type = e1000_media_type_unknown;
/* No ASF features for the VF driver */
mac->asf_firmware_present = false;
/* ARC subsystem not supported */
mac->arc_subsystem_valid = false;
/* Disable adaptive IFS mode so the generic funcs don't do anything */
mac->adaptive_ifs = false;
/* VF's have no MTA Registers - PF feature only */
mac->mta_reg_count = 128;
/* VF's have no access to RAR entries */
mac->rar_entry_count = 1;
/* Function pointers */
/* link setup */
mac->ops.setup_link = e1000_setup_link_vf;
/* bus type/speed/width */
mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
/* reset */
mac->ops.reset_hw = e1000_reset_hw_vf;
/* hw initialization */
mac->ops.init_hw = e1000_init_hw_vf;
/* check for link */
mac->ops.check_for_link = e1000_check_for_link_vf;
/* link info */
mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
/* multicast address update */
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
/* set mac address */
mac->ops.rar_set = e1000_rar_set_vf;
/* read mac address */
mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
return E1000_SUCCESS;
}
/**
* e1000_init_function_pointers_vf - Inits function pointers
* @hw: pointer to the HW structure
**/
void e1000_init_function_pointers_vf(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_init_function_pointers_vf");
hw->mac.ops.init_params = e1000_init_mac_params_vf;
hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
hw->phy.ops.init_params = e1000_init_phy_params_vf;
hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
}
/**
* e1000_acquire_vf - Acquire rights to access PHY or NVM.
* @hw: pointer to the HW structure
*
* There is no PHY or NVM so we want all attempts to acquire these to fail.
* In addition, the MAC registers to access PHY/NVM don't exist so we don't
* even want any SW to attempt to use them.
**/
STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
{
UNREFERENCED_1PARAMETER(hw);
return -E1000_ERR_PHY;
}
/**
* e1000_release_vf - Release PHY or NVM
* @hw: pointer to the HW structure
*
* There is no PHY or NVM so we want all attempts to acquire these to fail.
* In addition, the MAC registers to access PHY/NVM don't exist so we don't
* even want any SW to attempt to use them.
**/
STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
{
UNREFERENCED_1PARAMETER(hw);
return;
}
/**
* e1000_setup_link_vf - Sets up link.
* @hw: pointer to the HW structure
*
* Virtual functions cannot change link.
**/
STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
{
DEBUGFUNC("e1000_setup_link_vf");
UNREFERENCED_1PARAMETER(hw);
return E1000_SUCCESS;
}
/**
* e1000_get_bus_info_pcie_vf - Gets the bus info.
* @hw: pointer to the HW structure
*
* Virtual functions are not really on their own bus.
**/
STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
DEBUGFUNC("e1000_get_bus_info_pcie_vf");
/* Do not set type PCI-E because we don't want disable master to run */
bus->type = e1000_bus_type_reserved;
bus->speed = e1000_bus_speed_2500;
return 0;
}
/**
* e1000_get_link_up_info_vf - Gets link info.
* @hw: pointer to the HW structure
* @speed: pointer to 16 bit value to store link speed.
* @duplex: pointer to 16 bit value to store duplex.
*
* Since we cannot read the PHY and get accurate link info, we must rely upon
* the status register's data which is often stale and inaccurate.
**/
STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
s32 status;
DEBUGFUNC("e1000_get_link_up_info_vf");
status = E1000_READ_REG(hw, E1000_STATUS);
if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
} else if (status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
*speed = SPEED_10;
DEBUGOUT("10 Mbs, ");
}
if (status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\n");
} else {
*duplex = HALF_DUPLEX;
DEBUGOUT("Half Duplex\n");
}
return E1000_SUCCESS;
}
/**
* e1000_reset_hw_vf - Resets the HW
* @hw: pointer to the HW structure
*
* VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
* This is all the reset we can perform on a VF.
**/
STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw)
{
struct e1000_mbx_info *mbx = &hw->mbx;
u32 timeout = E1000_VF_INIT_TIMEOUT;
s32 ret_val = -E1000_ERR_MAC_INIT;
u32 ctrl, msgbuf[3];
u8 *addr = (u8 *)(&msgbuf[1]);
DEBUGFUNC("e1000_reset_hw_vf");
DEBUGOUT("Issuing a function level reset to MAC\n");
ctrl = E1000_READ_REG(hw, E1000_CTRL);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
/* we cannot reset while the RSTI / RSTD bits are asserted */
while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
timeout--;
usec_delay(5);
}
if (timeout) {
/* mailbox timeout can now become active */
mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
msgbuf[0] = E1000_VF_RESET;
mbx->ops.write_posted(hw, msgbuf, 1, 0);
msec_delay(10);
/* set our "perm_addr" based on info provided by PF */
ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
if (!ret_val) {
if (msgbuf[0] == (E1000_VF_RESET |
E1000_VT_MSGTYPE_ACK))
memcpy(hw->mac.perm_addr, addr, 6);
else
ret_val = -E1000_ERR_MAC_INIT;
}
}
return ret_val;
}
/**
* e1000_init_hw_vf - Inits the HW
* @hw: pointer to the HW structure
*
* Not much to do here except clear the PF Reset indication if there is one.
**/
STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_init_hw_vf");
/* attempt to set and restore our mac address */
e1000_rar_set_vf(hw, hw->mac.addr, 0);
return E1000_SUCCESS;
}
/**
* e1000_rar_set_vf - set device MAC address
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index receive address array register
**/
STATIC int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
u32 E1000_UNUSEDARG index)
{
struct e1000_mbx_info *mbx = &hw->mbx;
u32 msgbuf[3];
u8 *msg_addr = (u8 *)(&msgbuf[1]);
s32 ret_val;
UNREFERENCED_1PARAMETER(index);
memset(msgbuf, 0, 12);
msgbuf[0] = E1000_VF_SET_MAC_ADDR;
memcpy(msg_addr, addr, 6);
ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
if (!ret_val)
ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
/* if nacked the address was rejected, use "perm_addr" */
if (!ret_val &&
(msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
e1000_read_mac_addr_vf(hw);
return E1000_SUCCESS;
}
/**
* e1000_hash_mc_addr_vf - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
*
* Generates a multicast address hash value which is used to determine
* the multicast filter table array address and new table value.
**/
STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
{
u32 hash_value, hash_mask;
u8 bit_shift = 0;
DEBUGFUNC("e1000_hash_mc_addr_generic");
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
/*
* The bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
(((u16) mc_addr[5]) << bit_shift)));
return hash_value;
}
STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw,
u32 *msg, u16 size)
{
struct e1000_mbx_info *mbx = &hw->mbx;
u32 retmsg[E1000_VFMAILBOX_SIZE];
s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
if (!retval)
mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
}
/**
* e1000_update_mc_addr_list_vf - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates the Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
u8 *mc_addr_list, u32 mc_addr_count)
{
u32 msgbuf[E1000_VFMAILBOX_SIZE];
u16 *hash_list = (u16 *)&msgbuf[1];
u32 hash_value;
u32 i;
DEBUGFUNC("e1000_update_mc_addr_list_vf");
/* Each entry in the list uses 1 16 bit word. We have 30
* 16 bit words available in our HW msg buffer (minus 1 for the
* msg type). That's 30 hash values if we pack 'em right. If
* there are more than 30 MC addresses to add then punt the
* extras for now and then add code to handle more than 30 later.
* It would be unusual for a server to request that many multi-cast
* addresses except for in large enterprise network environments.
*/
DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
msgbuf[0] = E1000_VF_SET_MULTICAST;
if (mc_addr_count > 30) {
msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
mc_addr_count = 30;
}
msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
for (i = 0; i < mc_addr_count; i++) {
hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
hash_list[i] = hash_value & 0x0FFF;
mc_addr_list += ETH_ADDR_LEN;
}
e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
}
/**
* e1000_vfta_set_vf - Set/Unset vlan filter table address
* @hw: pointer to the HW structure
* @vid: determines the vfta register and bit to set/unset
* @set: if true then set bit, else clear bit
**/
void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
{
u32 msgbuf[2];
msgbuf[0] = E1000_VF_SET_VLAN;
msgbuf[1] = vid;
/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
if (set)
msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
e1000_write_msg_read_ack(hw, msgbuf, 2);
}
/** e1000_rlpml_set_vf - Set the maximum receive packet length
* @hw: pointer to the HW structure
* @max_size: value to assign to max frame size
**/
void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
{
u32 msgbuf[2];
msgbuf[0] = E1000_VF_SET_LPE;
msgbuf[1] = max_size;
e1000_write_msg_read_ack(hw, msgbuf, 2);
}
/**
* e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
* @hw: pointer to the HW structure
* @uni: boolean indicating unicast promisc status
* @multi: boolean indicating multicast promisc status
**/
s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
{
struct e1000_mbx_info *mbx = &hw->mbx;
u32 msgbuf = E1000_VF_SET_PROMISC;
s32 ret_val;
switch (type) {
case e1000_promisc_multicast:
msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
break;
case e1000_promisc_enabled:
msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
/* fall-through */
case e1000_promisc_unicast:
msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
/* fall-through */
case e1000_promisc_disabled:
break;
default:
return -E1000_ERR_MAC_INIT;
}
ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
if (!ret_val)
ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
ret_val = -E1000_ERR_MAC_INIT;
return ret_val;
}
/**
* e1000_read_mac_addr_vf - Read device MAC address
* @hw: pointer to the HW structure
**/
STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
{
int i;
for (i = 0; i < ETH_ADDR_LEN; i++)
hw->mac.addr[i] = hw->mac.perm_addr[i];
return E1000_SUCCESS;
}
/**
* e1000_check_for_link_vf - Check for link for a virtual interface
* @hw: pointer to the HW structure
*
* Checks to see if the underlying PF is still talking to the VF and
* if it is then it reports the link state to the hardware, otherwise
* it reports link down and returns an error.
**/
STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw)
{
struct e1000_mbx_info *mbx = &hw->mbx;
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val = E1000_SUCCESS;
u32 in_msg = 0;
DEBUGFUNC("e1000_check_for_link_vf");
/*
* We only want to run this if there has been a rst asserted.
* in this case that could mean a link change, device reset,
* or a virtual function reset
*/
/* If we were hit with a reset or timeout drop the link */
if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
mac->get_link_status = true;
if (!mac->get_link_status)
goto out;
/* if link status is down no point in checking to see if pf is up */
if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
goto out;
/* if the read failed it could just be a mailbox collision, best wait
* until we are called again and don't report an error */
if (mbx->ops.read(hw, &in_msg, 1, 0))
goto out;
/* if incoming message isn't clear to send we are waiting on response */
if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
/* message is not CTS and is NACK we have lost CTS status */
if (in_msg & E1000_VT_MSGTYPE_NACK)
ret_val = -E1000_ERR_MAC_INIT;
goto out;
}
/* at this point we know the PF is talking to us, check and see if
* we are still accepting timeout or if we had a timeout failure.
* if we failed then we will need to reinit */
if (!mbx->timeout) {
ret_val = -E1000_ERR_MAC_INIT;
goto out;
}
/* if we passed all the tests above then the link is up and we no
* longer need to check for link */
mac->get_link_status = false;
out:
return ret_val;
}