numam-dpdk/drivers/dma/cnxk/cnxk_dmadev.c
Radha Mohan Chintakuntla ebc539271e dma/cnxk: add statistics
Add the stats function to get the DMA statistics.

Signed-off-by: Radha Mohan Chintakuntla <radhac@marvell.com>
2021-11-08 00:08:45 +01:00

536 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2021 Marvell International Ltd.
*/
#include <string.h>
#include <unistd.h>
#include <rte_bus.h>
#include <rte_bus_pci.h>
#include <rte_common.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_mempool.h>
#include <rte_pci.h>
#include <rte_dmadev.h>
#include <rte_dmadev_pmd.h>
#include <roc_api.h>
#include <cnxk_dmadev.h>
static int
cnxk_dmadev_info_get(const struct rte_dma_dev *dev,
struct rte_dma_info *dev_info, uint32_t size)
{
RTE_SET_USED(dev);
RTE_SET_USED(size);
dev_info->max_vchans = 1;
dev_info->nb_vchans = 1;
dev_info->dev_capa = RTE_DMA_CAPA_MEM_TO_MEM |
RTE_DMA_CAPA_MEM_TO_DEV | RTE_DMA_CAPA_DEV_TO_MEM |
RTE_DMA_CAPA_DEV_TO_DEV | RTE_DMA_CAPA_OPS_COPY |
RTE_DMA_CAPA_OPS_COPY_SG;
dev_info->max_desc = DPI_MAX_DESC;
dev_info->min_desc = 1;
dev_info->max_sges = DPI_MAX_POINTER;
return 0;
}
static int
cnxk_dmadev_configure(struct rte_dma_dev *dev,
const struct rte_dma_conf *conf, uint32_t conf_sz)
{
struct cnxk_dpi_vf_s *dpivf = NULL;
int rc = 0;
RTE_SET_USED(conf);
RTE_SET_USED(conf);
RTE_SET_USED(conf_sz);
RTE_SET_USED(conf_sz);
dpivf = dev->fp_obj->dev_private;
rc = roc_dpi_configure(&dpivf->rdpi);
if (rc < 0)
plt_err("DMA configure failed err = %d", rc);
return rc;
}
static int
cnxk_dmadev_vchan_setup(struct rte_dma_dev *dev, uint16_t vchan,
const struct rte_dma_vchan_conf *conf,
uint32_t conf_sz)
{
struct cnxk_dpi_vf_s *dpivf = dev->fp_obj->dev_private;
struct cnxk_dpi_compl_s *comp_data;
union dpi_instr_hdr_s *header = &dpivf->conf.hdr;
int i;
RTE_SET_USED(vchan);
RTE_SET_USED(conf_sz);
header->s.pt = DPI_HDR_PT_ZBW_CA;
switch (conf->direction) {
case RTE_DMA_DIR_DEV_TO_MEM:
header->s.xtype = DPI_XTYPE_INBOUND;
header->s.lport = conf->src_port.pcie.coreid;
header->s.fport = 0;
header->s.pvfe = 1;
break;
case RTE_DMA_DIR_MEM_TO_DEV:
header->s.xtype = DPI_XTYPE_OUTBOUND;
header->s.lport = 0;
header->s.fport = conf->dst_port.pcie.coreid;
header->s.pvfe = 1;
break;
case RTE_DMA_DIR_MEM_TO_MEM:
header->s.xtype = DPI_XTYPE_INTERNAL_ONLY;
header->s.lport = 0;
header->s.fport = 0;
header->s.pvfe = 0;
break;
case RTE_DMA_DIR_DEV_TO_DEV:
header->s.xtype = DPI_XTYPE_EXTERNAL_ONLY;
header->s.lport = conf->src_port.pcie.coreid;
header->s.fport = conf->dst_port.pcie.coreid;
};
for (i = 0; i < conf->nb_desc; i++) {
comp_data = rte_zmalloc(NULL, sizeof(*comp_data), 0);
if (comp_data == NULL) {
plt_err("Failed to allocate for comp_data");
return -ENOMEM;
}
dpivf->conf.c_desc.compl_ptr[i] = comp_data;
};
dpivf->conf.c_desc.max_cnt = DPI_MAX_DESC;
dpivf->conf.c_desc.head = 0;
dpivf->conf.c_desc.tail = 0;
return 0;
}
static int
cnxk_dmadev_start(struct rte_dma_dev *dev)
{
struct cnxk_dpi_vf_s *dpivf = dev->fp_obj->dev_private;
dpivf->desc_idx = 0;
dpivf->num_words = 0;
roc_dpi_enable(&dpivf->rdpi);
return 0;
}
static int
cnxk_dmadev_stop(struct rte_dma_dev *dev)
{
struct cnxk_dpi_vf_s *dpivf = dev->fp_obj->dev_private;
roc_dpi_disable(&dpivf->rdpi);
return 0;
}
static int
cnxk_dmadev_close(struct rte_dma_dev *dev)
{
struct cnxk_dpi_vf_s *dpivf = dev->fp_obj->dev_private;
roc_dpi_disable(&dpivf->rdpi);
roc_dpi_dev_fini(&dpivf->rdpi);
return 0;
}
static inline int
__dpi_queue_write(struct roc_dpi *dpi, uint64_t *cmds, int cmd_count)
{
uint64_t *ptr = dpi->chunk_base;
if ((cmd_count < DPI_MIN_CMD_SIZE) || (cmd_count > DPI_MAX_CMD_SIZE) ||
cmds == NULL)
return -EINVAL;
/*
* Normally there is plenty of room in the current buffer for the
* command
*/
if (dpi->chunk_head + cmd_count < dpi->pool_size_m1) {
ptr += dpi->chunk_head;
dpi->chunk_head += cmd_count;
while (cmd_count--)
*ptr++ = *cmds++;
} else {
int count;
uint64_t *new_buff = dpi->chunk_next;
dpi->chunk_next =
(void *)roc_npa_aura_op_alloc(dpi->aura_handle, 0);
if (!dpi->chunk_next) {
plt_err("Failed to alloc next buffer from NPA");
return -ENOMEM;
}
/*
* Figure out how many cmd words will fit in this buffer.
* One location will be needed for the next buffer pointer.
*/
count = dpi->pool_size_m1 - dpi->chunk_head;
ptr += dpi->chunk_head;
cmd_count -= count;
while (count--)
*ptr++ = *cmds++;
/*
* chunk next ptr is 2 DWORDS
* second DWORD is reserved.
*/
*ptr++ = (uint64_t)new_buff;
*ptr = 0;
/*
* The current buffer is full and has a link to the next
* buffers. Time to write the rest of the commands into the new
* buffer.
*/
dpi->chunk_base = new_buff;
dpi->chunk_head = cmd_count;
ptr = new_buff;
while (cmd_count--)
*ptr++ = *cmds++;
/* queue index may be greater than pool size */
if (dpi->chunk_head >= dpi->pool_size_m1) {
new_buff = dpi->chunk_next;
dpi->chunk_next =
(void *)roc_npa_aura_op_alloc(dpi->aura_handle,
0);
if (!dpi->chunk_next) {
plt_err("Failed to alloc next buffer from NPA");
return -ENOMEM;
}
/* Write next buffer address */
*ptr = (uint64_t)new_buff;
dpi->chunk_base = new_buff;
dpi->chunk_head = 0;
}
}
return 0;
}
static int
cnxk_dmadev_copy(void *dev_private, uint16_t vchan, rte_iova_t src,
rte_iova_t dst, uint32_t length, uint64_t flags)
{
struct cnxk_dpi_vf_s *dpivf = dev_private;
union dpi_instr_hdr_s *header = &dpivf->conf.hdr;
struct cnxk_dpi_compl_s *comp_ptr;
rte_iova_t fptr, lptr;
int num_words = 0;
int rc;
RTE_SET_USED(vchan);
comp_ptr = dpivf->conf.c_desc.compl_ptr[dpivf->conf.c_desc.tail];
comp_ptr->cdata = DPI_REQ_CDATA;
header->s.ptr = (uint64_t)comp_ptr;
STRM_INC(dpivf->conf.c_desc);
header->s.nfst = 1;
header->s.nlst = 1;
/*
* For inbound case, src pointers are last pointers.
* For all other cases, src pointers are first pointers.
*/
if (header->s.xtype == DPI_XTYPE_INBOUND) {
fptr = dst;
lptr = src;
} else {
fptr = src;
lptr = dst;
}
dpivf->cmd[0] = header->u[0];
dpivf->cmd[1] = header->u[1];
dpivf->cmd[2] = header->u[2];
/* word3 is always 0 */
num_words += 4;
dpivf->cmd[num_words++] = length;
dpivf->cmd[num_words++] = fptr;
dpivf->cmd[num_words++] = length;
dpivf->cmd[num_words++] = lptr;
rc = __dpi_queue_write(&dpivf->rdpi, dpivf->cmd, num_words);
if (!rc) {
if (flags & RTE_DMA_OP_FLAG_SUBMIT) {
rte_wmb();
plt_write64(num_words,
dpivf->rdpi.rbase + DPI_VDMA_DBELL);
dpivf->stats.submitted++;
}
dpivf->num_words += num_words;
}
return dpivf->desc_idx++;
}
static int
cnxk_dmadev_copy_sg(void *dev_private, uint16_t vchan,
const struct rte_dma_sge *src,
const struct rte_dma_sge *dst,
uint16_t nb_src, uint16_t nb_dst, uint64_t flags)
{
struct cnxk_dpi_vf_s *dpivf = dev_private;
union dpi_instr_hdr_s *header = &dpivf->conf.hdr;
const struct rte_dma_sge *fptr, *lptr;
struct cnxk_dpi_compl_s *comp_ptr;
int num_words = 0;
int i, rc;
RTE_SET_USED(vchan);
comp_ptr = dpivf->conf.c_desc.compl_ptr[dpivf->conf.c_desc.tail];
comp_ptr->cdata = DPI_REQ_CDATA;
header->s.ptr = (uint64_t)comp_ptr;
STRM_INC(dpivf->conf.c_desc);
/*
* For inbound case, src pointers are last pointers.
* For all other cases, src pointers are first pointers.
*/
if (header->s.xtype == DPI_XTYPE_INBOUND) {
header->s.nfst = nb_dst & 0xf;
header->s.nlst = nb_src & 0xf;
fptr = &dst[0];
lptr = &src[0];
} else {
header->s.nfst = nb_src & 0xf;
header->s.nlst = nb_dst & 0xf;
fptr = &src[0];
lptr = &dst[0];
}
dpivf->cmd[0] = header->u[0];
dpivf->cmd[1] = header->u[1];
dpivf->cmd[2] = header->u[2];
num_words += 4;
for (i = 0; i < header->s.nfst; i++) {
dpivf->cmd[num_words++] = (uint64_t)fptr->length;
dpivf->cmd[num_words++] = fptr->addr;
fptr++;
}
for (i = 0; i < header->s.nlst; i++) {
dpivf->cmd[num_words++] = (uint64_t)lptr->length;
dpivf->cmd[num_words++] = lptr->addr;
lptr++;
}
rc = __dpi_queue_write(&dpivf->rdpi, dpivf->cmd, num_words);
if (!rc) {
if (flags & RTE_DMA_OP_FLAG_SUBMIT) {
rte_wmb();
plt_write64(num_words,
dpivf->rdpi.rbase + DPI_VDMA_DBELL);
dpivf->stats.submitted += nb_src;
}
dpivf->num_words += num_words;
}
return dpivf->desc_idx++;
}
static uint16_t
cnxk_dmadev_completed(void *dev_private, uint16_t vchan, const uint16_t nb_cpls,
uint16_t *last_idx, bool *has_error)
{
struct cnxk_dpi_vf_s *dpivf = dev_private;
int cnt;
RTE_SET_USED(vchan);
for (cnt = 0; cnt < nb_cpls; cnt++) {
struct cnxk_dpi_compl_s *comp_ptr =
dpivf->conf.c_desc.compl_ptr[cnt];
if (comp_ptr->cdata) {
*has_error = 1;
dpivf->stats.errors++;
break;
}
}
*last_idx = cnt - 1;
dpivf->conf.c_desc.tail = cnt;
dpivf->stats.completed += cnt;
return cnt;
}
static uint16_t
cnxk_dmadev_completed_status(void *dev_private, uint16_t vchan,
const uint16_t nb_cpls, uint16_t *last_idx,
enum rte_dma_status_code *status)
{
struct cnxk_dpi_vf_s *dpivf = dev_private;
int cnt;
RTE_SET_USED(vchan);
RTE_SET_USED(last_idx);
for (cnt = 0; cnt < nb_cpls; cnt++) {
struct cnxk_dpi_compl_s *comp_ptr =
dpivf->conf.c_desc.compl_ptr[cnt];
status[cnt] = comp_ptr->cdata;
if (comp_ptr->cdata)
dpivf->stats.errors++;
}
*last_idx = cnt - 1;
dpivf->conf.c_desc.tail = 0;
dpivf->stats.completed += cnt;
return cnt;
}
static int
cnxk_dmadev_submit(void *dev_private, uint16_t vchan __rte_unused)
{
struct cnxk_dpi_vf_s *dpivf = dev_private;
rte_wmb();
plt_write64(dpivf->num_words, dpivf->rdpi.rbase + DPI_VDMA_DBELL);
dpivf->stats.submitted++;
return 0;
}
static int
cnxk_stats_get(const struct rte_dma_dev *dev, uint16_t vchan,
struct rte_dma_stats *rte_stats, uint32_t size)
{
struct cnxk_dpi_vf_s *dpivf = dev->fp_obj->dev_private;
struct rte_dma_stats *stats = &dpivf->stats;
RTE_SET_USED(vchan);
if (size < sizeof(rte_stats))
return -EINVAL;
if (rte_stats == NULL)
return -EINVAL;
*rte_stats = *stats;
return 0;
}
static int
cnxk_stats_reset(struct rte_dma_dev *dev, uint16_t vchan __rte_unused)
{
struct cnxk_dpi_vf_s *dpivf = dev->fp_obj->dev_private;
dpivf->stats = (struct rte_dma_stats){0};
return 0;
}
static const struct rte_dma_dev_ops cnxk_dmadev_ops = {
.dev_close = cnxk_dmadev_close,
.dev_configure = cnxk_dmadev_configure,
.dev_info_get = cnxk_dmadev_info_get,
.dev_start = cnxk_dmadev_start,
.dev_stop = cnxk_dmadev_stop,
.stats_get = cnxk_stats_get,
.stats_reset = cnxk_stats_reset,
.vchan_setup = cnxk_dmadev_vchan_setup,
};
static int
cnxk_dmadev_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
struct cnxk_dpi_vf_s *dpivf = NULL;
char name[RTE_DEV_NAME_MAX_LEN];
struct rte_dma_dev *dmadev;
struct roc_dpi *rdpi = NULL;
int rc;
if (!pci_dev->mem_resource[0].addr)
return -ENODEV;
rc = roc_plt_init();
if (rc) {
plt_err("Failed to initialize platform model, rc=%d", rc);
return rc;
}
memset(name, 0, sizeof(name));
rte_pci_device_name(&pci_dev->addr, name, sizeof(name));
dmadev = rte_dma_pmd_allocate(name, pci_dev->device.numa_node,
sizeof(*dpivf));
if (dmadev == NULL) {
plt_err("dma device allocation failed for %s", name);
return -ENOMEM;
}
dpivf = dmadev->data->dev_private;
dmadev->device = &pci_dev->device;
dmadev->fp_obj->dev_private = dpivf;
dmadev->dev_ops = &cnxk_dmadev_ops;
dmadev->fp_obj->copy = cnxk_dmadev_copy;
dmadev->fp_obj->copy_sg = cnxk_dmadev_copy_sg;
dmadev->fp_obj->submit = cnxk_dmadev_submit;
dmadev->fp_obj->completed = cnxk_dmadev_completed;
dmadev->fp_obj->completed_status = cnxk_dmadev_completed_status;
rdpi = &dpivf->rdpi;
rdpi->pci_dev = pci_dev;
rc = roc_dpi_dev_init(rdpi);
if (rc < 0)
goto err_out_free;
return 0;
err_out_free:
if (dmadev)
rte_dma_pmd_release(name);
return rc;
}
static int
cnxk_dmadev_remove(struct rte_pci_device *pci_dev)
{
char name[RTE_DEV_NAME_MAX_LEN];
memset(name, 0, sizeof(name));
rte_pci_device_name(&pci_dev->addr, name, sizeof(name));
return rte_dma_pmd_release(name);
}
static const struct rte_pci_id cnxk_dma_pci_map[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_CAVIUM,
PCI_DEVID_CNXK_DPI_VF)
},
{
.vendor_id = 0,
},
};
static struct rte_pci_driver cnxk_dmadev = {
.id_table = cnxk_dma_pci_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_NEED_IOVA_AS_VA,
.probe = cnxk_dmadev_probe,
.remove = cnxk_dmadev_remove,
};
RTE_PMD_REGISTER_PCI(cnxk_dmadev_pci_driver, cnxk_dmadev);
RTE_PMD_REGISTER_PCI_TABLE(cnxk_dmadev_pci_driver, cnxk_dma_pci_map);
RTE_PMD_REGISTER_KMOD_DEP(cnxk_dmadev_pci_driver, "vfio-pci");