numam-dpdk/drivers/net/igc/igc_ethdev.c
Alvin Zhang a4d5f9f9c2 net/igc: fix speed configuration
Fixed speed mode is not supported currently, this patch
removes configurations for this mode and adds fault handling
for ETH_LINK_SPEED_FIXED.

Fixes: 4f09bc55ac ("net/igc: implement device base operations")
Cc: stable@dpdk.org

Signed-off-by: Alvin Zhang <alvinx.zhang@intel.com>
Acked-by: Junfeng Guo <junfeng.guo@intel.com>
2021-05-12 14:21:27 +02:00

2630 lines
71 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019-2020 Intel Corporation
*/
#include <stdint.h>
#include <string.h>
#include <rte_string_fns.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <ethdev_driver.h>
#include <ethdev_pci.h>
#include <rte_malloc.h>
#include <rte_alarm.h>
#include "igc_logs.h"
#include "igc_txrx.h"
#include "igc_filter.h"
#include "igc_flow.h"
#define IGC_INTEL_VENDOR_ID 0x8086
/*
* The overhead from MTU to max frame size.
* Considering VLAN so tag needs to be counted.
*/
#define IGC_ETH_OVERHEAD (RTE_ETHER_HDR_LEN + \
RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE)
#define IGC_FC_PAUSE_TIME 0x0680
#define IGC_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
#define IGC_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
#define IGC_MISC_VEC_ID RTE_INTR_VEC_ZERO_OFFSET
#define IGC_RX_VEC_START RTE_INTR_VEC_RXTX_OFFSET
#define IGC_MSIX_OTHER_INTR_VEC 0 /* MSI-X other interrupt vector */
#define IGC_FLAG_NEED_LINK_UPDATE (1u << 0) /* need update link */
#define IGC_DEFAULT_RX_FREE_THRESH 32
#define IGC_DEFAULT_RX_PTHRESH 8
#define IGC_DEFAULT_RX_HTHRESH 8
#define IGC_DEFAULT_RX_WTHRESH 4
#define IGC_DEFAULT_TX_PTHRESH 8
#define IGC_DEFAULT_TX_HTHRESH 1
#define IGC_DEFAULT_TX_WTHRESH 16
/* MSI-X other interrupt vector */
#define IGC_MSIX_OTHER_INTR_VEC 0
/* External VLAN Enable bit mask */
#define IGC_CTRL_EXT_EXT_VLAN (1u << 26)
/* Speed select */
#define IGC_CTRL_SPEED_MASK (7u << 8)
#define IGC_CTRL_SPEED_2500 (6u << 8)
/* External VLAN Ether Type bit mask and shift */
#define IGC_VET_EXT 0xFFFF0000
#define IGC_VET_EXT_SHIFT 16
/* Force EEE Auto-negotiation */
#define IGC_EEER_EEE_FRC_AN (1u << 28)
/* Per Queue Good Packets Received Count */
#define IGC_PQGPRC(idx) (0x10010 + 0x100 * (idx))
/* Per Queue Good Octets Received Count */
#define IGC_PQGORC(idx) (0x10018 + 0x100 * (idx))
/* Per Queue Good Octets Transmitted Count */
#define IGC_PQGOTC(idx) (0x10034 + 0x100 * (idx))
/* Per Queue Multicast Packets Received Count */
#define IGC_PQMPRC(idx) (0x10038 + 0x100 * (idx))
/* Transmit Queue Drop Packet Count */
#define IGC_TQDPC(idx) (0xe030 + 0x40 * (idx))
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define U32_0_IN_U64 0 /* lower bytes of u64 */
#define U32_1_IN_U64 1 /* higher bytes of u64 */
#else
#define U32_0_IN_U64 1
#define U32_1_IN_U64 0
#endif
#define IGC_ALARM_INTERVAL 8000000u
/* us, about 13.6s some per-queue registers will wrap around back to 0. */
static const struct rte_eth_desc_lim rx_desc_lim = {
.nb_max = IGC_MAX_RXD,
.nb_min = IGC_MIN_RXD,
.nb_align = IGC_RXD_ALIGN,
};
static const struct rte_eth_desc_lim tx_desc_lim = {
.nb_max = IGC_MAX_TXD,
.nb_min = IGC_MIN_TXD,
.nb_align = IGC_TXD_ALIGN,
.nb_seg_max = IGC_TX_MAX_SEG,
.nb_mtu_seg_max = IGC_TX_MAX_MTU_SEG,
};
static const struct rte_pci_id pci_id_igc_map[] = {
{ RTE_PCI_DEVICE(IGC_INTEL_VENDOR_ID, IGC_DEV_ID_I225_LM) },
{ RTE_PCI_DEVICE(IGC_INTEL_VENDOR_ID, IGC_DEV_ID_I225_V) },
{ RTE_PCI_DEVICE(IGC_INTEL_VENDOR_ID, IGC_DEV_ID_I225_I) },
{ RTE_PCI_DEVICE(IGC_INTEL_VENDOR_ID, IGC_DEV_ID_I225_K) },
{ .vendor_id = 0, /* sentinel */ },
};
/* store statistics names and its offset in stats structure */
struct rte_igc_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned int offset;
};
static const struct rte_igc_xstats_name_off rte_igc_stats_strings[] = {
{"rx_crc_errors", offsetof(struct igc_hw_stats, crcerrs)},
{"rx_align_errors", offsetof(struct igc_hw_stats, algnerrc)},
{"rx_errors", offsetof(struct igc_hw_stats, rxerrc)},
{"rx_missed_packets", offsetof(struct igc_hw_stats, mpc)},
{"tx_single_collision_packets", offsetof(struct igc_hw_stats, scc)},
{"tx_multiple_collision_packets", offsetof(struct igc_hw_stats, mcc)},
{"tx_excessive_collision_packets", offsetof(struct igc_hw_stats,
ecol)},
{"tx_late_collisions", offsetof(struct igc_hw_stats, latecol)},
{"tx_total_collisions", offsetof(struct igc_hw_stats, colc)},
{"tx_deferred_packets", offsetof(struct igc_hw_stats, dc)},
{"tx_no_carrier_sense_packets", offsetof(struct igc_hw_stats, tncrs)},
{"tx_discarded_packets", offsetof(struct igc_hw_stats, htdpmc)},
{"rx_length_errors", offsetof(struct igc_hw_stats, rlec)},
{"rx_xon_packets", offsetof(struct igc_hw_stats, xonrxc)},
{"tx_xon_packets", offsetof(struct igc_hw_stats, xontxc)},
{"rx_xoff_packets", offsetof(struct igc_hw_stats, xoffrxc)},
{"tx_xoff_packets", offsetof(struct igc_hw_stats, xofftxc)},
{"rx_flow_control_unsupported_packets", offsetof(struct igc_hw_stats,
fcruc)},
{"rx_size_64_packets", offsetof(struct igc_hw_stats, prc64)},
{"rx_size_65_to_127_packets", offsetof(struct igc_hw_stats, prc127)},
{"rx_size_128_to_255_packets", offsetof(struct igc_hw_stats, prc255)},
{"rx_size_256_to_511_packets", offsetof(struct igc_hw_stats, prc511)},
{"rx_size_512_to_1023_packets", offsetof(struct igc_hw_stats,
prc1023)},
{"rx_size_1024_to_max_packets", offsetof(struct igc_hw_stats,
prc1522)},
{"rx_broadcast_packets", offsetof(struct igc_hw_stats, bprc)},
{"rx_multicast_packets", offsetof(struct igc_hw_stats, mprc)},
{"rx_undersize_errors", offsetof(struct igc_hw_stats, ruc)},
{"rx_fragment_errors", offsetof(struct igc_hw_stats, rfc)},
{"rx_oversize_errors", offsetof(struct igc_hw_stats, roc)},
{"rx_jabber_errors", offsetof(struct igc_hw_stats, rjc)},
{"rx_no_buffers", offsetof(struct igc_hw_stats, rnbc)},
{"rx_management_packets", offsetof(struct igc_hw_stats, mgprc)},
{"rx_management_dropped", offsetof(struct igc_hw_stats, mgpdc)},
{"tx_management_packets", offsetof(struct igc_hw_stats, mgptc)},
{"rx_total_packets", offsetof(struct igc_hw_stats, tpr)},
{"tx_total_packets", offsetof(struct igc_hw_stats, tpt)},
{"rx_total_bytes", offsetof(struct igc_hw_stats, tor)},
{"tx_total_bytes", offsetof(struct igc_hw_stats, tot)},
{"tx_size_64_packets", offsetof(struct igc_hw_stats, ptc64)},
{"tx_size_65_to_127_packets", offsetof(struct igc_hw_stats, ptc127)},
{"tx_size_128_to_255_packets", offsetof(struct igc_hw_stats, ptc255)},
{"tx_size_256_to_511_packets", offsetof(struct igc_hw_stats, ptc511)},
{"tx_size_512_to_1023_packets", offsetof(struct igc_hw_stats,
ptc1023)},
{"tx_size_1023_to_max_packets", offsetof(struct igc_hw_stats,
ptc1522)},
{"tx_multicast_packets", offsetof(struct igc_hw_stats, mptc)},
{"tx_broadcast_packets", offsetof(struct igc_hw_stats, bptc)},
{"tx_tso_packets", offsetof(struct igc_hw_stats, tsctc)},
{"rx_sent_to_host_packets", offsetof(struct igc_hw_stats, rpthc)},
{"tx_sent_by_host_packets", offsetof(struct igc_hw_stats, hgptc)},
{"interrupt_assert_count", offsetof(struct igc_hw_stats, iac)},
{"rx_descriptor_lower_threshold",
offsetof(struct igc_hw_stats, icrxdmtc)},
};
#define IGC_NB_XSTATS (sizeof(rte_igc_stats_strings) / \
sizeof(rte_igc_stats_strings[0]))
static int eth_igc_configure(struct rte_eth_dev *dev);
static int eth_igc_link_update(struct rte_eth_dev *dev, int wait_to_complete);
static int eth_igc_stop(struct rte_eth_dev *dev);
static int eth_igc_start(struct rte_eth_dev *dev);
static int eth_igc_set_link_up(struct rte_eth_dev *dev);
static int eth_igc_set_link_down(struct rte_eth_dev *dev);
static int eth_igc_close(struct rte_eth_dev *dev);
static int eth_igc_reset(struct rte_eth_dev *dev);
static int eth_igc_promiscuous_enable(struct rte_eth_dev *dev);
static int eth_igc_promiscuous_disable(struct rte_eth_dev *dev);
static int eth_igc_fw_version_get(struct rte_eth_dev *dev,
char *fw_version, size_t fw_size);
static int eth_igc_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int eth_igc_led_on(struct rte_eth_dev *dev);
static int eth_igc_led_off(struct rte_eth_dev *dev);
static const uint32_t *eth_igc_supported_ptypes_get(struct rte_eth_dev *dev);
static int eth_igc_rar_set(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr, uint32_t index, uint32_t pool);
static void eth_igc_rar_clear(struct rte_eth_dev *dev, uint32_t index);
static int eth_igc_default_mac_addr_set(struct rte_eth_dev *dev,
struct rte_ether_addr *addr);
static int eth_igc_set_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr);
static int eth_igc_allmulticast_enable(struct rte_eth_dev *dev);
static int eth_igc_allmulticast_disable(struct rte_eth_dev *dev);
static int eth_igc_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int eth_igc_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *rte_stats);
static int eth_igc_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned int n);
static int eth_igc_xstats_get_by_id(struct rte_eth_dev *dev,
const uint64_t *ids,
uint64_t *values, unsigned int n);
static int eth_igc_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int size);
static int eth_igc_xstats_get_names_by_id(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
unsigned int limit);
static int eth_igc_xstats_reset(struct rte_eth_dev *dev);
static int
eth_igc_queue_stats_mapping_set(struct rte_eth_dev *dev,
uint16_t queue_id, uint8_t stat_idx, uint8_t is_rx);
static int
eth_igc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
static int
eth_igc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
static int
eth_igc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf);
static int
eth_igc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf);
static int eth_igc_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int eth_igc_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int eth_igc_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int eth_igc_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int
eth_igc_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on);
static int eth_igc_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static int eth_igc_vlan_tpid_set(struct rte_eth_dev *dev,
enum rte_vlan_type vlan_type, uint16_t tpid);
static const struct eth_dev_ops eth_igc_ops = {
.dev_configure = eth_igc_configure,
.link_update = eth_igc_link_update,
.dev_stop = eth_igc_stop,
.dev_start = eth_igc_start,
.dev_close = eth_igc_close,
.dev_reset = eth_igc_reset,
.dev_set_link_up = eth_igc_set_link_up,
.dev_set_link_down = eth_igc_set_link_down,
.promiscuous_enable = eth_igc_promiscuous_enable,
.promiscuous_disable = eth_igc_promiscuous_disable,
.allmulticast_enable = eth_igc_allmulticast_enable,
.allmulticast_disable = eth_igc_allmulticast_disable,
.fw_version_get = eth_igc_fw_version_get,
.dev_infos_get = eth_igc_infos_get,
.dev_led_on = eth_igc_led_on,
.dev_led_off = eth_igc_led_off,
.dev_supported_ptypes_get = eth_igc_supported_ptypes_get,
.mtu_set = eth_igc_mtu_set,
.mac_addr_add = eth_igc_rar_set,
.mac_addr_remove = eth_igc_rar_clear,
.mac_addr_set = eth_igc_default_mac_addr_set,
.set_mc_addr_list = eth_igc_set_mc_addr_list,
.rx_queue_setup = eth_igc_rx_queue_setup,
.rx_queue_release = eth_igc_rx_queue_release,
.tx_queue_setup = eth_igc_tx_queue_setup,
.tx_queue_release = eth_igc_tx_queue_release,
.tx_done_cleanup = eth_igc_tx_done_cleanup,
.rxq_info_get = eth_igc_rxq_info_get,
.txq_info_get = eth_igc_txq_info_get,
.stats_get = eth_igc_stats_get,
.xstats_get = eth_igc_xstats_get,
.xstats_get_by_id = eth_igc_xstats_get_by_id,
.xstats_get_names_by_id = eth_igc_xstats_get_names_by_id,
.xstats_get_names = eth_igc_xstats_get_names,
.stats_reset = eth_igc_xstats_reset,
.xstats_reset = eth_igc_xstats_reset,
.queue_stats_mapping_set = eth_igc_queue_stats_mapping_set,
.rx_queue_intr_enable = eth_igc_rx_queue_intr_enable,
.rx_queue_intr_disable = eth_igc_rx_queue_intr_disable,
.flow_ctrl_get = eth_igc_flow_ctrl_get,
.flow_ctrl_set = eth_igc_flow_ctrl_set,
.reta_update = eth_igc_rss_reta_update,
.reta_query = eth_igc_rss_reta_query,
.rss_hash_update = eth_igc_rss_hash_update,
.rss_hash_conf_get = eth_igc_rss_hash_conf_get,
.vlan_filter_set = eth_igc_vlan_filter_set,
.vlan_offload_set = eth_igc_vlan_offload_set,
.vlan_tpid_set = eth_igc_vlan_tpid_set,
.vlan_strip_queue_set = eth_igc_vlan_strip_queue_set,
.flow_ops_get = eth_igc_flow_ops_get,
};
/*
* multiple queue mode checking
*/
static int
igc_check_mq_mode(struct rte_eth_dev *dev)
{
enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
PMD_INIT_LOG(ERR, "SRIOV is not supported.");
return -EINVAL;
}
if (rx_mq_mode != ETH_MQ_RX_NONE &&
rx_mq_mode != ETH_MQ_RX_RSS) {
/* RSS together with VMDq not supported*/
PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
rx_mq_mode);
return -EINVAL;
}
/* To no break software that set invalid mode, only display
* warning if invalid mode is used.
*/
if (tx_mq_mode != ETH_MQ_TX_NONE)
PMD_INIT_LOG(WARNING,
"TX mode %d is not supported. Due to meaningless in this driver, just ignore",
tx_mq_mode);
return 0;
}
static int
eth_igc_configure(struct rte_eth_dev *dev)
{
struct igc_interrupt *intr = IGC_DEV_PRIVATE_INTR(dev);
int ret;
PMD_INIT_FUNC_TRACE();
if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
ret = igc_check_mq_mode(dev);
if (ret != 0)
return ret;
intr->flags |= IGC_FLAG_NEED_LINK_UPDATE;
return 0;
}
static int
eth_igc_set_link_up(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
if (hw->phy.media_type == igc_media_type_copper)
igc_power_up_phy(hw);
else
igc_power_up_fiber_serdes_link(hw);
return 0;
}
static int
eth_igc_set_link_down(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
if (hw->phy.media_type == igc_media_type_copper)
igc_power_down_phy(hw);
else
igc_shutdown_fiber_serdes_link(hw);
return 0;
}
/*
* disable other interrupt
*/
static void
igc_intr_other_disable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
if (rte_intr_allow_others(intr_handle) &&
dev->data->dev_conf.intr_conf.lsc) {
IGC_WRITE_REG(hw, IGC_EIMC, 1u << IGC_MSIX_OTHER_INTR_VEC);
}
IGC_WRITE_REG(hw, IGC_IMC, ~0);
IGC_WRITE_FLUSH(hw);
}
/*
* enable other interrupt
*/
static inline void
igc_intr_other_enable(struct rte_eth_dev *dev)
{
struct igc_interrupt *intr = IGC_DEV_PRIVATE_INTR(dev);
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
if (rte_intr_allow_others(intr_handle) &&
dev->data->dev_conf.intr_conf.lsc) {
IGC_WRITE_REG(hw, IGC_EIMS, 1u << IGC_MSIX_OTHER_INTR_VEC);
}
IGC_WRITE_REG(hw, IGC_IMS, intr->mask);
IGC_WRITE_FLUSH(hw);
}
/*
* It reads ICR and gets interrupt causes, check it and set a bit flag
* to update link status.
*/
static void
eth_igc_interrupt_get_status(struct rte_eth_dev *dev)
{
uint32_t icr;
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_interrupt *intr = IGC_DEV_PRIVATE_INTR(dev);
/* read-on-clear nic registers here */
icr = IGC_READ_REG(hw, IGC_ICR);
intr->flags = 0;
if (icr & IGC_ICR_LSC)
intr->flags |= IGC_FLAG_NEED_LINK_UPDATE;
}
/* return 0 means link status changed, -1 means not changed */
static int
eth_igc_link_update(struct rte_eth_dev *dev, int wait_to_complete)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct rte_eth_link link;
int link_check, count;
link_check = 0;
hw->mac.get_link_status = 1;
/* possible wait-to-complete in up to 9 seconds */
for (count = 0; count < IGC_LINK_UPDATE_CHECK_TIMEOUT; count++) {
/* Read the real link status */
switch (hw->phy.media_type) {
case igc_media_type_copper:
/* Do the work to read phy */
igc_check_for_link(hw);
link_check = !hw->mac.get_link_status;
break;
case igc_media_type_fiber:
igc_check_for_link(hw);
link_check = (IGC_READ_REG(hw, IGC_STATUS) &
IGC_STATUS_LU);
break;
case igc_media_type_internal_serdes:
igc_check_for_link(hw);
link_check = hw->mac.serdes_has_link;
break;
default:
break;
}
if (link_check || wait_to_complete == 0)
break;
rte_delay_ms(IGC_LINK_UPDATE_CHECK_INTERVAL);
}
memset(&link, 0, sizeof(link));
/* Now we check if a transition has happened */
if (link_check) {
uint16_t duplex, speed;
hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
link.link_duplex = (duplex == FULL_DUPLEX) ?
ETH_LINK_FULL_DUPLEX :
ETH_LINK_HALF_DUPLEX;
link.link_speed = speed;
link.link_status = ETH_LINK_UP;
link.link_autoneg = !(dev->data->dev_conf.link_speeds &
ETH_LINK_SPEED_FIXED);
if (speed == SPEED_2500) {
uint32_t tipg = IGC_READ_REG(hw, IGC_TIPG);
if ((tipg & IGC_TIPG_IPGT_MASK) != 0x0b) {
tipg &= ~IGC_TIPG_IPGT_MASK;
tipg |= 0x0b;
IGC_WRITE_REG(hw, IGC_TIPG, tipg);
}
}
} else {
link.link_speed = 0;
link.link_duplex = ETH_LINK_HALF_DUPLEX;
link.link_status = ETH_LINK_DOWN;
link.link_autoneg = ETH_LINK_FIXED;
}
return rte_eth_linkstatus_set(dev, &link);
}
/*
* It executes link_update after knowing an interrupt is present.
*/
static void
eth_igc_interrupt_action(struct rte_eth_dev *dev)
{
struct igc_interrupt *intr = IGC_DEV_PRIVATE_INTR(dev);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_eth_link link;
int ret;
if (intr->flags & IGC_FLAG_NEED_LINK_UPDATE) {
intr->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
/* set get_link_status to check register later */
ret = eth_igc_link_update(dev, 0);
/* check if link has changed */
if (ret < 0)
return;
rte_eth_linkstatus_get(dev, &link);
if (link.link_status)
PMD_DRV_LOG(INFO,
" Port %d: Link Up - speed %u Mbps - %s",
dev->data->port_id,
(unsigned int)link.link_speed,
link.link_duplex == ETH_LINK_FULL_DUPLEX ?
"full-duplex" : "half-duplex");
else
PMD_DRV_LOG(INFO, " Port %d: Link Down",
dev->data->port_id);
PMD_DRV_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
pci_dev->addr.domain,
pci_dev->addr.bus,
pci_dev->addr.devid,
pci_dev->addr.function);
rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
}
}
/*
* Interrupt handler which shall be registered at first.
*
* @handle
* Pointer to interrupt handle.
* @param
* The address of parameter (struct rte_eth_dev *) registered before.
*/
static void
eth_igc_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
eth_igc_interrupt_get_status(dev);
eth_igc_interrupt_action(dev);
}
static void igc_read_queue_stats_register(struct rte_eth_dev *dev);
/*
* Update the queue status every IGC_ALARM_INTERVAL time.
* @param
* The address of parameter (struct rte_eth_dev *) registered before.
*/
static void
igc_update_queue_stats_handler(void *param)
{
struct rte_eth_dev *dev = param;
igc_read_queue_stats_register(dev);
rte_eal_alarm_set(IGC_ALARM_INTERVAL,
igc_update_queue_stats_handler, dev);
}
/*
* rx,tx enable/disable
*/
static void
eth_igc_rxtx_control(struct rte_eth_dev *dev, bool enable)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t tctl, rctl;
tctl = IGC_READ_REG(hw, IGC_TCTL);
rctl = IGC_READ_REG(hw, IGC_RCTL);
if (enable) {
/* enable Tx/Rx */
tctl |= IGC_TCTL_EN;
rctl |= IGC_RCTL_EN;
} else {
/* disable Tx/Rx */
tctl &= ~IGC_TCTL_EN;
rctl &= ~IGC_RCTL_EN;
}
IGC_WRITE_REG(hw, IGC_TCTL, tctl);
IGC_WRITE_REG(hw, IGC_RCTL, rctl);
IGC_WRITE_FLUSH(hw);
}
/*
* This routine disables all traffic on the adapter by issuing a
* global reset on the MAC.
*/
static int
eth_igc_stop(struct rte_eth_dev *dev)
{
struct igc_adapter *adapter = IGC_DEV_PRIVATE(dev);
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct rte_eth_link link;
dev->data->dev_started = 0;
adapter->stopped = 1;
/* disable receive and transmit */
eth_igc_rxtx_control(dev, false);
/* disable all MSI-X interrupts */
IGC_WRITE_REG(hw, IGC_EIMC, 0x1f);
IGC_WRITE_FLUSH(hw);
/* clear all MSI-X interrupts */
IGC_WRITE_REG(hw, IGC_EICR, 0x1f);
igc_intr_other_disable(dev);
rte_eal_alarm_cancel(igc_update_queue_stats_handler, dev);
/* disable intr eventfd mapping */
rte_intr_disable(intr_handle);
igc_reset_hw(hw);
/* disable all wake up */
IGC_WRITE_REG(hw, IGC_WUC, 0);
/* disable checking EEE operation in MAC loopback mode */
igc_read_reg_check_clear_bits(hw, IGC_EEER, IGC_EEER_EEE_FRC_AN);
/* Set bit for Go Link disconnect */
igc_read_reg_check_set_bits(hw, IGC_82580_PHY_POWER_MGMT,
IGC_82580_PM_GO_LINKD);
/* Power down the phy. Needed to make the link go Down */
eth_igc_set_link_down(dev);
igc_dev_clear_queues(dev);
/* clear the recorded link status */
memset(&link, 0, sizeof(link));
rte_eth_linkstatus_set(dev, &link);
if (!rte_intr_allow_others(intr_handle))
/* resume to the default handler */
rte_intr_callback_register(intr_handle,
eth_igc_interrupt_handler,
(void *)dev);
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec != NULL) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
return 0;
}
/*
* write interrupt vector allocation register
* @hw
* board private structure
* @queue_index
* queue index, valid 0,1,2,3
* @tx
* tx:1, rx:0
* @msix_vector
* msix-vector, valid 0,1,2,3,4
*/
static void
igc_write_ivar(struct igc_hw *hw, uint8_t queue_index,
bool tx, uint8_t msix_vector)
{
uint8_t offset = 0;
uint8_t reg_index = queue_index >> 1;
uint32_t val;
/*
* IVAR(0)
* bit31...24 bit23...16 bit15...8 bit7...0
* TX1 RX1 TX0 RX0
*
* IVAR(1)
* bit31...24 bit23...16 bit15...8 bit7...0
* TX3 RX3 TX2 RX2
*/
if (tx)
offset = 8;
if (queue_index & 1)
offset += 16;
val = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, reg_index);
/* clear bits */
val &= ~((uint32_t)0xFF << offset);
/* write vector and valid bit */
val |= (uint32_t)(msix_vector | IGC_IVAR_VALID) << offset;
IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, reg_index, val);
}
/* Sets up the hardware to generate MSI-X interrupts properly
* @hw
* board private structure
*/
static void
igc_configure_msix_intr(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t intr_mask;
uint32_t vec = IGC_MISC_VEC_ID;
uint32_t base = IGC_MISC_VEC_ID;
uint32_t misc_shift = 0;
int i;
/* won't configure msix register if no mapping is done
* between intr vector and event fd
*/
if (!rte_intr_dp_is_en(intr_handle))
return;
if (rte_intr_allow_others(intr_handle)) {
base = IGC_RX_VEC_START;
vec = base;
misc_shift = 1;
}
/* turn on MSI-X capability first */
IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE |
IGC_GPIE_PBA | IGC_GPIE_EIAME |
IGC_GPIE_NSICR);
intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
misc_shift;
if (dev->data->dev_conf.intr_conf.lsc)
intr_mask |= (1u << IGC_MSIX_OTHER_INTR_VEC);
/* enable msix auto-clear */
igc_read_reg_check_set_bits(hw, IGC_EIAC, intr_mask);
/* set other cause interrupt vector */
igc_read_reg_check_set_bits(hw, IGC_IVAR_MISC,
(uint32_t)(IGC_MSIX_OTHER_INTR_VEC | IGC_IVAR_VALID) << 8);
/* enable auto-mask */
igc_read_reg_check_set_bits(hw, IGC_EIAM, intr_mask);
for (i = 0; i < dev->data->nb_rx_queues; i++) {
igc_write_ivar(hw, i, 0, vec);
intr_handle->intr_vec[i] = vec;
if (vec < base + intr_handle->nb_efd - 1)
vec++;
}
IGC_WRITE_FLUSH(hw);
}
/**
* It enables the interrupt mask and then enable the interrupt.
*
* @dev
* Pointer to struct rte_eth_dev.
* @on
* Enable or Disable
*/
static void
igc_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
{
struct igc_interrupt *intr = IGC_DEV_PRIVATE_INTR(dev);
if (on)
intr->mask |= IGC_ICR_LSC;
else
intr->mask &= ~IGC_ICR_LSC;
}
/*
* It enables the interrupt.
* It will be called once only during nic initialized.
*/
static void
igc_rxq_interrupt_setup(struct rte_eth_dev *dev)
{
uint32_t mask;
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
/* won't configure msix register if no mapping is done
* between intr vector and event fd
*/
if (!rte_intr_dp_is_en(intr_handle))
return;
mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) << misc_shift;
IGC_WRITE_REG(hw, IGC_EIMS, mask);
}
/*
* Get hardware rx-buffer size.
*/
static inline int
igc_get_rx_buffer_size(struct igc_hw *hw)
{
return (IGC_READ_REG(hw, IGC_RXPBS) & 0x3f) << 10;
}
/*
* igc_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means
* that the driver is loaded.
*/
static void
igc_hw_control_acquire(struct igc_hw *hw)
{
uint32_t ctrl_ext;
/* Let firmware know the driver has taken over */
ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
}
/*
* igc_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded.
*/
static void
igc_hw_control_release(struct igc_hw *hw)
{
uint32_t ctrl_ext;
/* Let firmware taken over control of h/w */
ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
IGC_WRITE_REG(hw, IGC_CTRL_EXT,
ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
}
static int
igc_hardware_init(struct igc_hw *hw)
{
uint32_t rx_buf_size;
int diag;
/* Let the firmware know the OS is in control */
igc_hw_control_acquire(hw);
/* Issue a global reset */
igc_reset_hw(hw);
/* disable all wake up */
IGC_WRITE_REG(hw, IGC_WUC, 0);
/*
* Hardware flow control
* - High water mark should allow for at least two standard size (1518)
* frames to be received after sending an XOFF.
* - Low water mark works best when it is very near the high water mark.
* This allows the receiver to restart by sending XON when it has
* drained a bit. Here we use an arbitrary value of 1500 which will
* restart after one full frame is pulled from the buffer. There
* could be several smaller frames in the buffer and if so they will
* not trigger the XON until their total number reduces the buffer
* by 1500.
*/
rx_buf_size = igc_get_rx_buffer_size(hw);
hw->fc.high_water = rx_buf_size - (RTE_ETHER_MAX_LEN * 2);
hw->fc.low_water = hw->fc.high_water - 1500;
hw->fc.pause_time = IGC_FC_PAUSE_TIME;
hw->fc.send_xon = 1;
hw->fc.requested_mode = igc_fc_full;
diag = igc_init_hw(hw);
if (diag < 0)
return diag;
igc_get_phy_info(hw);
igc_check_for_link(hw);
return 0;
}
static int
eth_igc_start(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_adapter *adapter = IGC_DEV_PRIVATE(dev);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t *speeds;
int ret;
PMD_INIT_FUNC_TRACE();
/* disable all MSI-X interrupts */
IGC_WRITE_REG(hw, IGC_EIMC, 0x1f);
IGC_WRITE_FLUSH(hw);
/* clear all MSI-X interrupts */
IGC_WRITE_REG(hw, IGC_EICR, 0x1f);
/* disable uio/vfio intr/eventfd mapping */
if (!adapter->stopped)
rte_intr_disable(intr_handle);
/* Power up the phy. Needed to make the link go Up */
eth_igc_set_link_up(dev);
/* Put the address into the Receive Address Array */
igc_rar_set(hw, hw->mac.addr, 0);
/* Initialize the hardware */
if (igc_hardware_init(hw)) {
PMD_DRV_LOG(ERR, "Unable to initialize the hardware");
return -EIO;
}
adapter->stopped = 0;
/* check and configure queue intr-vector mapping */
if (rte_intr_cap_multiple(intr_handle) &&
dev->data->dev_conf.intr_conf.rxq) {
uint32_t intr_vector = dev->data->nb_rx_queues;
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -1;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec = rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (intr_handle->intr_vec == NULL) {
PMD_DRV_LOG(ERR,
"Failed to allocate %d rx_queues intr_vec",
dev->data->nb_rx_queues);
return -ENOMEM;
}
}
/* configure msix for rx interrupt */
igc_configure_msix_intr(dev);
igc_tx_init(dev);
/* This can fail when allocating mbufs for descriptor rings */
ret = igc_rx_init(dev);
if (ret) {
PMD_DRV_LOG(ERR, "Unable to initialize RX hardware");
igc_dev_clear_queues(dev);
return ret;
}
igc_clear_hw_cntrs_base_generic(hw);
/* VLAN Offload Settings */
eth_igc_vlan_offload_set(dev,
ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK |
ETH_VLAN_EXTEND_MASK);
/* Setup link speed and duplex */
speeds = &dev->data->dev_conf.link_speeds;
if (*speeds == ETH_LINK_SPEED_AUTONEG) {
hw->phy.autoneg_advertised = IGC_ALL_SPEED_DUPLEX_2500;
hw->mac.autoneg = 1;
} else {
int num_speeds = 0;
if (*speeds & ETH_LINK_SPEED_FIXED) {
PMD_DRV_LOG(ERR,
"Force speed mode currently not supported");
igc_dev_clear_queues(dev);
return -EINVAL;
}
hw->phy.autoneg_advertised = 0;
hw->mac.autoneg = 1;
if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
ETH_LINK_SPEED_1G | ETH_LINK_SPEED_2_5G)) {
num_speeds = -1;
goto error_invalid_config;
}
if (*speeds & ETH_LINK_SPEED_10M_HD) {
hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_10M) {
hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_100M_HD) {
hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_100M) {
hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_1G) {
hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_2_5G) {
hw->phy.autoneg_advertised |= ADVERTISE_2500_FULL;
num_speeds++;
}
if (num_speeds == 0)
goto error_invalid_config;
}
igc_setup_link(hw);
if (rte_intr_allow_others(intr_handle)) {
/* check if lsc interrupt is enabled */
if (dev->data->dev_conf.intr_conf.lsc)
igc_lsc_interrupt_setup(dev, 1);
else
igc_lsc_interrupt_setup(dev, 0);
} else {
rte_intr_callback_unregister(intr_handle,
eth_igc_interrupt_handler,
(void *)dev);
if (dev->data->dev_conf.intr_conf.lsc)
PMD_DRV_LOG(INFO,
"LSC won't enable because of no intr multiplex");
}
/* enable uio/vfio intr/eventfd mapping */
rte_intr_enable(intr_handle);
rte_eal_alarm_set(IGC_ALARM_INTERVAL,
igc_update_queue_stats_handler, dev);
/* check if rxq interrupt is enabled */
if (dev->data->dev_conf.intr_conf.rxq &&
rte_intr_dp_is_en(intr_handle))
igc_rxq_interrupt_setup(dev);
/* resume enabled intr since hw reset */
igc_intr_other_enable(dev);
eth_igc_rxtx_control(dev, true);
eth_igc_link_update(dev, 0);
/* configure MAC-loopback mode */
if (dev->data->dev_conf.lpbk_mode == 1) {
uint32_t reg_val;
reg_val = IGC_READ_REG(hw, IGC_CTRL);
reg_val &= ~IGC_CTRL_SPEED_MASK;
reg_val |= IGC_CTRL_SLU | IGC_CTRL_FRCSPD |
IGC_CTRL_FRCDPX | IGC_CTRL_FD | IGC_CTRL_SPEED_2500;
IGC_WRITE_REG(hw, IGC_CTRL, reg_val);
igc_read_reg_check_set_bits(hw, IGC_EEER, IGC_EEER_EEE_FRC_AN);
}
return 0;
error_invalid_config:
PMD_DRV_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
dev->data->dev_conf.link_speeds, dev->data->port_id);
igc_dev_clear_queues(dev);
return -EINVAL;
}
static int
igc_reset_swfw_lock(struct igc_hw *hw)
{
int ret_val;
/*
* Do mac ops initialization manually here, since we will need
* some function pointers set by this call.
*/
ret_val = igc_init_mac_params(hw);
if (ret_val)
return ret_val;
/*
* SMBI lock should not fail in this early stage. If this is the case,
* it is due to an improper exit of the application.
* So force the release of the faulty lock.
*/
if (igc_get_hw_semaphore_generic(hw) < 0)
PMD_DRV_LOG(DEBUG, "SMBI lock released");
igc_put_hw_semaphore_generic(hw);
if (hw->mac.ops.acquire_swfw_sync != NULL) {
uint16_t mask;
/*
* Phy lock should not fail in this early stage.
* If this is the case, it is due to an improper exit of the
* application. So force the release of the faulty lock.
*/
mask = IGC_SWFW_PHY0_SM;
if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
hw->bus.func);
}
hw->mac.ops.release_swfw_sync(hw, mask);
/*
* This one is more tricky since it is common to all ports; but
* swfw_sync retries last long enough (1s) to be almost sure
* that if lock can not be taken it is due to an improper lock
* of the semaphore.
*/
mask = IGC_SWFW_EEP_SM;
if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0)
PMD_DRV_LOG(DEBUG, "SWFW common locks released");
hw->mac.ops.release_swfw_sync(hw, mask);
}
return IGC_SUCCESS;
}
/*
* free all rx/tx queues.
*/
static void
igc_dev_free_queues(struct rte_eth_dev *dev)
{
uint16_t i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
eth_igc_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
eth_igc_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
static int
eth_igc_close(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_adapter *adapter = IGC_DEV_PRIVATE(dev);
int retry = 0;
int ret = 0;
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
if (!adapter->stopped)
ret = eth_igc_stop(dev);
igc_flow_flush(dev, NULL);
igc_clear_all_filter(dev);
igc_intr_other_disable(dev);
do {
int ret = rte_intr_callback_unregister(intr_handle,
eth_igc_interrupt_handler, dev);
if (ret >= 0 || ret == -ENOENT || ret == -EINVAL)
break;
PMD_DRV_LOG(ERR, "intr callback unregister failed: %d", ret);
DELAY(200 * 1000); /* delay 200ms */
} while (retry++ < 5);
igc_phy_hw_reset(hw);
igc_hw_control_release(hw);
igc_dev_free_queues(dev);
/* Reset any pending lock */
igc_reset_swfw_lock(hw);
return ret;
}
static void
igc_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
hw->vendor_id = pci_dev->id.vendor_id;
hw->device_id = pci_dev->id.device_id;
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
}
static int
eth_igc_dev_init(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct igc_adapter *igc = IGC_DEV_PRIVATE(dev);
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
int i, error = 0;
PMD_INIT_FUNC_TRACE();
dev->dev_ops = &eth_igc_ops;
dev->rx_descriptor_done = eth_igc_rx_descriptor_done;
dev->rx_queue_count = eth_igc_rx_queue_count;
dev->rx_descriptor_status = eth_igc_rx_descriptor_status;
dev->tx_descriptor_status = eth_igc_tx_descriptor_status;
/*
* for secondary processes, we don't initialize any further as primary
* has already done this work. Only check we don't need a different
* RX function.
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
rte_eth_copy_pci_info(dev, pci_dev);
dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
hw->back = pci_dev;
hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
igc_identify_hardware(dev, pci_dev);
if (igc_setup_init_funcs(hw, false) != IGC_SUCCESS) {
error = -EIO;
goto err_late;
}
igc_get_bus_info(hw);
/* Reset any pending lock */
if (igc_reset_swfw_lock(hw) != IGC_SUCCESS) {
error = -EIO;
goto err_late;
}
/* Finish initialization */
if (igc_setup_init_funcs(hw, true) != IGC_SUCCESS) {
error = -EIO;
goto err_late;
}
hw->mac.autoneg = 1;
hw->phy.autoneg_wait_to_complete = 0;
hw->phy.autoneg_advertised = IGC_ALL_SPEED_DUPLEX_2500;
/* Copper options */
if (hw->phy.media_type == igc_media_type_copper) {
hw->phy.mdix = 0; /* AUTO_ALL_MODES */
hw->phy.disable_polarity_correction = 0;
hw->phy.ms_type = igc_ms_hw_default;
}
/*
* Start from a known state, this is important in reading the nvm
* and mac from that.
*/
igc_reset_hw(hw);
/* Make sure we have a good EEPROM before we read from it */
if (igc_validate_nvm_checksum(hw) < 0) {
/*
* Some PCI-E parts fail the first check due to
* the link being in sleep state, call it again,
* if it fails a second time its a real issue.
*/
if (igc_validate_nvm_checksum(hw) < 0) {
PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
error = -EIO;
goto err_late;
}
}
/* Read the permanent MAC address out of the EEPROM */
if (igc_read_mac_addr(hw) != 0) {
PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
error = -EIO;
goto err_late;
}
/* Allocate memory for storing MAC addresses */
dev->data->mac_addrs = rte_zmalloc("igc",
RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
if (dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %d bytes for storing MAC",
RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
error = -ENOMEM;
goto err_late;
}
/* Copy the permanent MAC address */
rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
&dev->data->mac_addrs[0]);
/* Now initialize the hardware */
if (igc_hardware_init(hw) != 0) {
PMD_INIT_LOG(ERR, "Hardware initialization failed");
rte_free(dev->data->mac_addrs);
dev->data->mac_addrs = NULL;
error = -ENODEV;
goto err_late;
}
hw->mac.get_link_status = 1;
igc->stopped = 0;
/* Indicate SOL/IDER usage */
if (igc_check_reset_block(hw) < 0)
PMD_INIT_LOG(ERR,
"PHY reset is blocked due to SOL/IDER session.");
PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id);
rte_intr_callback_register(&pci_dev->intr_handle,
eth_igc_interrupt_handler, (void *)dev);
/* enable uio/vfio intr/eventfd mapping */
rte_intr_enable(&pci_dev->intr_handle);
/* enable support intr */
igc_intr_other_enable(dev);
/* initiate queue status */
for (i = 0; i < IGC_QUEUE_PAIRS_NUM; i++) {
igc->txq_stats_map[i] = -1;
igc->rxq_stats_map[i] = -1;
}
igc_flow_init(dev);
igc_clear_all_filter(dev);
return 0;
err_late:
igc_hw_control_release(hw);
return error;
}
static int
eth_igc_dev_uninit(__rte_unused struct rte_eth_dev *eth_dev)
{
PMD_INIT_FUNC_TRACE();
eth_igc_close(eth_dev);
return 0;
}
static int
eth_igc_reset(struct rte_eth_dev *dev)
{
int ret;
PMD_INIT_FUNC_TRACE();
ret = eth_igc_dev_uninit(dev);
if (ret)
return ret;
return eth_igc_dev_init(dev);
}
static int
eth_igc_promiscuous_enable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t rctl;
rctl = IGC_READ_REG(hw, IGC_RCTL);
rctl |= (IGC_RCTL_UPE | IGC_RCTL_MPE);
IGC_WRITE_REG(hw, IGC_RCTL, rctl);
return 0;
}
static int
eth_igc_promiscuous_disable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t rctl;
rctl = IGC_READ_REG(hw, IGC_RCTL);
rctl &= (~IGC_RCTL_UPE);
if (dev->data->all_multicast == 1)
rctl |= IGC_RCTL_MPE;
else
rctl &= (~IGC_RCTL_MPE);
IGC_WRITE_REG(hw, IGC_RCTL, rctl);
return 0;
}
static int
eth_igc_allmulticast_enable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t rctl;
rctl = IGC_READ_REG(hw, IGC_RCTL);
rctl |= IGC_RCTL_MPE;
IGC_WRITE_REG(hw, IGC_RCTL, rctl);
return 0;
}
static int
eth_igc_allmulticast_disable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t rctl;
if (dev->data->promiscuous == 1)
return 0; /* must remain in all_multicast mode */
rctl = IGC_READ_REG(hw, IGC_RCTL);
rctl &= (~IGC_RCTL_MPE);
IGC_WRITE_REG(hw, IGC_RCTL, rctl);
return 0;
}
static int
eth_igc_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
size_t fw_size)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_fw_version fw;
int ret;
igc_get_fw_version(hw, &fw);
/* if option rom is valid, display its version too */
if (fw.or_valid) {
ret = snprintf(fw_version, fw_size,
"%d.%d, 0x%08x, %d.%d.%d",
fw.eep_major, fw.eep_minor, fw.etrack_id,
fw.or_major, fw.or_build, fw.or_patch);
/* no option rom */
} else {
if (fw.etrack_id != 0X0000) {
ret = snprintf(fw_version, fw_size,
"%d.%d, 0x%08x",
fw.eep_major, fw.eep_minor,
fw.etrack_id);
} else {
ret = snprintf(fw_version, fw_size,
"%d.%d.%d",
fw.eep_major, fw.eep_minor,
fw.eep_build);
}
}
if (ret < 0)
return -EINVAL;
ret += 1; /* add the size of '\0' */
if (fw_size < (size_t)ret)
return ret;
else
return 0;
}
static int
eth_igc_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
dev_info->max_rx_pktlen = MAX_RX_JUMBO_FRAME_SIZE;
dev_info->max_mac_addrs = hw->mac.rar_entry_count;
dev_info->rx_offload_capa = IGC_RX_OFFLOAD_ALL;
dev_info->tx_offload_capa = IGC_TX_OFFLOAD_ALL;
dev_info->rx_queue_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
dev_info->max_rx_queues = IGC_QUEUE_PAIRS_NUM;
dev_info->max_tx_queues = IGC_QUEUE_PAIRS_NUM;
dev_info->max_vmdq_pools = 0;
dev_info->hash_key_size = IGC_HKEY_MAX_INDEX * sizeof(uint32_t);
dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
dev_info->flow_type_rss_offloads = IGC_RSS_OFFLOAD_ALL;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = IGC_DEFAULT_RX_PTHRESH,
.hthresh = IGC_DEFAULT_RX_HTHRESH,
.wthresh = IGC_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = IGC_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
.offloads = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = IGC_DEFAULT_TX_PTHRESH,
.hthresh = IGC_DEFAULT_TX_HTHRESH,
.wthresh = IGC_DEFAULT_TX_WTHRESH,
},
.offloads = 0,
};
dev_info->rx_desc_lim = rx_desc_lim;
dev_info->tx_desc_lim = tx_desc_lim;
dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
ETH_LINK_SPEED_1G | ETH_LINK_SPEED_2_5G;
dev_info->max_mtu = dev_info->max_rx_pktlen - IGC_ETH_OVERHEAD;
dev_info->min_mtu = RTE_ETHER_MIN_MTU;
return 0;
}
static int
eth_igc_led_on(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
return igc_led_on(hw) == IGC_SUCCESS ? 0 : -ENOTSUP;
}
static int
eth_igc_led_off(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
return igc_led_off(hw) == IGC_SUCCESS ? 0 : -ENOTSUP;
}
static const uint32_t *
eth_igc_supported_ptypes_get(__rte_unused struct rte_eth_dev *dev)
{
static const uint32_t ptypes[] = {
/* refers to rx_desc_pkt_info_to_pkt_type() */
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV4_EXT,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L3_IPV6_EXT,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_TUNNEL_IP,
RTE_PTYPE_INNER_L3_IPV6,
RTE_PTYPE_INNER_L3_IPV6_EXT,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_UNKNOWN
};
return ptypes;
}
static int
eth_igc_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t frame_size = mtu + IGC_ETH_OVERHEAD;
uint32_t rctl;
/* if extend vlan has been enabled */
if (IGC_READ_REG(hw, IGC_CTRL_EXT) & IGC_CTRL_EXT_EXT_VLAN)
frame_size += VLAN_TAG_SIZE;
/* check that mtu is within the allowed range */
if (mtu < RTE_ETHER_MIN_MTU ||
frame_size > MAX_RX_JUMBO_FRAME_SIZE)
return -EINVAL;
/*
* If device is started, refuse mtu that requires the support of
* scattered packets when this feature has not been enabled before.
*/
if (dev->data->dev_started && !dev->data->scattered_rx &&
frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) {
PMD_INIT_LOG(ERR, "Stop port first.");
return -EINVAL;
}
rctl = IGC_READ_REG(hw, IGC_RCTL);
/* switch to jumbo mode if needed */
if (mtu > RTE_ETHER_MTU) {
dev->data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_JUMBO_FRAME;
rctl |= IGC_RCTL_LPE;
} else {
dev->data->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_JUMBO_FRAME;
rctl &= ~IGC_RCTL_LPE;
}
IGC_WRITE_REG(hw, IGC_RCTL, rctl);
/* update max frame size */
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
IGC_WRITE_REG(hw, IGC_RLPML,
dev->data->dev_conf.rxmode.max_rx_pkt_len);
return 0;
}
static int
eth_igc_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
uint32_t index, uint32_t pool)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
igc_rar_set(hw, mac_addr->addr_bytes, index);
RTE_SET_USED(pool);
return 0;
}
static void
eth_igc_rar_clear(struct rte_eth_dev *dev, uint32_t index)
{
uint8_t addr[RTE_ETHER_ADDR_LEN];
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
memset(addr, 0, sizeof(addr));
igc_rar_set(hw, addr, index);
}
static int
eth_igc_default_mac_addr_set(struct rte_eth_dev *dev,
struct rte_ether_addr *addr)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
igc_rar_set(hw, addr->addr_bytes, 0);
return 0;
}
static int
eth_igc_set_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
igc_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
return 0;
}
/*
* Read hardware registers
*/
static void
igc_read_stats_registers(struct igc_hw *hw, struct igc_hw_stats *stats)
{
int pause_frames;
uint64_t old_gprc = stats->gprc;
uint64_t old_gptc = stats->gptc;
uint64_t old_tpr = stats->tpr;
uint64_t old_tpt = stats->tpt;
uint64_t old_rpthc = stats->rpthc;
uint64_t old_hgptc = stats->hgptc;
stats->crcerrs += IGC_READ_REG(hw, IGC_CRCERRS);
stats->algnerrc += IGC_READ_REG(hw, IGC_ALGNERRC);
stats->rxerrc += IGC_READ_REG(hw, IGC_RXERRC);
stats->mpc += IGC_READ_REG(hw, IGC_MPC);
stats->scc += IGC_READ_REG(hw, IGC_SCC);
stats->ecol += IGC_READ_REG(hw, IGC_ECOL);
stats->mcc += IGC_READ_REG(hw, IGC_MCC);
stats->latecol += IGC_READ_REG(hw, IGC_LATECOL);
stats->colc += IGC_READ_REG(hw, IGC_COLC);
stats->dc += IGC_READ_REG(hw, IGC_DC);
stats->tncrs += IGC_READ_REG(hw, IGC_TNCRS);
stats->htdpmc += IGC_READ_REG(hw, IGC_HTDPMC);
stats->rlec += IGC_READ_REG(hw, IGC_RLEC);
stats->xonrxc += IGC_READ_REG(hw, IGC_XONRXC);
stats->xontxc += IGC_READ_REG(hw, IGC_XONTXC);
/*
* For watchdog management we need to know if we have been
* paused during the last interval, so capture that here.
*/
pause_frames = IGC_READ_REG(hw, IGC_XOFFRXC);
stats->xoffrxc += pause_frames;
stats->xofftxc += IGC_READ_REG(hw, IGC_XOFFTXC);
stats->fcruc += IGC_READ_REG(hw, IGC_FCRUC);
stats->prc64 += IGC_READ_REG(hw, IGC_PRC64);
stats->prc127 += IGC_READ_REG(hw, IGC_PRC127);
stats->prc255 += IGC_READ_REG(hw, IGC_PRC255);
stats->prc511 += IGC_READ_REG(hw, IGC_PRC511);
stats->prc1023 += IGC_READ_REG(hw, IGC_PRC1023);
stats->prc1522 += IGC_READ_REG(hw, IGC_PRC1522);
stats->gprc += IGC_READ_REG(hw, IGC_GPRC);
stats->bprc += IGC_READ_REG(hw, IGC_BPRC);
stats->mprc += IGC_READ_REG(hw, IGC_MPRC);
stats->gptc += IGC_READ_REG(hw, IGC_GPTC);
/* For the 64-bit byte counters the low dword must be read first. */
/* Both registers clear on the read of the high dword */
/* Workaround CRC bytes included in size, take away 4 bytes/packet */
stats->gorc += IGC_READ_REG(hw, IGC_GORCL);
stats->gorc += ((uint64_t)IGC_READ_REG(hw, IGC_GORCH) << 32);
stats->gorc -= (stats->gprc - old_gprc) * RTE_ETHER_CRC_LEN;
stats->gotc += IGC_READ_REG(hw, IGC_GOTCL);
stats->gotc += ((uint64_t)IGC_READ_REG(hw, IGC_GOTCH) << 32);
stats->gotc -= (stats->gptc - old_gptc) * RTE_ETHER_CRC_LEN;
stats->rnbc += IGC_READ_REG(hw, IGC_RNBC);
stats->ruc += IGC_READ_REG(hw, IGC_RUC);
stats->rfc += IGC_READ_REG(hw, IGC_RFC);
stats->roc += IGC_READ_REG(hw, IGC_ROC);
stats->rjc += IGC_READ_REG(hw, IGC_RJC);
stats->mgprc += IGC_READ_REG(hw, IGC_MGTPRC);
stats->mgpdc += IGC_READ_REG(hw, IGC_MGTPDC);
stats->mgptc += IGC_READ_REG(hw, IGC_MGTPTC);
stats->b2ospc += IGC_READ_REG(hw, IGC_B2OSPC);
stats->b2ogprc += IGC_READ_REG(hw, IGC_B2OGPRC);
stats->o2bgptc += IGC_READ_REG(hw, IGC_O2BGPTC);
stats->o2bspc += IGC_READ_REG(hw, IGC_O2BSPC);
stats->tpr += IGC_READ_REG(hw, IGC_TPR);
stats->tpt += IGC_READ_REG(hw, IGC_TPT);
stats->tor += IGC_READ_REG(hw, IGC_TORL);
stats->tor += ((uint64_t)IGC_READ_REG(hw, IGC_TORH) << 32);
stats->tor -= (stats->tpr - old_tpr) * RTE_ETHER_CRC_LEN;
stats->tot += IGC_READ_REG(hw, IGC_TOTL);
stats->tot += ((uint64_t)IGC_READ_REG(hw, IGC_TOTH) << 32);
stats->tot -= (stats->tpt - old_tpt) * RTE_ETHER_CRC_LEN;
stats->ptc64 += IGC_READ_REG(hw, IGC_PTC64);
stats->ptc127 += IGC_READ_REG(hw, IGC_PTC127);
stats->ptc255 += IGC_READ_REG(hw, IGC_PTC255);
stats->ptc511 += IGC_READ_REG(hw, IGC_PTC511);
stats->ptc1023 += IGC_READ_REG(hw, IGC_PTC1023);
stats->ptc1522 += IGC_READ_REG(hw, IGC_PTC1522);
stats->mptc += IGC_READ_REG(hw, IGC_MPTC);
stats->bptc += IGC_READ_REG(hw, IGC_BPTC);
stats->tsctc += IGC_READ_REG(hw, IGC_TSCTC);
stats->iac += IGC_READ_REG(hw, IGC_IAC);
stats->rpthc += IGC_READ_REG(hw, IGC_RPTHC);
stats->hgptc += IGC_READ_REG(hw, IGC_HGPTC);
stats->icrxdmtc += IGC_READ_REG(hw, IGC_ICRXDMTC);
/* Host to Card Statistics */
stats->hgorc += IGC_READ_REG(hw, IGC_HGORCL);
stats->hgorc += ((uint64_t)IGC_READ_REG(hw, IGC_HGORCH) << 32);
stats->hgorc -= (stats->rpthc - old_rpthc) * RTE_ETHER_CRC_LEN;
stats->hgotc += IGC_READ_REG(hw, IGC_HGOTCL);
stats->hgotc += ((uint64_t)IGC_READ_REG(hw, IGC_HGOTCH) << 32);
stats->hgotc -= (stats->hgptc - old_hgptc) * RTE_ETHER_CRC_LEN;
stats->lenerrs += IGC_READ_REG(hw, IGC_LENERRS);
}
/*
* Write 0 to all queue status registers
*/
static void
igc_reset_queue_stats_register(struct igc_hw *hw)
{
int i;
for (i = 0; i < IGC_QUEUE_PAIRS_NUM; i++) {
IGC_WRITE_REG(hw, IGC_PQGPRC(i), 0);
IGC_WRITE_REG(hw, IGC_PQGPTC(i), 0);
IGC_WRITE_REG(hw, IGC_PQGORC(i), 0);
IGC_WRITE_REG(hw, IGC_PQGOTC(i), 0);
IGC_WRITE_REG(hw, IGC_PQMPRC(i), 0);
IGC_WRITE_REG(hw, IGC_RQDPC(i), 0);
IGC_WRITE_REG(hw, IGC_TQDPC(i), 0);
}
}
/*
* Read all hardware queue status registers
*/
static void
igc_read_queue_stats_register(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_hw_queue_stats *queue_stats =
IGC_DEV_PRIVATE_QUEUE_STATS(dev);
int i;
/*
* This register is not cleared on read. Furthermore, the register wraps
* around back to 0x00000000 on the next increment when reaching a value
* of 0xFFFFFFFF and then continues normal count operation.
*/
for (i = 0; i < IGC_QUEUE_PAIRS_NUM; i++) {
union {
u64 ddword;
u32 dword[2];
} value;
u32 tmp;
/*
* Read the register first, if the value is smaller than that
* previous read, that mean the register has been overflowed,
* then we add the high 4 bytes by 1 and replace the low 4
* bytes by the new value.
*/
tmp = IGC_READ_REG(hw, IGC_PQGPRC(i));
value.ddword = queue_stats->pqgprc[i];
if (value.dword[U32_0_IN_U64] > tmp)
value.dword[U32_1_IN_U64]++;
value.dword[U32_0_IN_U64] = tmp;
queue_stats->pqgprc[i] = value.ddword;
tmp = IGC_READ_REG(hw, IGC_PQGPTC(i));
value.ddword = queue_stats->pqgptc[i];
if (value.dword[U32_0_IN_U64] > tmp)
value.dword[U32_1_IN_U64]++;
value.dword[U32_0_IN_U64] = tmp;
queue_stats->pqgptc[i] = value.ddword;
tmp = IGC_READ_REG(hw, IGC_PQGORC(i));
value.ddword = queue_stats->pqgorc[i];
if (value.dword[U32_0_IN_U64] > tmp)
value.dword[U32_1_IN_U64]++;
value.dword[U32_0_IN_U64] = tmp;
queue_stats->pqgorc[i] = value.ddword;
tmp = IGC_READ_REG(hw, IGC_PQGOTC(i));
value.ddword = queue_stats->pqgotc[i];
if (value.dword[U32_0_IN_U64] > tmp)
value.dword[U32_1_IN_U64]++;
value.dword[U32_0_IN_U64] = tmp;
queue_stats->pqgotc[i] = value.ddword;
tmp = IGC_READ_REG(hw, IGC_PQMPRC(i));
value.ddword = queue_stats->pqmprc[i];
if (value.dword[U32_0_IN_U64] > tmp)
value.dword[U32_1_IN_U64]++;
value.dword[U32_0_IN_U64] = tmp;
queue_stats->pqmprc[i] = value.ddword;
tmp = IGC_READ_REG(hw, IGC_RQDPC(i));
value.ddword = queue_stats->rqdpc[i];
if (value.dword[U32_0_IN_U64] > tmp)
value.dword[U32_1_IN_U64]++;
value.dword[U32_0_IN_U64] = tmp;
queue_stats->rqdpc[i] = value.ddword;
tmp = IGC_READ_REG(hw, IGC_TQDPC(i));
value.ddword = queue_stats->tqdpc[i];
if (value.dword[U32_0_IN_U64] > tmp)
value.dword[U32_1_IN_U64]++;
value.dword[U32_0_IN_U64] = tmp;
queue_stats->tqdpc[i] = value.ddword;
}
}
static int
eth_igc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
{
struct igc_adapter *igc = IGC_DEV_PRIVATE(dev);
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_hw_stats *stats = IGC_DEV_PRIVATE_STATS(dev);
struct igc_hw_queue_stats *queue_stats =
IGC_DEV_PRIVATE_QUEUE_STATS(dev);
int i;
/*
* Cancel status handler since it will read the queue status registers
*/
rte_eal_alarm_cancel(igc_update_queue_stats_handler, dev);
/* Read status register */
igc_read_queue_stats_register(dev);
igc_read_stats_registers(hw, stats);
if (rte_stats == NULL) {
/* Restart queue status handler */
rte_eal_alarm_set(IGC_ALARM_INTERVAL,
igc_update_queue_stats_handler, dev);
return -EINVAL;
}
/* Rx Errors */
rte_stats->imissed = stats->mpc;
rte_stats->ierrors = stats->crcerrs + stats->rlec +
stats->rxerrc + stats->algnerrc;
/* Tx Errors */
rte_stats->oerrors = stats->ecol + stats->latecol;
rte_stats->ipackets = stats->gprc;
rte_stats->opackets = stats->gptc;
rte_stats->ibytes = stats->gorc;
rte_stats->obytes = stats->gotc;
/* Get per-queue statuses */
for (i = 0; i < IGC_QUEUE_PAIRS_NUM; i++) {
/* GET TX queue statuses */
int map_id = igc->txq_stats_map[i];
if (map_id >= 0) {
rte_stats->q_opackets[map_id] += queue_stats->pqgptc[i];
rte_stats->q_obytes[map_id] += queue_stats->pqgotc[i];
}
/* Get RX queue statuses */
map_id = igc->rxq_stats_map[i];
if (map_id >= 0) {
rte_stats->q_ipackets[map_id] += queue_stats->pqgprc[i];
rte_stats->q_ibytes[map_id] += queue_stats->pqgorc[i];
rte_stats->q_errors[map_id] += queue_stats->rqdpc[i];
}
}
/* Restart queue status handler */
rte_eal_alarm_set(IGC_ALARM_INTERVAL,
igc_update_queue_stats_handler, dev);
return 0;
}
static int
eth_igc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
unsigned int n)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_hw_stats *hw_stats =
IGC_DEV_PRIVATE_STATS(dev);
unsigned int i;
igc_read_stats_registers(hw, hw_stats);
if (n < IGC_NB_XSTATS)
return IGC_NB_XSTATS;
/* If this is a reset xstats is NULL, and we have cleared the
* registers by reading them.
*/
if (!xstats)
return 0;
/* Extended stats */
for (i = 0; i < IGC_NB_XSTATS; i++) {
xstats[i].id = i;
xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
rte_igc_stats_strings[i].offset);
}
return IGC_NB_XSTATS;
}
static int
eth_igc_xstats_reset(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_hw_stats *hw_stats = IGC_DEV_PRIVATE_STATS(dev);
struct igc_hw_queue_stats *queue_stats =
IGC_DEV_PRIVATE_QUEUE_STATS(dev);
/* Cancel queue status handler for avoid conflict */
rte_eal_alarm_cancel(igc_update_queue_stats_handler, dev);
/* HW registers are cleared on read */
igc_reset_queue_stats_register(hw);
igc_read_stats_registers(hw, hw_stats);
/* Reset software totals */
memset(hw_stats, 0, sizeof(*hw_stats));
memset(queue_stats, 0, sizeof(*queue_stats));
/* Restart the queue status handler */
rte_eal_alarm_set(IGC_ALARM_INTERVAL, igc_update_queue_stats_handler,
dev);
return 0;
}
static int
eth_igc_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names, unsigned int size)
{
unsigned int i;
if (xstats_names == NULL)
return IGC_NB_XSTATS;
if (size < IGC_NB_XSTATS) {
PMD_DRV_LOG(ERR, "not enough buffers!");
return IGC_NB_XSTATS;
}
for (i = 0; i < IGC_NB_XSTATS; i++)
strlcpy(xstats_names[i].name, rte_igc_stats_strings[i].name,
sizeof(xstats_names[i].name));
return IGC_NB_XSTATS;
}
static int
eth_igc_xstats_get_names_by_id(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
unsigned int limit)
{
unsigned int i;
if (!ids)
return eth_igc_xstats_get_names(dev, xstats_names, limit);
for (i = 0; i < limit; i++) {
if (ids[i] >= IGC_NB_XSTATS) {
PMD_DRV_LOG(ERR, "id value isn't valid");
return -EINVAL;
}
strlcpy(xstats_names[i].name,
rte_igc_stats_strings[ids[i]].name,
sizeof(xstats_names[i].name));
}
return limit;
}
static int
eth_igc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
uint64_t *values, unsigned int n)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_hw_stats *hw_stats = IGC_DEV_PRIVATE_STATS(dev);
unsigned int i;
igc_read_stats_registers(hw, hw_stats);
if (!ids) {
if (n < IGC_NB_XSTATS)
return IGC_NB_XSTATS;
/* If this is a reset xstats is NULL, and we have cleared the
* registers by reading them.
*/
if (!values)
return 0;
/* Extended stats */
for (i = 0; i < IGC_NB_XSTATS; i++)
values[i] = *(uint64_t *)(((char *)hw_stats) +
rte_igc_stats_strings[i].offset);
return IGC_NB_XSTATS;
} else {
for (i = 0; i < n; i++) {
if (ids[i] >= IGC_NB_XSTATS) {
PMD_DRV_LOG(ERR, "id value isn't valid");
return -EINVAL;
}
values[i] = *(uint64_t *)(((char *)hw_stats) +
rte_igc_stats_strings[ids[i]].offset);
}
return n;
}
}
static int
eth_igc_queue_stats_mapping_set(struct rte_eth_dev *dev,
uint16_t queue_id, uint8_t stat_idx, uint8_t is_rx)
{
struct igc_adapter *igc = IGC_DEV_PRIVATE(dev);
/* check queue id is valid */
if (queue_id >= IGC_QUEUE_PAIRS_NUM) {
PMD_DRV_LOG(ERR, "queue id(%u) error, max is %u",
queue_id, IGC_QUEUE_PAIRS_NUM - 1);
return -EINVAL;
}
/* store the mapping status id */
if (is_rx)
igc->rxq_stats_map[queue_id] = stat_idx;
else
igc->txq_stats_map[queue_id] = stat_idx;
return 0;
}
static int
eth_igc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t vec = IGC_MISC_VEC_ID;
if (rte_intr_allow_others(intr_handle))
vec = IGC_RX_VEC_START;
uint32_t mask = 1u << (queue_id + vec);
IGC_WRITE_REG(hw, IGC_EIMC, mask);
IGC_WRITE_FLUSH(hw);
return 0;
}
static int
eth_igc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t vec = IGC_MISC_VEC_ID;
if (rte_intr_allow_others(intr_handle))
vec = IGC_RX_VEC_START;
uint32_t mask = 1u << (queue_id + vec);
IGC_WRITE_REG(hw, IGC_EIMS, mask);
IGC_WRITE_FLUSH(hw);
rte_intr_enable(intr_handle);
return 0;
}
static int
eth_igc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t ctrl;
int tx_pause;
int rx_pause;
fc_conf->pause_time = hw->fc.pause_time;
fc_conf->high_water = hw->fc.high_water;
fc_conf->low_water = hw->fc.low_water;
fc_conf->send_xon = hw->fc.send_xon;
fc_conf->autoneg = hw->mac.autoneg;
/*
* Return rx_pause and tx_pause status according to actual setting of
* the TFCE and RFCE bits in the CTRL register.
*/
ctrl = IGC_READ_REG(hw, IGC_CTRL);
if (ctrl & IGC_CTRL_TFCE)
tx_pause = 1;
else
tx_pause = 0;
if (ctrl & IGC_CTRL_RFCE)
rx_pause = 1;
else
rx_pause = 0;
if (rx_pause && tx_pause)
fc_conf->mode = RTE_FC_FULL;
else if (rx_pause)
fc_conf->mode = RTE_FC_RX_PAUSE;
else if (tx_pause)
fc_conf->mode = RTE_FC_TX_PAUSE;
else
fc_conf->mode = RTE_FC_NONE;
return 0;
}
static int
eth_igc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t rx_buf_size;
uint32_t max_high_water;
uint32_t rctl;
int err;
if (fc_conf->autoneg != hw->mac.autoneg)
return -ENOTSUP;
rx_buf_size = igc_get_rx_buffer_size(hw);
PMD_DRV_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
/* At least reserve one Ethernet frame for watermark */
max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
if (fc_conf->high_water > max_high_water ||
fc_conf->high_water < fc_conf->low_water) {
PMD_DRV_LOG(ERR,
"Incorrect high(%u)/low(%u) water value, max is %u",
fc_conf->high_water, fc_conf->low_water,
max_high_water);
return -EINVAL;
}
switch (fc_conf->mode) {
case RTE_FC_NONE:
hw->fc.requested_mode = igc_fc_none;
break;
case RTE_FC_RX_PAUSE:
hw->fc.requested_mode = igc_fc_rx_pause;
break;
case RTE_FC_TX_PAUSE:
hw->fc.requested_mode = igc_fc_tx_pause;
break;
case RTE_FC_FULL:
hw->fc.requested_mode = igc_fc_full;
break;
default:
PMD_DRV_LOG(ERR, "unsupported fc mode: %u", fc_conf->mode);
return -EINVAL;
}
hw->fc.pause_time = fc_conf->pause_time;
hw->fc.high_water = fc_conf->high_water;
hw->fc.low_water = fc_conf->low_water;
hw->fc.send_xon = fc_conf->send_xon;
err = igc_setup_link_generic(hw);
if (err == IGC_SUCCESS) {
/**
* check if we want to forward MAC frames - driver doesn't have
* native capability to do that, so we'll write the registers
* ourselves
**/
rctl = IGC_READ_REG(hw, IGC_RCTL);
/* set or clear MFLCN.PMCF bit depending on configuration */
if (fc_conf->mac_ctrl_frame_fwd != 0)
rctl |= IGC_RCTL_PMCF;
else
rctl &= ~IGC_RCTL_PMCF;
IGC_WRITE_REG(hw, IGC_RCTL, rctl);
IGC_WRITE_FLUSH(hw);
return 0;
}
PMD_DRV_LOG(ERR, "igc_setup_link_generic = 0x%x", err);
return -EIO;
}
static int
eth_igc_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint16_t i;
if (reta_size != ETH_RSS_RETA_SIZE_128) {
PMD_DRV_LOG(ERR,
"The size of RSS redirection table configured(%d) doesn't match the number hardware can supported(%d)",
reta_size, ETH_RSS_RETA_SIZE_128);
return -EINVAL;
}
RTE_BUILD_BUG_ON(ETH_RSS_RETA_SIZE_128 % IGC_RSS_RDT_REG_SIZE);
/* set redirection table */
for (i = 0; i < ETH_RSS_RETA_SIZE_128; i += IGC_RSS_RDT_REG_SIZE) {
union igc_rss_reta_reg reta, reg;
uint16_t idx, shift;
uint8_t j, mask;
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
IGC_RSS_RDT_REG_SIZE_MASK);
/* if no need to update the register */
if (!mask ||
shift > (RTE_RETA_GROUP_SIZE - IGC_RSS_RDT_REG_SIZE))
continue;
/* check mask whether need to read the register value first */
if (mask == IGC_RSS_RDT_REG_SIZE_MASK)
reg.dword = 0;
else
reg.dword = IGC_READ_REG_LE_VALUE(hw,
IGC_RETA(i / IGC_RSS_RDT_REG_SIZE));
/* update the register */
RTE_BUILD_BUG_ON(sizeof(reta.bytes) != IGC_RSS_RDT_REG_SIZE);
for (j = 0; j < IGC_RSS_RDT_REG_SIZE; j++) {
if (mask & (1u << j))
reta.bytes[j] =
(uint8_t)reta_conf[idx].reta[shift + j];
else
reta.bytes[j] = reg.bytes[j];
}
IGC_WRITE_REG_LE_VALUE(hw,
IGC_RETA(i / IGC_RSS_RDT_REG_SIZE), reta.dword);
}
return 0;
}
static int
eth_igc_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint16_t i;
if (reta_size != ETH_RSS_RETA_SIZE_128) {
PMD_DRV_LOG(ERR,
"The size of RSS redirection table configured(%d) doesn't match the number hardware can supported(%d)",
reta_size, ETH_RSS_RETA_SIZE_128);
return -EINVAL;
}
RTE_BUILD_BUG_ON(ETH_RSS_RETA_SIZE_128 % IGC_RSS_RDT_REG_SIZE);
/* read redirection table */
for (i = 0; i < ETH_RSS_RETA_SIZE_128; i += IGC_RSS_RDT_REG_SIZE) {
union igc_rss_reta_reg reta;
uint16_t idx, shift;
uint8_t j, mask;
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
IGC_RSS_RDT_REG_SIZE_MASK);
/* if no need to read register */
if (!mask ||
shift > (RTE_RETA_GROUP_SIZE - IGC_RSS_RDT_REG_SIZE))
continue;
/* read register and get the queue index */
RTE_BUILD_BUG_ON(sizeof(reta.bytes) != IGC_RSS_RDT_REG_SIZE);
reta.dword = IGC_READ_REG_LE_VALUE(hw,
IGC_RETA(i / IGC_RSS_RDT_REG_SIZE));
for (j = 0; j < IGC_RSS_RDT_REG_SIZE; j++) {
if (mask & (1u << j))
reta_conf[idx].reta[shift + j] = reta.bytes[j];
}
}
return 0;
}
static int
eth_igc_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
igc_hw_rss_hash_set(hw, rss_conf);
return 0;
}
static int
eth_igc_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t *hash_key = (uint32_t *)rss_conf->rss_key;
uint32_t mrqc;
uint64_t rss_hf;
if (hash_key != NULL) {
int i;
/* if not enough space for store hash key */
if (rss_conf->rss_key_len != IGC_HKEY_SIZE) {
PMD_DRV_LOG(ERR,
"RSS hash key size %u in parameter doesn't match the hardware hash key size %u",
rss_conf->rss_key_len, IGC_HKEY_SIZE);
return -EINVAL;
}
/* read RSS key from register */
for (i = 0; i < IGC_HKEY_MAX_INDEX; i++)
hash_key[i] = IGC_READ_REG_LE_VALUE(hw, IGC_RSSRK(i));
}
/* get RSS functions configured in MRQC register */
mrqc = IGC_READ_REG(hw, IGC_MRQC);
if ((mrqc & IGC_MRQC_ENABLE_RSS_4Q) == 0)
return 0;
rss_hf = 0;
if (mrqc & IGC_MRQC_RSS_FIELD_IPV4)
rss_hf |= ETH_RSS_IPV4;
if (mrqc & IGC_MRQC_RSS_FIELD_IPV4_TCP)
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
if (mrqc & IGC_MRQC_RSS_FIELD_IPV6)
rss_hf |= ETH_RSS_IPV6;
if (mrqc & IGC_MRQC_RSS_FIELD_IPV6_EX)
rss_hf |= ETH_RSS_IPV6_EX;
if (mrqc & IGC_MRQC_RSS_FIELD_IPV6_TCP)
rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
if (mrqc & IGC_MRQC_RSS_FIELD_IPV6_TCP_EX)
rss_hf |= ETH_RSS_IPV6_TCP_EX;
if (mrqc & IGC_MRQC_RSS_FIELD_IPV4_UDP)
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
if (mrqc & IGC_MRQC_RSS_FIELD_IPV6_UDP)
rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
if (mrqc & IGC_MRQC_RSS_FIELD_IPV6_UDP_EX)
rss_hf |= ETH_RSS_IPV6_UDP_EX;
rss_conf->rss_hf |= rss_hf;
return 0;
}
static int
eth_igc_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_vfta *shadow_vfta = IGC_DEV_PRIVATE_VFTA(dev);
uint32_t vfta;
uint32_t vid_idx;
uint32_t vid_bit;
vid_idx = (vlan_id >> IGC_VFTA_ENTRY_SHIFT) & IGC_VFTA_ENTRY_MASK;
vid_bit = 1u << (vlan_id & IGC_VFTA_ENTRY_BIT_SHIFT_MASK);
vfta = shadow_vfta->vfta[vid_idx];
if (on)
vfta |= vid_bit;
else
vfta &= ~vid_bit;
IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, vid_idx, vfta);
/* update local VFTA copy */
shadow_vfta->vfta[vid_idx] = vfta;
return 0;
}
static void
igc_vlan_hw_filter_disable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
igc_read_reg_check_clear_bits(hw, IGC_RCTL,
IGC_RCTL_CFIEN | IGC_RCTL_VFE);
}
static void
igc_vlan_hw_filter_enable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_vfta *shadow_vfta = IGC_DEV_PRIVATE_VFTA(dev);
uint32_t reg_val;
int i;
/* Filter Table Enable, CFI not used for packet acceptance */
reg_val = IGC_READ_REG(hw, IGC_RCTL);
reg_val &= ~IGC_RCTL_CFIEN;
reg_val |= IGC_RCTL_VFE;
IGC_WRITE_REG(hw, IGC_RCTL, reg_val);
/* restore VFTA table */
for (i = 0; i < IGC_VFTA_SIZE; i++)
IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, i, shadow_vfta->vfta[i]);
}
static void
igc_vlan_hw_strip_disable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
igc_read_reg_check_clear_bits(hw, IGC_CTRL, IGC_CTRL_VME);
}
static void
igc_vlan_hw_strip_enable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
igc_read_reg_check_set_bits(hw, IGC_CTRL, IGC_CTRL_VME);
}
static int
igc_vlan_hw_extend_disable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t ctrl_ext;
ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
/* if extend vlan hasn't been enabled */
if ((ctrl_ext & IGC_CTRL_EXT_EXT_VLAN) == 0)
return 0;
if ((dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_JUMBO_FRAME) == 0)
goto write_ext_vlan;
/* Update maximum packet length */
if (dev->data->dev_conf.rxmode.max_rx_pkt_len <
RTE_ETHER_MIN_MTU + VLAN_TAG_SIZE) {
PMD_DRV_LOG(ERR, "Maximum packet length %u error, min is %u",
dev->data->dev_conf.rxmode.max_rx_pkt_len,
VLAN_TAG_SIZE + RTE_ETHER_MIN_MTU);
return -EINVAL;
}
dev->data->dev_conf.rxmode.max_rx_pkt_len -= VLAN_TAG_SIZE;
IGC_WRITE_REG(hw, IGC_RLPML,
dev->data->dev_conf.rxmode.max_rx_pkt_len);
write_ext_vlan:
IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_EXT_VLAN);
return 0;
}
static int
igc_vlan_hw_extend_enable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t ctrl_ext;
ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
/* if extend vlan has been enabled */
if (ctrl_ext & IGC_CTRL_EXT_EXT_VLAN)
return 0;
if ((dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_JUMBO_FRAME) == 0)
goto write_ext_vlan;
/* Update maximum packet length */
if (dev->data->dev_conf.rxmode.max_rx_pkt_len >
MAX_RX_JUMBO_FRAME_SIZE - VLAN_TAG_SIZE) {
PMD_DRV_LOG(ERR, "Maximum packet length %u error, max is %u",
dev->data->dev_conf.rxmode.max_rx_pkt_len +
VLAN_TAG_SIZE, MAX_RX_JUMBO_FRAME_SIZE);
return -EINVAL;
}
dev->data->dev_conf.rxmode.max_rx_pkt_len += VLAN_TAG_SIZE;
IGC_WRITE_REG(hw, IGC_RLPML,
dev->data->dev_conf.rxmode.max_rx_pkt_len);
write_ext_vlan:
IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_EXT_VLAN);
return 0;
}
static int
eth_igc_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct rte_eth_rxmode *rxmode;
rxmode = &dev->data->dev_conf.rxmode;
if (mask & ETH_VLAN_STRIP_MASK) {
if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
igc_vlan_hw_strip_enable(dev);
else
igc_vlan_hw_strip_disable(dev);
}
if (mask & ETH_VLAN_FILTER_MASK) {
if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
igc_vlan_hw_filter_enable(dev);
else
igc_vlan_hw_filter_disable(dev);
}
if (mask & ETH_VLAN_EXTEND_MASK) {
if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
return igc_vlan_hw_extend_enable(dev);
else
return igc_vlan_hw_extend_disable(dev);
}
return 0;
}
static int
eth_igc_vlan_tpid_set(struct rte_eth_dev *dev,
enum rte_vlan_type vlan_type,
uint16_t tpid)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t reg_val;
/* only outer TPID of double VLAN can be configured*/
if (vlan_type == ETH_VLAN_TYPE_OUTER) {
reg_val = IGC_READ_REG(hw, IGC_VET);
reg_val = (reg_val & (~IGC_VET_EXT)) |
((uint32_t)tpid << IGC_VET_EXT_SHIFT);
IGC_WRITE_REG(hw, IGC_VET, reg_val);
return 0;
}
/* all other TPID values are read-only*/
PMD_DRV_LOG(ERR, "Not supported");
return -ENOTSUP;
}
static int
eth_igc_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
PMD_INIT_FUNC_TRACE();
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct igc_adapter), eth_igc_dev_init);
}
static int
eth_igc_pci_remove(struct rte_pci_device *pci_dev)
{
PMD_INIT_FUNC_TRACE();
return rte_eth_dev_pci_generic_remove(pci_dev, eth_igc_dev_uninit);
}
static struct rte_pci_driver rte_igc_pmd = {
.id_table = pci_id_igc_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = eth_igc_pci_probe,
.remove = eth_igc_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_igc, rte_igc_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_igc, pci_id_igc_map);
RTE_PMD_REGISTER_KMOD_DEP(net_igc, "* igb_uio | uio_pci_generic | vfio-pci");