numam-dpdk/drivers/net/e1000/em_rxtx.c
Bruce Richardson d15fcf76c8 e1000: move to drivers/net/
Move e1000 pmd to drivers/net directory
As part of move, rename "e1000" subdirectory, which contains the code
from the "base driver", to "base".

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: John McNamara <john.mcnamara@intel.com>
Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2015-05-22 15:51:38 +02:00

1866 lines
52 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/queue.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_interrupts.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_prefetch.h>
#include <rte_ip.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_string_fns.h>
#include "e1000_logs.h"
#include "base/e1000_api.h"
#include "e1000_ethdev.h"
#include "base/e1000_osdep.h"
#define E1000_TXD_VLAN_SHIFT 16
#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
static inline struct rte_mbuf *
rte_rxmbuf_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
m = __rte_mbuf_raw_alloc(mp);
__rte_mbuf_sanity_check_raw(m, 0);
return (m);
}
#define RTE_MBUF_DATA_DMA_ADDR(mb) \
(uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
(uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
/**
* Structure associated with each descriptor of the RX ring of a RX queue.
*/
struct em_rx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
};
/**
* Structure associated with each descriptor of the TX ring of a TX queue.
*/
struct em_tx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
uint16_t next_id; /**< Index of next descriptor in ring. */
uint16_t last_id; /**< Index of last scattered descriptor. */
};
/**
* Structure associated with each RX queue.
*/
struct em_rx_queue {
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
struct em_rx_entry *sw_ring; /**< address of RX software ring. */
struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
uint16_t nb_rx_desc; /**< number of RX descriptors. */
uint16_t rx_tail; /**< current value of RDT register. */
uint16_t nb_rx_hold; /**< number of held free RX desc. */
uint16_t rx_free_thresh; /**< max free RX desc to hold. */
uint16_t queue_id; /**< RX queue index. */
uint8_t port_id; /**< Device port identifier. */
uint8_t pthresh; /**< Prefetch threshold register. */
uint8_t hthresh; /**< Host threshold register. */
uint8_t wthresh; /**< Write-back threshold register. */
uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
};
/**
* Hardware context number
*/
enum {
EM_CTX_0 = 0, /**< CTX0 */
EM_CTX_NUM = 1, /**< CTX NUM */
};
/** Offload features */
union em_vlan_macip {
uint32_t data;
struct {
uint16_t l3_len:9; /**< L3 (IP) Header Length. */
uint16_t l2_len:7; /**< L2 (MAC) Header Length. */
uint16_t vlan_tci;
/**< VLAN Tag Control Identifier (CPU order). */
} f;
};
/*
* Compare mask for vlan_macip_len.data,
* should be in sync with em_vlan_macip.f layout.
* */
#define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */
#define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */
#define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */
/** MAC+IP length. */
#define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
/**
* Structure to check if new context need be built
*/
struct em_ctx_info {
uint64_t flags; /**< ol_flags related to context build. */
uint32_t cmp_mask; /**< compare mask */
union em_vlan_macip hdrlen; /**< L2 and L3 header lenghts */
};
/**
* Structure associated with each TX queue.
*/
struct em_tx_queue {
volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */
volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
uint16_t nb_tx_desc; /**< number of TX descriptors. */
uint16_t tx_tail; /**< Current value of TDT register. */
uint16_t tx_free_thresh;/**< minimum TX before freeing. */
/**< Number of TX descriptors to use before RS bit is set. */
uint16_t tx_rs_thresh;
/** Number of TX descriptors used since RS bit was set. */
uint16_t nb_tx_used;
/** Index to last TX descriptor to have been cleaned. */
uint16_t last_desc_cleaned;
/** Total number of TX descriptors ready to be allocated. */
uint16_t nb_tx_free;
uint16_t queue_id; /**< TX queue index. */
uint8_t port_id; /**< Device port identifier. */
uint8_t pthresh; /**< Prefetch threshold register. */
uint8_t hthresh; /**< Host threshold register. */
uint8_t wthresh; /**< Write-back threshold register. */
struct em_ctx_info ctx_cache;
/**< Hardware context history.*/
};
#if 1
#define RTE_PMD_USE_PREFETCH
#endif
#ifdef RTE_PMD_USE_PREFETCH
#define rte_em_prefetch(p) rte_prefetch0(p)
#else
#define rte_em_prefetch(p) do {} while(0)
#endif
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while(0)
#endif
#ifndef DEFAULT_TX_FREE_THRESH
#define DEFAULT_TX_FREE_THRESH 32
#endif /* DEFAULT_TX_FREE_THRESH */
#ifndef DEFAULT_TX_RS_THRESH
#define DEFAULT_TX_RS_THRESH 32
#endif /* DEFAULT_TX_RS_THRESH */
/*********************************************************************
*
* TX function
*
**********************************************************************/
/*
* Populates TX context descriptor.
*/
static inline void
em_set_xmit_ctx(struct em_tx_queue* txq,
volatile struct e1000_context_desc *ctx_txd,
uint64_t flags,
union em_vlan_macip hdrlen)
{
uint32_t cmp_mask, cmd_len;
uint16_t ipcse, l2len;
struct e1000_context_desc ctx;
cmp_mask = 0;
cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
l2len = hdrlen.f.l2_len;
ipcse = (uint16_t)(l2len + hdrlen.f.l3_len);
/* setup IPCS* fields */
ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len;
ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len +
offsetof(struct ipv4_hdr, hdr_checksum));
/*
* When doing checksum or TCP segmentation with IPv6 headers,
* IPCSE field should be set t0 0.
*/
if (flags & PKT_TX_IP_CKSUM) {
ctx.lower_setup.ip_fields.ipcse =
(uint16_t)rte_cpu_to_le_16(ipcse - 1);
cmd_len |= E1000_TXD_CMD_IP;
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
} else {
ctx.lower_setup.ip_fields.ipcse = 0;
}
/* setup TUCS* fields */
ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse;
ctx.upper_setup.tcp_fields.tucse = 0;
switch (flags & PKT_TX_L4_MASK) {
case PKT_TX_UDP_CKSUM:
ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
offsetof(struct udp_hdr, dgram_cksum));
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
break;
case PKT_TX_TCP_CKSUM:
ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
offsetof(struct tcp_hdr, cksum));
cmd_len |= E1000_TXD_CMD_TCP;
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
break;
default:
ctx.upper_setup.tcp_fields.tucso = 0;
}
ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
ctx.tcp_seg_setup.data = 0;
*ctx_txd = ctx;
txq->ctx_cache.flags = flags;
txq->ctx_cache.cmp_mask = cmp_mask;
txq->ctx_cache.hdrlen = hdrlen;
}
/*
* Check which hardware context can be used. Use the existing match
* or create a new context descriptor.
*/
static inline uint32_t
what_ctx_update(struct em_tx_queue *txq, uint64_t flags,
union em_vlan_macip hdrlen)
{
/* If match with the current context */
if (likely (txq->ctx_cache.flags == flags &&
((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
txq->ctx_cache.cmp_mask) == 0))
return (EM_CTX_0);
/* Mismatch */
return (EM_CTX_NUM);
}
/* Reset transmit descriptors after they have been used */
static inline int
em_xmit_cleanup(struct em_tx_queue *txq)
{
struct em_tx_entry *sw_ring = txq->sw_ring;
volatile struct e1000_data_desc *txr = txq->tx_ring;
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
uint16_t nb_tx_desc = txq->nb_tx_desc;
uint16_t desc_to_clean_to;
uint16_t nb_tx_to_clean;
/* Determine the last descriptor needing to be cleaned */
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
if (desc_to_clean_to >= nb_tx_desc)
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
/* Check to make sure the last descriptor to clean is done */
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
{
PMD_TX_FREE_LOG(DEBUG,
"TX descriptor %4u is not done"
"(port=%d queue=%d)", desc_to_clean_to,
txq->port_id, txq->queue_id);
/* Failed to clean any descriptors, better luck next time */
return -(1);
}
/* Figure out how many descriptors will be cleaned */
if (last_desc_cleaned > desc_to_clean_to)
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
desc_to_clean_to);
else
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
last_desc_cleaned);
PMD_TX_FREE_LOG(DEBUG,
"Cleaning %4u TX descriptors: %4u to %4u "
"(port=%d queue=%d)", nb_tx_to_clean,
last_desc_cleaned, desc_to_clean_to, txq->port_id,
txq->queue_id);
/*
* The last descriptor to clean is done, so that means all the
* descriptors from the last descriptor that was cleaned
* up to the last descriptor with the RS bit set
* are done. Only reset the threshold descriptor.
*/
txr[desc_to_clean_to].upper.fields.status = 0;
/* Update the txq to reflect the last descriptor that was cleaned */
txq->last_desc_cleaned = desc_to_clean_to;
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
/* No Error */
return (0);
}
static inline uint32_t
tx_desc_cksum_flags_to_upper(uint64_t ol_flags)
{
static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
uint32_t tmp;
tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
return (tmp);
}
uint16_t
eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct em_tx_queue *txq;
struct em_tx_entry *sw_ring;
struct em_tx_entry *txe, *txn;
volatile struct e1000_data_desc *txr;
volatile struct e1000_data_desc *txd;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint64_t buf_dma_addr;
uint32_t popts_spec;
uint32_t cmd_type_len;
uint16_t slen;
uint64_t ol_flags;
uint16_t tx_id;
uint16_t tx_last;
uint16_t nb_tx;
uint16_t nb_used;
uint64_t tx_ol_req;
uint32_t ctx;
uint32_t new_ctx;
union em_vlan_macip hdrlen;
txq = tx_queue;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
/* Determine if the descriptor ring needs to be cleaned. */
if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh) {
em_xmit_cleanup(txq);
}
/* TX loop */
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
new_ctx = 0;
tx_pkt = *tx_pkts++;
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
/*
* Determine how many (if any) context descriptors
* are needed for offload functionality.
*/
ol_flags = tx_pkt->ol_flags;
/* If hardware offload required */
tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK));
if (tx_ol_req) {
hdrlen.f.vlan_tci = tx_pkt->vlan_tci;
hdrlen.f.l2_len = tx_pkt->l2_len;
hdrlen.f.l3_len = tx_pkt->l3_len;
/* If new context to be built or reuse the exist ctx. */
ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
/* Only allocate context descriptor if required*/
new_ctx = (ctx == EM_CTX_NUM);
}
/*
* Keep track of how many descriptors are used this loop
* This will always be the number of segments + the number of
* Context descriptors required to transmit the packet
*/
nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
/*
* The number of descriptors that must be allocated for a
* packet is the number of segments of that packet, plus 1
* Context Descriptor for the hardware offload, if any.
* Determine the last TX descriptor to allocate in the TX ring
* for the packet, starting from the current position (tx_id)
* in the ring.
*/
tx_last = (uint16_t) (tx_id + nb_used - 1);
/* Circular ring */
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
" tx_first=%u tx_last=%u",
(unsigned) txq->port_id,
(unsigned) txq->queue_id,
(unsigned) tx_pkt->pkt_len,
(unsigned) tx_id,
(unsigned) tx_last);
/*
* Make sure there are enough TX descriptors available to
* transmit the entire packet.
* nb_used better be less than or equal to txq->tx_rs_thresh
*/
while (unlikely (nb_used > txq->nb_tx_free)) {
PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors "
"nb_used=%4u nb_free=%4u "
"(port=%d queue=%d)",
nb_used, txq->nb_tx_free,
txq->port_id, txq->queue_id);
if (em_xmit_cleanup(txq) != 0) {
/* Could not clean any descriptors */
if (nb_tx == 0)
return (0);
goto end_of_tx;
}
}
/*
* By now there are enough free TX descriptors to transmit
* the packet.
*/
/*
* Set common flags of all TX Data Descriptors.
*
* The following bits must be set in all Data Descriptors:
* - E1000_TXD_DTYP_DATA
* - E1000_TXD_DTYP_DEXT
*
* The following bits must be set in the first Data Descriptor
* and are ignored in the other ones:
* - E1000_TXD_POPTS_IXSM
* - E1000_TXD_POPTS_TXSM
*
* The following bits must be set in the last Data Descriptor
* and are ignored in the other ones:
* - E1000_TXD_CMD_VLE
* - E1000_TXD_CMD_IFCS
*
* The following bits must only be set in the last Data
* Descriptor:
* - E1000_TXD_CMD_EOP
*
* The following bits can be set in any Data Descriptor, but
* are only set in the last Data Descriptor:
* - E1000_TXD_CMD_RS
*/
cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
E1000_TXD_CMD_IFCS;
popts_spec = 0;
/* Set VLAN Tag offload fields. */
if (ol_flags & PKT_TX_VLAN_PKT) {
cmd_type_len |= E1000_TXD_CMD_VLE;
popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT;
}
if (tx_ol_req) {
/*
* Setup the TX Context Descriptor if required
*/
if (new_ctx) {
volatile struct e1000_context_desc *ctx_txd;
ctx_txd = (volatile struct e1000_context_desc *)
&txr[tx_id];
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
hdrlen);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
/*
* Setup the TX Data Descriptor,
* This path will go through
* whatever new/reuse the context descriptor
*/
popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
}
m_seg = tx_pkt;
do {
txd = &txr[tx_id];
txn = &sw_ring[txe->next_id];
if (txe->mbuf != NULL)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/*
* Set up Transmit Data Descriptor.
*/
slen = m_seg->data_len;
buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
txd->upper.data = rte_cpu_to_le_32(popts_spec);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->next;
} while (m_seg != NULL);
/*
* The last packet data descriptor needs End Of Packet (EOP)
*/
cmd_type_len |= E1000_TXD_CMD_EOP;
txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
/* Set RS bit only on threshold packets' last descriptor */
if (txq->nb_tx_used >= txq->tx_rs_thresh) {
PMD_TX_FREE_LOG(DEBUG,
"Setting RS bit on TXD id=%4u "
"(port=%d queue=%d)",
tx_last, txq->port_id, txq->queue_id);
cmd_type_len |= E1000_TXD_CMD_RS;
/* Update txq RS bit counters */
txq->nb_tx_used = 0;
}
txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
}
end_of_tx:
rte_wmb();
/*
* Set the Transmit Descriptor Tail (TDT)
*/
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
(unsigned) txq->port_id, (unsigned) txq->queue_id,
(unsigned) tx_id, (unsigned) nb_tx);
E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
txq->tx_tail = tx_id;
return (nb_tx);
}
/*********************************************************************
*
* RX functions
*
**********************************************************************/
static inline uint64_t
rx_desc_status_to_pkt_flags(uint32_t rx_status)
{
uint64_t pkt_flags;
/* Check if VLAN present */
pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0);
return pkt_flags;
}
static inline uint64_t
rx_desc_error_to_pkt_flags(uint32_t rx_error)
{
uint64_t pkt_flags = 0;
if (rx_error & E1000_RXD_ERR_IPE)
pkt_flags |= PKT_RX_IP_CKSUM_BAD;
if (rx_error & E1000_RXD_ERR_TCPE)
pkt_flags |= PKT_RX_L4_CKSUM_BAD;
return (pkt_flags);
}
uint16_t
eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
volatile struct e1000_rx_desc *rx_ring;
volatile struct e1000_rx_desc *rxdp;
struct em_rx_queue *rxq;
struct em_rx_entry *sw_ring;
struct em_rx_entry *rxe;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
struct e1000_rx_desc rxd;
uint64_t dma_addr;
uint16_t pkt_len;
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint8_t status;
rxq = rx_queue;
nb_rx = 0;
nb_hold = 0;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
while (nb_rx < nb_pkts) {
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
status = rxdp->status;
if (! (status & E1000_RXD_STAT_DD))
break;
rxd = *rxdp;
/*
* End of packet.
*
* If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
* likely to be invalid and to be dropped by the various
* validation checks performed by the network stack.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy do not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
"status=0x%x pkt_len=%u",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) status,
(unsigned) rte_le_to_cpu_16(rxd.length));
nmb = rte_rxmbuf_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u",
(unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_em_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_em_prefetch(&rx_ring[rx_id]);
rte_em_prefetch(&sw_ring[rx_id]);
}
/* Rearm RXD: attach new mbuf and reset status to zero. */
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
rxdp->buffer_addr = dma_addr;
rxdp->status = 0;
/*
* Initialize the returned mbuf.
* 1) setup generic mbuf fields:
* - number of segments,
* - next segment,
* - packet length,
* - RX port identifier.
* 2) integrate hardware offload data, if any:
* - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
rxq->crc_len);
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = pkt_len;
rxm->data_len = pkt_len;
rxm->port = rxq->port_id;
rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
rxm->ol_flags = rxm->ol_flags |
rx_desc_error_to_pkt_flags(rxd.errors);
/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) nb_hold,
(unsigned) nb_rx);
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return (nb_rx);
}
uint16_t
eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct em_rx_queue *rxq;
volatile struct e1000_rx_desc *rx_ring;
volatile struct e1000_rx_desc *rxdp;
struct em_rx_entry *sw_ring;
struct em_rx_entry *rxe;
struct rte_mbuf *first_seg;
struct rte_mbuf *last_seg;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
struct e1000_rx_desc rxd;
uint64_t dma; /* Physical address of mbuf data buffer */
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint16_t data_len;
uint8_t status;
rxq = rx_queue;
nb_rx = 0;
nb_hold = 0;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
/*
* Retrieve RX context of current packet, if any.
*/
first_seg = rxq->pkt_first_seg;
last_seg = rxq->pkt_last_seg;
while (nb_rx < nb_pkts) {
next_desc:
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
status = rxdp->status;
if (! (status & E1000_RXD_STAT_DD))
break;
rxd = *rxdp;
/*
* Descriptor done.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy does not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
"status=0x%x data_len=%u",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) status,
(unsigned) rte_le_to_cpu_16(rxd.length));
nmb = rte_rxmbuf_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_em_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_em_prefetch(&rx_ring[rx_id]);
rte_em_prefetch(&sw_ring[rx_id]);
}
/*
* Update RX descriptor with the physical address of the new
* data buffer of the new allocated mbuf.
*/
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
rxdp->buffer_addr = dma;
rxdp->status = 0;
/*
* Set data length & data buffer address of mbuf.
*/
data_len = rte_le_to_cpu_16(rxd.length);
rxm->data_len = data_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet and
* initialize its context.
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (first_seg == NULL) {
first_seg = rxm;
first_seg->pkt_len = data_len;
first_seg->nb_segs = 1;
} else {
first_seg->pkt_len += data_len;
first_seg->nb_segs++;
last_seg->next = rxm;
}
/*
* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (! (status & E1000_RXD_STAT_EOP)) {
last_seg = rxm;
goto next_desc;
}
/*
* This is the last buffer of the received packet.
* If the CRC is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer.
* If part of the CRC is also contained in the previous
* mbuf, subtract the length of that CRC part from the
* data length of the previous mbuf.
*/
rxm->next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt_len -= ETHER_CRC_LEN;
if (data_len <= ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->nb_segs--;
last_seg->data_len = (uint16_t)
(last_seg->data_len -
(ETHER_CRC_LEN - data_len));
last_seg->next = NULL;
} else
rxm->data_len =
(uint16_t) (data_len - ETHER_CRC_LEN);
}
/*
* Initialize the first mbuf of the returned packet:
* - RX port identifier,
* - hardware offload data, if any:
* - IP checksum flag,
* - error flags.
*/
first_seg->port = rxq->port_id;
first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
first_seg->ol_flags = first_seg->ol_flags |
rx_desc_error_to_pkt_flags(rxd.errors);
/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
/* Prefetch data of first segment, if configured to do so. */
rte_packet_prefetch((char *)first_seg->buf_addr +
first_seg->data_off);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = first_seg;
/*
* Setup receipt context for a new packet.
*/
first_seg = NULL;
}
/*
* Record index of the next RX descriptor to probe.
*/
rxq->rx_tail = rx_id;
/*
* Save receive context.
*/
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) nb_hold,
(unsigned) nb_rx);
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return (nb_rx);
}
/*
* Rings setup and release.
*
* TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
* multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
* This will also optimize cache line size effect.
* H/W supports up to cache line size 128.
*/
#define EM_ALIGN 128
/*
* Maximum number of Ring Descriptors.
*
* Since RDLEN/TDLEN should be multiple of 128 bytes, the number of ring
* desscriptors should meet the following condition:
* (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
*/
#define EM_MIN_RING_DESC 32
#define EM_MAX_RING_DESC 4096
#define EM_MAX_BUF_SIZE 16384
#define EM_RCTL_FLXBUF_STEP 1024
static const struct rte_memzone *
ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
uint16_t queue_id, uint32_t ring_size, int socket_id)
{
const struct rte_memzone *mz;
char z_name[RTE_MEMZONE_NAMESIZE];
snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
dev->driver->pci_drv.name, ring_name, dev->data->port_id,
queue_id);
if ((mz = rte_memzone_lookup(z_name)) != 0)
return (mz);
#ifdef RTE_LIBRTE_XEN_DOM0
return rte_memzone_reserve_bounded(z_name, ring_size,
socket_id, 0, RTE_CACHE_LINE_SIZE, RTE_PGSIZE_2M);
#else
return rte_memzone_reserve(z_name, ring_size, socket_id, 0);
#endif
}
static void
em_tx_queue_release_mbufs(struct em_tx_queue *txq)
{
unsigned i;
if (txq->sw_ring != NULL) {
for (i = 0; i != txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
em_tx_queue_release(struct em_tx_queue *txq)
{
if (txq != NULL) {
em_tx_queue_release_mbufs(txq);
rte_free(txq->sw_ring);
rte_free(txq);
}
}
void
eth_em_tx_queue_release(void *txq)
{
em_tx_queue_release(txq);
}
/* (Re)set dynamic em_tx_queue fields to defaults */
static void
em_reset_tx_queue(struct em_tx_queue *txq)
{
uint16_t i, nb_desc, prev;
static const struct e1000_data_desc txd_init = {
.upper.fields = {.status = E1000_TXD_STAT_DD},
};
nb_desc = txq->nb_tx_desc;
/* Initialize ring entries */
prev = (uint16_t) (nb_desc - 1);
for (i = 0; i < nb_desc; i++) {
txq->tx_ring[i] = txd_init;
txq->sw_ring[i].mbuf = NULL;
txq->sw_ring[i].last_id = i;
txq->sw_ring[prev].next_id = i;
prev = i;
}
/*
* Always allow 1 descriptor to be un-allocated to avoid
* a H/W race condition
*/
txq->nb_tx_free = (uint16_t)(nb_desc - 1);
txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
txq->nb_tx_used = 0;
txq->tx_tail = 0;
memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
}
int
eth_em_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const struct rte_memzone *tz;
struct em_tx_queue *txq;
struct e1000_hw *hw;
uint32_t tsize;
uint16_t tx_rs_thresh, tx_free_thresh;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Validate number of transmit descriptors.
* It must not exceed hardware maximum, and must be multiple
* of EM_ALIGN.
*/
if (((nb_desc * sizeof(*txq->tx_ring)) % EM_ALIGN) != 0 ||
(nb_desc > EM_MAX_RING_DESC) ||
(nb_desc < EM_MIN_RING_DESC)) {
return -(EINVAL);
}
tx_free_thresh = tx_conf->tx_free_thresh;
if (tx_free_thresh == 0)
tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4,
DEFAULT_TX_FREE_THRESH);
tx_rs_thresh = tx_conf->tx_rs_thresh;
if (tx_rs_thresh == 0)
tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh,
DEFAULT_TX_RS_THRESH);
if (tx_free_thresh >= (nb_desc - 3)) {
PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
"number of TX descriptors minus 3. "
"(tx_free_thresh=%u port=%d queue=%d)",
(unsigned int)tx_free_thresh,
(int)dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
if (tx_rs_thresh > tx_free_thresh) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
"tx_free_thresh. (tx_free_thresh=%u "
"tx_rs_thresh=%u port=%d queue=%d)",
(unsigned int)tx_free_thresh,
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return -(EINVAL);
}
/*
* If rs_bit_thresh is greater than 1, then TX WTHRESH should be
* set to 0. If WTHRESH is greater than zero, the RS bit is ignored
* by the NIC and all descriptors are written back after the NIC
* accumulates WTHRESH descriptors.
*/
if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
"tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
"port=%d queue=%d)", (unsigned int)tx_rs_thresh,
(int)dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->tx_queues[queue_idx] != NULL) {
em_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/*
* Allocate TX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
tsize = sizeof (txq->tx_ring[0]) * EM_MAX_RING_DESC;
if ((tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
socket_id)) == NULL)
return (-ENOMEM);
/* Allocate the tx queue data structure. */
if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
RTE_CACHE_LINE_SIZE)) == NULL)
return (-ENOMEM);
/* Allocate software ring */
if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
sizeof(txq->sw_ring[0]) * nb_desc,
RTE_CACHE_LINE_SIZE)) == NULL) {
em_tx_queue_release(txq);
return (-ENOMEM);
}
txq->nb_tx_desc = nb_desc;
txq->tx_free_thresh = tx_free_thresh;
txq->tx_rs_thresh = tx_rs_thresh;
txq->pthresh = tx_conf->tx_thresh.pthresh;
txq->hthresh = tx_conf->tx_thresh.hthresh;
txq->wthresh = tx_conf->tx_thresh.wthresh;
txq->queue_id = queue_idx;
txq->port_id = dev->data->port_id;
txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
#ifndef RTE_LIBRTE_XEN_DOM0
txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
#else
txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
#endif
txq->tx_ring = (struct e1000_data_desc *) tz->addr;
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
em_reset_tx_queue(txq);
dev->data->tx_queues[queue_idx] = txq;
return (0);
}
static void
em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
{
unsigned i;
if (rxq->sw_ring != NULL) {
for (i = 0; i != rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
em_rx_queue_release(struct em_rx_queue *rxq)
{
if (rxq != NULL) {
em_rx_queue_release_mbufs(rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
}
void
eth_em_rx_queue_release(void *rxq)
{
em_rx_queue_release(rxq);
}
/* Reset dynamic em_rx_queue fields back to defaults */
static void
em_reset_rx_queue(struct em_rx_queue *rxq)
{
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
int
eth_em_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *rz;
struct em_rx_queue *rxq;
struct e1000_hw *hw;
uint32_t rsize;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Validate number of receive descriptors.
* It must not exceed hardware maximum, and must be multiple
* of EM_ALIGN.
*/
if (((nb_desc * sizeof(rxq->rx_ring[0])) % EM_ALIGN) != 0 ||
(nb_desc > EM_MAX_RING_DESC) ||
(nb_desc < EM_MIN_RING_DESC)) {
return (-EINVAL);
}
/*
* EM devices don't support drop_en functionality
*/
if (rx_conf->rx_drop_en) {
PMD_INIT_LOG(ERR, "drop_en functionality not supported by "
"device");
return (-EINVAL);
}
/* Free memory prior to re-allocation if needed. */
if (dev->data->rx_queues[queue_idx] != NULL) {
em_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* Allocate RX ring for max possible mumber of hardware descriptors. */
rsize = sizeof (rxq->rx_ring[0]) * EM_MAX_RING_DESC;
if ((rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
socket_id)) == NULL)
return (-ENOMEM);
/* Allocate the RX queue data structure. */
if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
RTE_CACHE_LINE_SIZE)) == NULL)
return (-ENOMEM);
/* Allocate software ring. */
if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
sizeof (rxq->sw_ring[0]) * nb_desc,
RTE_CACHE_LINE_SIZE)) == NULL) {
em_rx_queue_release(rxq);
return (-ENOMEM);
}
rxq->mb_pool = mp;
rxq->nb_rx_desc = nb_desc;
rxq->pthresh = rx_conf->rx_thresh.pthresh;
rxq->hthresh = rx_conf->rx_thresh.hthresh;
rxq->wthresh = rx_conf->rx_thresh.wthresh;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->port_id = dev->data->port_id;
rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
0 : ETHER_CRC_LEN);
rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx));
#ifndef RTE_LIBRTE_XEN_DOM0
rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
#else
rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
#endif
rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
dev->data->rx_queues[queue_idx] = rxq;
em_reset_rx_queue(rxq);
return (0);
}
uint32_t
eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
#define EM_RXQ_SCAN_INTERVAL 4
volatile struct e1000_rx_desc *rxdp;
struct em_rx_queue *rxq;
uint32_t desc = 0;
if (rx_queue_id >= dev->data->nb_rx_queues) {
PMD_RX_LOG(DEBUG, "Invalid RX queue_id=%d", rx_queue_id);
return 0;
}
rxq = dev->data->rx_queues[rx_queue_id];
rxdp = &(rxq->rx_ring[rxq->rx_tail]);
while ((desc < rxq->nb_rx_desc) &&
(rxdp->status & E1000_RXD_STAT_DD)) {
desc += EM_RXQ_SCAN_INTERVAL;
rxdp += EM_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return desc;
}
int
eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset)
{
volatile struct e1000_rx_desc *rxdp;
struct em_rx_queue *rxq = rx_queue;
uint32_t desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return 0;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
rxdp = &rxq->rx_ring[desc];
return !!(rxdp->status & E1000_RXD_STAT_DD);
}
void
em_dev_clear_queues(struct rte_eth_dev *dev)
{
uint16_t i;
struct em_tx_queue *txq;
struct em_rx_queue *rxq;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq != NULL) {
em_tx_queue_release_mbufs(txq);
em_reset_tx_queue(txq);
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq != NULL) {
em_rx_queue_release_mbufs(rxq);
em_reset_rx_queue(rxq);
}
}
}
/*
* Takes as input/output parameter RX buffer size.
* Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
*/
static uint32_t
em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz)
{
/*
* For BSIZE & BSEX all configurable sizes are:
* 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
* 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
* 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
* 2048: rctl |= E1000_RCTL_SZ_2048;
* 1024: rctl |= E1000_RCTL_SZ_1024;
* 512: rctl |= E1000_RCTL_SZ_512;
* 256: rctl |= E1000_RCTL_SZ_256;
*/
static const struct {
uint32_t bufsz;
uint32_t rctl;
} bufsz_to_rctl[] = {
{16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
{8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)},
{4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)},
{2048, E1000_RCTL_SZ_2048},
{1024, E1000_RCTL_SZ_1024},
{512, E1000_RCTL_SZ_512},
{256, E1000_RCTL_SZ_256},
};
int i;
uint32_t rctl_bsize;
rctl_bsize = *bufsz;
/*
* Starting from 82571 it is possible to specify RX buffer size
* by RCTL.FLXBUF. When this field is different from zero, the
* RX buffer size = RCTL.FLXBUF * 1K
* (e.g. t is possible to specify RX buffer size 1,2,...,15KB).
* It is working ok on real HW, but by some reason doesn't work
* on VMware emulated 82574L.
* So for now, always use BSIZE/BSEX to setup RX buffer size.
* If you don't plan to use it on VMware emulated 82574L and
* would like to specify RX buffer size in 1K granularity,
* uncomment the following lines:
* ***************************************************************
* if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
* rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
* rctl_bsize /= EM_RCTL_FLXBUF_STEP;
* *bufsz = rctl_bsize;
* return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
* E1000_RCTL_FLXBUF_MASK);
* }
* ***************************************************************
*/
for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
i++) {
if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
*bufsz = bufsz_to_rctl[i].bufsz;
return (bufsz_to_rctl[i].rctl);
}
}
/* Should never happen. */
return (-EINVAL);
}
static int
em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
{
struct em_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
unsigned i;
static const struct e1000_rx_desc rxd_init = {
.buffer_addr = 0,
};
/* Initialize software ring entries */
for (i = 0; i < rxq->nb_rx_desc; i++) {
volatile struct e1000_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
if (mbuf == NULL) {
PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
"queue_id=%hu", rxq->queue_id);
return (-ENOMEM);
}
dma_addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
/* Clear HW ring memory */
rxq->rx_ring[i] = rxd_init;
rxd = &rxq->rx_ring[i];
rxd->buffer_addr = dma_addr;
rxe[i].mbuf = mbuf;
}
return 0;
}
/*********************************************************************
*
* Enable receive unit.
*
**********************************************************************/
int
eth_em_rx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct em_rx_queue *rxq;
uint32_t rctl;
uint32_t rfctl;
uint32_t rxcsum;
uint32_t rctl_bsize;
uint16_t i;
int ret;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Make sure receives are disabled while setting
* up the descriptor ring.
*/
rctl = E1000_READ_REG(hw, E1000_RCTL);
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
rfctl = E1000_READ_REG(hw, E1000_RFCTL);
/* Disable extended descriptor type. */
rfctl &= ~E1000_RFCTL_EXTEN;
/* Disable accelerated acknowledge */
if (hw->mac.type == e1000_82574)
rfctl |= E1000_RFCTL_ACK_DIS;
E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
/*
* XXX TEMPORARY WORKAROUND: on some systems with 82573
* long latencies are observed, like Lenovo X60. This
* change eliminates the problem, but since having positive
* values in RDTR is a known source of problems on other
* platforms another solution is being sought.
*/
if (hw->mac.type == e1000_82573)
E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
/* Determine RX bufsize. */
rctl_bsize = EM_MAX_BUF_SIZE;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
uint32_t buf_size;
rxq = dev->data->rx_queues[i];
buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) -
RTE_PKTMBUF_HEADROOM;
rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
}
rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
/* Configure and enable each RX queue. */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
uint64_t bus_addr;
uint32_t rxdctl;
rxq = dev->data->rx_queues[i];
/* Allocate buffers for descriptor rings and setup queue */
ret = em_alloc_rx_queue_mbufs(rxq);
if (ret)
return ret;
/*
* Reset crc_len in case it was changed after queue setup by a
* call to configure
*/
rxq->crc_len =
(uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
0 : ETHER_CRC_LEN);
bus_addr = rxq->rx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_RDLEN(i),
rxq->nb_rx_desc *
sizeof(*rxq->rx_ring));
E1000_WRITE_REG(hw, E1000_RDBAH(i),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
E1000_WRITE_REG(hw, E1000_RDH(i), 0);
E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
rxdctl &= 0xFE000000;
rxdctl |= rxq->pthresh & 0x3F;
rxdctl |= (rxq->hthresh & 0x3F) << 8;
rxdctl |= (rxq->wthresh & 0x3F) << 16;
rxdctl |= E1000_RXDCTL_GRAN;
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
/*
* Due to EM devices not having any sort of hardware
* limit for packet length, jumbo frame of any size
* can be accepted, thus we have to enable scattered
* rx if jumbo frames are enabled (or if buffer size
* is too small to accommodate non-jumbo packets)
* to avoid splitting packets that don't fit into
* one buffer.
*/
if (dev->data->dev_conf.rxmode.jumbo_frame ||
rctl_bsize < ETHER_MAX_LEN) {
if (!dev->data->scattered_rx)
PMD_INIT_LOG(DEBUG, "forcing scatter mode");
dev->rx_pkt_burst =
(eth_rx_burst_t)eth_em_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
}
if (dev->data->dev_conf.rxmode.enable_scatter) {
if (!dev->data->scattered_rx)
PMD_INIT_LOG(DEBUG, "forcing scatter mode");
dev->rx_pkt_burst = eth_em_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
/*
* Setup the Checksum Register.
* Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
*/
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
if (dev->data->dev_conf.rxmode.hw_ip_checksum)
rxcsum |= E1000_RXCSUM_IPOFL;
else
rxcsum &= ~E1000_RXCSUM_IPOFL;
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
/* No MRQ or RSS support for now */
/* Set early receive threshold on appropriate hw */
if ((hw->mac.type == e1000_ich9lan ||
hw->mac.type == e1000_pch2lan ||
hw->mac.type == e1000_ich10lan) &&
dev->data->dev_conf.rxmode.jumbo_frame == 1) {
u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
}
if (hw->mac.type == e1000_pch2lan) {
if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
else
e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
}
/* Setup the Receive Control Register. */
if (dev->data->dev_conf.rxmode.hw_strip_crc)
rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
else
rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
E1000_RCTL_RDMTS_HALF |
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/* Make sure VLAN Filters are off. */
rctl &= ~E1000_RCTL_VFE;
/* Don't store bad packets. */
rctl &= ~E1000_RCTL_SBP;
/* Legacy descriptor type. */
rctl &= ~E1000_RCTL_DTYP_MASK;
/*
* Configure support of jumbo frames, if any.
*/
if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
rctl |= E1000_RCTL_LPE;
else
rctl &= ~E1000_RCTL_LPE;
/* Enable Receives. */
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
return 0;
}
/*********************************************************************
*
* Enable transmit unit.
*
**********************************************************************/
void
eth_em_tx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct em_tx_queue *txq;
uint32_t tctl;
uint32_t txdctl;
uint16_t i;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Setup the Base and Length of the Tx Descriptor Rings. */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
uint64_t bus_addr;
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_TDLEN(i),
txq->nb_tx_desc *
sizeof(*txq->tx_ring));
E1000_WRITE_REG(hw, E1000_TDBAH(i),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
/* Setup the HW Tx Head and Tail descriptor pointers. */
E1000_WRITE_REG(hw, E1000_TDT(i), 0);
E1000_WRITE_REG(hw, E1000_TDH(i), 0);
/* Setup Transmit threshold registers. */
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
/*
* bit 22 is reserved, on some models should always be 0,
* on others - always 1.
*/
txdctl &= E1000_TXDCTL_COUNT_DESC;
txdctl |= txq->pthresh & 0x3F;
txdctl |= (txq->hthresh & 0x3F) << 8;
txdctl |= (txq->wthresh & 0x3F) << 16;
txdctl |= E1000_TXDCTL_GRAN;
E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
}
/* Program the Transmit Control Register. */
tctl = E1000_READ_REG(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
/* This write will effectively turn on the transmit unit. */
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
}