numam-dpdk/lib/vhost/vhost.h
Dmitry Kozlyuk 72b452c5f2 eal: remove unneeded includes from a public header
Do not include <ctype.h>, <errno.h>, and <stdlib.h> from <rte_common.h>,
because they are not used by this file.
Include the needed headers directly from the files that need them.

Signed-off-by: Dmitry Kozlyuk <dmitry.kozliuk@gmail.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
2022-09-21 15:31:03 +02:00

988 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation
*/
#ifndef _VHOST_NET_CDEV_H_
#define _VHOST_NET_CDEV_H_
#include <stdint.h>
#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>
#include <sys/queue.h>
#include <unistd.h>
#include <linux/virtio_net.h>
#include <sys/socket.h>
#include <linux/if.h>
#include <rte_log.h>
#include <rte_ether.h>
#include <rte_malloc.h>
#include <rte_dmadev.h>
#include "rte_vhost.h"
#include "vdpa_driver.h"
#include "rte_vhost_async.h"
/* Used to indicate that the device is running on a data core */
#define VIRTIO_DEV_RUNNING ((uint32_t)1 << 0)
/* Used to indicate that the device is ready to operate */
#define VIRTIO_DEV_READY ((uint32_t)1 << 1)
/* Used to indicate that the built-in vhost net device backend is enabled */
#define VIRTIO_DEV_BUILTIN_VIRTIO_NET ((uint32_t)1 << 2)
/* Used to indicate that the device has its own data path and configured */
#define VIRTIO_DEV_VDPA_CONFIGURED ((uint32_t)1 << 3)
/* Used to indicate that the feature negotiation failed */
#define VIRTIO_DEV_FEATURES_FAILED ((uint32_t)1 << 4)
/* Used to indicate that the virtio_net tx code should fill TX ol_flags */
#define VIRTIO_DEV_LEGACY_OL_FLAGS ((uint32_t)1 << 5)
/* Used to indicate the application has requested statistics collection */
#define VIRTIO_DEV_STATS_ENABLED ((uint32_t)1 << 6)
/* Backend value set by guest. */
#define VIRTIO_DEV_STOPPED -1
#define BUF_VECTOR_MAX 256
#define VHOST_LOG_CACHE_NR 32
#define MAX_PKT_BURST 32
#define VHOST_MAX_ASYNC_IT (MAX_PKT_BURST)
#define VHOST_MAX_ASYNC_VEC 2048
#define VIRTIO_MAX_RX_PKTLEN 9728U
#define VHOST_DMA_MAX_COPY_COMPLETE ((VIRTIO_MAX_RX_PKTLEN / RTE_MBUF_DEFAULT_DATAROOM) \
* MAX_PKT_BURST)
#define PACKED_DESC_ENQUEUE_USED_FLAG(w) \
((w) ? (VRING_DESC_F_AVAIL | VRING_DESC_F_USED | VRING_DESC_F_WRITE) : \
VRING_DESC_F_WRITE)
#define PACKED_DESC_DEQUEUE_USED_FLAG(w) \
((w) ? (VRING_DESC_F_AVAIL | VRING_DESC_F_USED) : 0x0)
#define PACKED_DESC_SINGLE_DEQUEUE_FLAG (VRING_DESC_F_NEXT | \
VRING_DESC_F_INDIRECT)
#define PACKED_BATCH_SIZE (RTE_CACHE_LINE_SIZE / \
sizeof(struct vring_packed_desc))
#define PACKED_BATCH_MASK (PACKED_BATCH_SIZE - 1)
#ifdef VHOST_GCC_UNROLL_PRAGMA
#define vhost_for_each_try_unroll(iter, val, size) _Pragma("GCC unroll 4") \
for (iter = val; iter < size; iter++)
#endif
#ifdef VHOST_CLANG_UNROLL_PRAGMA
#define vhost_for_each_try_unroll(iter, val, size) _Pragma("unroll 4") \
for (iter = val; iter < size; iter++)
#endif
#ifdef VHOST_ICC_UNROLL_PRAGMA
#define vhost_for_each_try_unroll(iter, val, size) _Pragma("unroll (4)") \
for (iter = val; iter < size; iter++)
#endif
#ifndef vhost_for_each_try_unroll
#define vhost_for_each_try_unroll(iter, val, num) \
for (iter = val; iter < num; iter++)
#endif
/**
* Structure contains buffer address, length and descriptor index
* from vring to do scatter RX.
*/
struct buf_vector {
uint64_t buf_iova;
uint64_t buf_addr;
uint32_t buf_len;
uint32_t desc_idx;
};
/*
* Structure contains the info for each batched memory copy.
*/
struct batch_copy_elem {
void *dst;
void *src;
uint32_t len;
uint64_t log_addr;
};
/*
* Structure that contains the info for batched dirty logging.
*/
struct log_cache_entry {
uint32_t offset;
unsigned long val;
};
struct vring_used_elem_packed {
uint16_t id;
uint16_t flags;
uint32_t len;
uint32_t count;
};
/**
* Virtqueue statistics
*/
struct virtqueue_stats {
uint64_t packets;
uint64_t bytes;
uint64_t multicast;
uint64_t broadcast;
/* Size bins in array as RFC 2819, undersized [0], 64 [1], etc */
uint64_t size_bins[8];
uint64_t guest_notifications;
uint64_t iotlb_hits;
uint64_t iotlb_misses;
uint64_t inflight_submitted;
uint64_t inflight_completed;
};
/**
* iovec
*/
struct vhost_iovec {
void *src_addr;
void *dst_addr;
size_t len;
};
/**
* iovec iterator
*/
struct vhost_iov_iter {
/** pointer to the iovec array */
struct vhost_iovec *iov;
/** number of iovec in this iterator */
unsigned long nr_segs;
};
struct async_dma_vchan_info {
/* circular array to track if packet copy completes */
bool **pkts_cmpl_flag_addr;
/* max elements in 'pkts_cmpl_flag_addr' */
uint16_t ring_size;
/* ring index mask for 'pkts_cmpl_flag_addr' */
uint16_t ring_mask;
/**
* DMA virtual channel lock. Although it is able to bind DMA
* virtual channels to data plane threads, vhost control plane
* thread could call data plane functions too, thus causing
* DMA device contention.
*
* For example, in VM exit case, vhost control plane thread needs
* to clear in-flight packets before disable vring, but there could
* be anotther data plane thread is enqueuing packets to the same
* vring with the same DMA virtual channel. As dmadev PMD functions
* are lock-free, the control plane and data plane threads could
* operate the same DMA virtual channel at the same time.
*/
rte_spinlock_t dma_lock;
};
struct async_dma_info {
struct async_dma_vchan_info *vchans;
/* number of registered virtual channels */
uint16_t nr_vchans;
};
extern struct async_dma_info dma_copy_track[RTE_DMADEV_DEFAULT_MAX];
/**
* inflight async packet information
*/
struct async_inflight_info {
struct rte_mbuf *mbuf;
uint16_t descs; /* num of descs inflight */
uint16_t nr_buffers; /* num of buffers inflight for packed ring */
struct virtio_net_hdr nethdr;
};
struct vhost_async {
struct vhost_iov_iter iov_iter[VHOST_MAX_ASYNC_IT];
struct vhost_iovec iovec[VHOST_MAX_ASYNC_VEC];
uint16_t iter_idx;
uint16_t iovec_idx;
/* data transfer status */
struct async_inflight_info *pkts_info;
/**
* Packet reorder array. "true" indicates that DMA device
* completes all copies for the packet.
*
* Note that this array could be written by multiple threads
* simultaneously. For example, in the case of thread0 and
* thread1 RX packets from NIC and then enqueue packets to
* vring0 and vring1 with own DMA device DMA0 and DMA1, it's
* possible for thread0 to get completed copies belonging to
* vring1 from DMA0, while thread0 is calling rte_vhost_poll
* _enqueue_completed() for vring0 and thread1 is calling
* rte_vhost_submit_enqueue_burst() for vring1. In this case,
* vq->access_lock cannot protect pkts_cmpl_flag of vring1.
*
* However, since offloading is per-packet basis, each packet
* flag will only be written by one thread. And single byte
* write is atomic, so no lock for pkts_cmpl_flag is needed.
*/
bool *pkts_cmpl_flag;
uint16_t pkts_idx;
uint16_t pkts_inflight_n;
union {
struct vring_used_elem *descs_split;
struct vring_used_elem_packed *buffers_packed;
};
union {
uint16_t desc_idx_split;
uint16_t buffer_idx_packed;
};
union {
uint16_t last_desc_idx_split;
uint16_t last_buffer_idx_packed;
};
};
/**
* Structure contains variables relevant to RX/TX virtqueues.
*/
struct vhost_virtqueue {
union {
struct vring_desc *desc;
struct vring_packed_desc *desc_packed;
};
union {
struct vring_avail *avail;
struct vring_packed_desc_event *driver_event;
};
union {
struct vring_used *used;
struct vring_packed_desc_event *device_event;
};
uint16_t size;
uint16_t last_avail_idx;
uint16_t last_used_idx;
/* Last used index we notify to front end. */
uint16_t signalled_used;
bool signalled_used_valid;
#define VIRTIO_INVALID_EVENTFD (-1)
#define VIRTIO_UNINITIALIZED_EVENTFD (-2)
bool enabled;
bool access_ok;
bool ready;
rte_spinlock_t access_lock;
union {
struct vring_used_elem *shadow_used_split;
struct vring_used_elem_packed *shadow_used_packed;
};
uint16_t shadow_used_idx;
/* Record packed ring enqueue latest desc cache aligned index */
uint16_t shadow_aligned_idx;
/* Record packed ring first dequeue desc index */
uint16_t shadow_last_used_idx;
uint16_t batch_copy_nb_elems;
struct batch_copy_elem *batch_copy_elems;
int numa_node;
bool used_wrap_counter;
bool avail_wrap_counter;
/* Physical address of used ring, for logging */
uint16_t log_cache_nb_elem;
uint64_t log_guest_addr;
struct log_cache_entry *log_cache;
rte_rwlock_t iotlb_lock;
rte_rwlock_t iotlb_pending_lock;
struct vhost_iotlb_entry *iotlb_pool;
TAILQ_HEAD(, vhost_iotlb_entry) iotlb_list;
TAILQ_HEAD(, vhost_iotlb_entry) iotlb_pending_list;
int iotlb_cache_nr;
rte_spinlock_t iotlb_free_lock;
SLIST_HEAD(, vhost_iotlb_entry) iotlb_free_list;
/* Used to notify the guest (trigger interrupt) */
int callfd;
/* Currently unused as polling mode is enabled */
int kickfd;
/* Index of this vq in dev->virtqueue[] */
uint32_t index;
/* inflight share memory info */
union {
struct rte_vhost_inflight_info_split *inflight_split;
struct rte_vhost_inflight_info_packed *inflight_packed;
};
struct rte_vhost_resubmit_info *resubmit_inflight;
uint64_t global_counter;
struct vhost_async *async;
int notif_enable;
#define VIRTIO_UNINITIALIZED_NOTIF (-1)
struct vhost_vring_addr ring_addrs;
struct virtqueue_stats stats;
} __rte_cache_aligned;
/* Virtio device status as per Virtio specification */
#define VIRTIO_DEVICE_STATUS_RESET 0x00
#define VIRTIO_DEVICE_STATUS_ACK 0x01
#define VIRTIO_DEVICE_STATUS_DRIVER 0x02
#define VIRTIO_DEVICE_STATUS_DRIVER_OK 0x04
#define VIRTIO_DEVICE_STATUS_FEATURES_OK 0x08
#define VIRTIO_DEVICE_STATUS_DEV_NEED_RESET 0x40
#define VIRTIO_DEVICE_STATUS_FAILED 0x80
#define VHOST_MAX_VRING 0x100
#define VHOST_MAX_QUEUE_PAIRS 0x80
/* Declare IOMMU related bits for older kernels */
#ifndef VIRTIO_F_IOMMU_PLATFORM
#define VIRTIO_F_IOMMU_PLATFORM 33
struct vhost_iotlb_msg {
__u64 iova;
__u64 size;
__u64 uaddr;
#define VHOST_ACCESS_RO 0x1
#define VHOST_ACCESS_WO 0x2
#define VHOST_ACCESS_RW 0x3
__u8 perm;
#define VHOST_IOTLB_MISS 1
#define VHOST_IOTLB_UPDATE 2
#define VHOST_IOTLB_INVALIDATE 3
#define VHOST_IOTLB_ACCESS_FAIL 4
__u8 type;
};
#define VHOST_IOTLB_MSG 0x1
struct vhost_msg {
int type;
union {
struct vhost_iotlb_msg iotlb;
__u8 padding[64];
};
};
#endif
/*
* Define virtio 1.0 for older kernels
*/
#ifndef VIRTIO_F_VERSION_1
#define VIRTIO_F_VERSION_1 32
#endif
/* Declare packed ring related bits for older kernels */
#ifndef VIRTIO_F_RING_PACKED
#define VIRTIO_F_RING_PACKED 34
struct vring_packed_desc {
uint64_t addr;
uint32_t len;
uint16_t id;
uint16_t flags;
};
struct vring_packed_desc_event {
uint16_t off_wrap;
uint16_t flags;
};
#endif
/*
* Declare below packed ring defines unconditionally
* as Kernel header might use different names.
*/
#define VRING_DESC_F_AVAIL (1ULL << 7)
#define VRING_DESC_F_USED (1ULL << 15)
#define VRING_EVENT_F_ENABLE 0x0
#define VRING_EVENT_F_DISABLE 0x1
#define VRING_EVENT_F_DESC 0x2
/*
* Available and used descs are in same order
*/
#ifndef VIRTIO_F_IN_ORDER
#define VIRTIO_F_IN_ORDER 35
#endif
/* Features supported by this builtin vhost-user net driver. */
#define VIRTIO_NET_SUPPORTED_FEATURES ((1ULL << VIRTIO_NET_F_MRG_RXBUF) | \
(1ULL << VIRTIO_F_ANY_LAYOUT) | \
(1ULL << VIRTIO_NET_F_CTRL_VQ) | \
(1ULL << VIRTIO_NET_F_CTRL_RX) | \
(1ULL << VIRTIO_NET_F_GUEST_ANNOUNCE) | \
(1ULL << VIRTIO_NET_F_MQ) | \
(1ULL << VIRTIO_F_VERSION_1) | \
(1ULL << VHOST_F_LOG_ALL) | \
(1ULL << VHOST_USER_F_PROTOCOL_FEATURES) | \
(1ULL << VIRTIO_NET_F_GSO) | \
(1ULL << VIRTIO_NET_F_HOST_TSO4) | \
(1ULL << VIRTIO_NET_F_HOST_TSO6) | \
(1ULL << VIRTIO_NET_F_HOST_UFO) | \
(1ULL << VIRTIO_NET_F_HOST_ECN) | \
(1ULL << VIRTIO_NET_F_CSUM) | \
(1ULL << VIRTIO_NET_F_GUEST_CSUM) | \
(1ULL << VIRTIO_NET_F_GUEST_TSO4) | \
(1ULL << VIRTIO_NET_F_GUEST_TSO6) | \
(1ULL << VIRTIO_NET_F_GUEST_UFO) | \
(1ULL << VIRTIO_NET_F_GUEST_ECN) | \
(1ULL << VIRTIO_RING_F_INDIRECT_DESC) | \
(1ULL << VIRTIO_RING_F_EVENT_IDX) | \
(1ULL << VIRTIO_NET_F_MTU) | \
(1ULL << VIRTIO_F_IN_ORDER) | \
(1ULL << VIRTIO_F_IOMMU_PLATFORM) | \
(1ULL << VIRTIO_F_RING_PACKED))
struct guest_page {
uint64_t guest_phys_addr;
uint64_t host_iova;
uint64_t host_user_addr;
uint64_t size;
};
struct inflight_mem_info {
int fd;
void *addr;
uint64_t size;
};
/**
* Device structure contains all configuration information relating
* to the device.
*/
struct virtio_net {
/* Frontend (QEMU) memory and memory region information */
struct rte_vhost_memory *mem;
uint64_t features;
uint64_t protocol_features;
int vid;
uint32_t flags;
uint16_t vhost_hlen;
/* to tell if we need broadcast rarp packet */
int16_t broadcast_rarp;
uint32_t nr_vring;
int async_copy;
int extbuf;
int linearbuf;
struct vhost_virtqueue *virtqueue[VHOST_MAX_QUEUE_PAIRS * 2];
struct inflight_mem_info *inflight_info;
#define IF_NAME_SZ (PATH_MAX > IFNAMSIZ ? PATH_MAX : IFNAMSIZ)
char ifname[IF_NAME_SZ];
uint64_t log_size;
uint64_t log_base;
uint64_t log_addr;
struct rte_ether_addr mac;
uint16_t mtu;
uint8_t status;
struct rte_vhost_device_ops const *notify_ops;
uint32_t nr_guest_pages;
uint32_t max_guest_pages;
struct guest_page *guest_pages;
int slave_req_fd;
rte_spinlock_t slave_req_lock;
int postcopy_ufd;
int postcopy_listening;
struct rte_vdpa_device *vdpa_dev;
/* context data for the external message handlers */
void *extern_data;
/* pre and post vhost user message handlers for the device */
struct rte_vhost_user_extern_ops extern_ops;
} __rte_cache_aligned;
static __rte_always_inline bool
vq_is_packed(struct virtio_net *dev)
{
return dev->features & (1ull << VIRTIO_F_RING_PACKED);
}
static inline bool
desc_is_avail(struct vring_packed_desc *desc, bool wrap_counter)
{
uint16_t flags = __atomic_load_n(&desc->flags, __ATOMIC_ACQUIRE);
return wrap_counter == !!(flags & VRING_DESC_F_AVAIL) &&
wrap_counter != !!(flags & VRING_DESC_F_USED);
}
static inline void
vq_inc_last_used_packed(struct vhost_virtqueue *vq, uint16_t num)
{
vq->last_used_idx += num;
if (vq->last_used_idx >= vq->size) {
vq->used_wrap_counter ^= 1;
vq->last_used_idx -= vq->size;
}
}
static inline void
vq_inc_last_avail_packed(struct vhost_virtqueue *vq, uint16_t num)
{
vq->last_avail_idx += num;
if (vq->last_avail_idx >= vq->size) {
vq->avail_wrap_counter ^= 1;
vq->last_avail_idx -= vq->size;
}
}
void __vhost_log_cache_write(struct virtio_net *dev,
struct vhost_virtqueue *vq,
uint64_t addr, uint64_t len);
void __vhost_log_cache_write_iova(struct virtio_net *dev,
struct vhost_virtqueue *vq,
uint64_t iova, uint64_t len);
void __vhost_log_cache_sync(struct virtio_net *dev,
struct vhost_virtqueue *vq);
void __vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len);
void __vhost_log_write_iova(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t iova, uint64_t len);
static __rte_always_inline void
vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
{
if (unlikely(dev->features & (1ULL << VHOST_F_LOG_ALL)))
__vhost_log_write(dev, addr, len);
}
static __rte_always_inline void
vhost_log_cache_sync(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
if (unlikely(dev->features & (1ULL << VHOST_F_LOG_ALL)))
__vhost_log_cache_sync(dev, vq);
}
static __rte_always_inline void
vhost_log_cache_write(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t addr, uint64_t len)
{
if (unlikely(dev->features & (1ULL << VHOST_F_LOG_ALL)))
__vhost_log_cache_write(dev, vq, addr, len);
}
static __rte_always_inline void
vhost_log_cache_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t offset, uint64_t len)
{
if (unlikely(dev->features & (1ULL << VHOST_F_LOG_ALL))) {
if (unlikely(vq->log_guest_addr == 0))
return;
__vhost_log_cache_write(dev, vq, vq->log_guest_addr + offset,
len);
}
}
static __rte_always_inline void
vhost_log_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t offset, uint64_t len)
{
if (unlikely(dev->features & (1ULL << VHOST_F_LOG_ALL))) {
if (unlikely(vq->log_guest_addr == 0))
return;
__vhost_log_write(dev, vq->log_guest_addr + offset, len);
}
}
static __rte_always_inline void
vhost_log_cache_write_iova(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t iova, uint64_t len)
{
if (likely(!(dev->features & (1ULL << VHOST_F_LOG_ALL))))
return;
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
__vhost_log_cache_write_iova(dev, vq, iova, len);
else
__vhost_log_cache_write(dev, vq, iova, len);
}
static __rte_always_inline void
vhost_log_write_iova(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t iova, uint64_t len)
{
if (likely(!(dev->features & (1ULL << VHOST_F_LOG_ALL))))
return;
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
__vhost_log_write_iova(dev, vq, iova, len);
else
__vhost_log_write(dev, iova, len);
}
extern int vhost_config_log_level;
extern int vhost_data_log_level;
#define VHOST_LOG_CONFIG(prefix, level, fmt, args...) \
rte_log(RTE_LOG_ ## level, vhost_config_log_level, \
"VHOST_CONFIG: (%s) " fmt, prefix, ##args)
#define VHOST_LOG_DATA(prefix, level, fmt, args...) \
(void)((RTE_LOG_ ## level <= RTE_LOG_DP_LEVEL) ? \
rte_log(RTE_LOG_ ## level, vhost_data_log_level, \
"VHOST_DATA: (%s) " fmt, prefix, ##args) : \
0)
#ifdef RTE_LIBRTE_VHOST_DEBUG
#define VHOST_MAX_PRINT_BUFF 6072
#define PRINT_PACKET(device, addr, size, header) do { \
char *pkt_addr = (char *)(addr); \
unsigned int index; \
char packet[VHOST_MAX_PRINT_BUFF]; \
\
if ((header)) \
snprintf(packet, VHOST_MAX_PRINT_BUFF, "(%d) Header size %d: ", (device->vid), (size)); \
else \
snprintf(packet, VHOST_MAX_PRINT_BUFF, "(%d) Packet size %d: ", (device->vid), (size)); \
for (index = 0; index < (size); index++) { \
snprintf(packet + strnlen(packet, VHOST_MAX_PRINT_BUFF), VHOST_MAX_PRINT_BUFF - strnlen(packet, VHOST_MAX_PRINT_BUFF), \
"%02hhx ", pkt_addr[index]); \
} \
snprintf(packet + strnlen(packet, VHOST_MAX_PRINT_BUFF), VHOST_MAX_PRINT_BUFF - strnlen(packet, VHOST_MAX_PRINT_BUFF), "\n"); \
\
VHOST_LOG_DATA(device->ifname, DEBUG, "%s", packet); \
} while (0)
#else
#define PRINT_PACKET(device, addr, size, header) do {} while (0)
#endif
extern struct virtio_net *vhost_devices[RTE_MAX_VHOST_DEVICE];
#define VHOST_BINARY_SEARCH_THRESH 256
static __rte_always_inline int guest_page_addrcmp(const void *p1,
const void *p2)
{
const struct guest_page *page1 = (const struct guest_page *)p1;
const struct guest_page *page2 = (const struct guest_page *)p2;
if (page1->guest_phys_addr > page2->guest_phys_addr)
return 1;
if (page1->guest_phys_addr < page2->guest_phys_addr)
return -1;
return 0;
}
static __rte_always_inline int guest_page_rangecmp(const void *p1, const void *p2)
{
const struct guest_page *page1 = (const struct guest_page *)p1;
const struct guest_page *page2 = (const struct guest_page *)p2;
if (page1->guest_phys_addr >= page2->guest_phys_addr) {
if (page1->guest_phys_addr < page2->guest_phys_addr + page2->size)
return 0;
else
return 1;
} else
return -1;
}
static __rte_always_inline rte_iova_t
gpa_to_first_hpa(struct virtio_net *dev, uint64_t gpa,
uint64_t gpa_size, uint64_t *hpa_size)
{
uint32_t i;
struct guest_page *page;
struct guest_page key;
*hpa_size = gpa_size;
if (dev->nr_guest_pages >= VHOST_BINARY_SEARCH_THRESH) {
key.guest_phys_addr = gpa;
page = bsearch(&key, dev->guest_pages, dev->nr_guest_pages,
sizeof(struct guest_page), guest_page_rangecmp);
if (page) {
if (gpa + gpa_size <=
page->guest_phys_addr + page->size) {
return gpa - page->guest_phys_addr +
page->host_iova;
} else if (gpa < page->guest_phys_addr +
page->size) {
*hpa_size = page->guest_phys_addr +
page->size - gpa;
return gpa - page->guest_phys_addr +
page->host_iova;
}
}
} else {
for (i = 0; i < dev->nr_guest_pages; i++) {
page = &dev->guest_pages[i];
if (gpa >= page->guest_phys_addr) {
if (gpa + gpa_size <=
page->guest_phys_addr + page->size) {
return gpa - page->guest_phys_addr +
page->host_iova;
} else if (gpa < page->guest_phys_addr +
page->size) {
*hpa_size = page->guest_phys_addr +
page->size - gpa;
return gpa - page->guest_phys_addr +
page->host_iova;
}
}
}
}
*hpa_size = 0;
return 0;
}
/* Convert guest physical address to host physical address */
static __rte_always_inline rte_iova_t
gpa_to_hpa(struct virtio_net *dev, uint64_t gpa, uint64_t size)
{
rte_iova_t hpa;
uint64_t hpa_size;
hpa = gpa_to_first_hpa(dev, gpa, size, &hpa_size);
return hpa_size == size ? hpa : 0;
}
static __rte_always_inline uint64_t
hva_to_gpa(struct virtio_net *dev, uint64_t vva, uint64_t len)
{
struct rte_vhost_mem_region *r;
uint32_t i;
if (unlikely(!dev || !dev->mem))
return 0;
for (i = 0; i < dev->mem->nregions; i++) {
r = &dev->mem->regions[i];
if (vva >= r->host_user_addr &&
vva + len < r->host_user_addr + r->size) {
return r->guest_phys_addr + vva - r->host_user_addr;
}
}
return 0;
}
static __rte_always_inline struct virtio_net *
get_device(int vid)
{
struct virtio_net *dev = vhost_devices[vid];
if (unlikely(!dev)) {
VHOST_LOG_CONFIG("device", ERR, "(%d) device not found.\n", vid);
}
return dev;
}
int vhost_new_device(void);
void cleanup_device(struct virtio_net *dev, int destroy);
void reset_device(struct virtio_net *dev);
void vhost_destroy_device(int);
void vhost_destroy_device_notify(struct virtio_net *dev);
void cleanup_vq(struct vhost_virtqueue *vq, int destroy);
void cleanup_vq_inflight(struct virtio_net *dev, struct vhost_virtqueue *vq);
void free_vq(struct virtio_net *dev, struct vhost_virtqueue *vq);
int alloc_vring_queue(struct virtio_net *dev, uint32_t vring_idx);
void vhost_attach_vdpa_device(int vid, struct rte_vdpa_device *dev);
void vhost_set_ifname(int, const char *if_name, unsigned int if_len);
void vhost_setup_virtio_net(int vid, bool enable, bool legacy_ol_flags, bool stats_enabled);
void vhost_enable_extbuf(int vid);
void vhost_enable_linearbuf(int vid);
int vhost_enable_guest_notification(struct virtio_net *dev,
struct vhost_virtqueue *vq, int enable);
struct rte_vhost_device_ops const *vhost_driver_callback_get(const char *path);
/*
* Backend-specific cleanup.
*
* TODO: fix it; we have one backend now
*/
void vhost_backend_cleanup(struct virtio_net *dev);
uint64_t __vhost_iova_to_vva(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t iova, uint64_t *len, uint8_t perm);
void *vhost_alloc_copy_ind_table(struct virtio_net *dev,
struct vhost_virtqueue *vq,
uint64_t desc_addr, uint64_t desc_len);
int vring_translate(struct virtio_net *dev, struct vhost_virtqueue *vq);
uint64_t translate_log_addr(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t log_addr);
void vring_invalidate(struct virtio_net *dev, struct vhost_virtqueue *vq);
static __rte_always_inline uint64_t
vhost_iova_to_vva(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t iova, uint64_t *len, uint8_t perm)
{
if (!(dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)))
return rte_vhost_va_from_guest_pa(dev->mem, iova, len);
return __vhost_iova_to_vva(dev, vq, iova, len, perm);
}
#define vhost_avail_event(vr) \
(*(volatile uint16_t*)&(vr)->used->ring[(vr)->size])
#define vhost_used_event(vr) \
(*(volatile uint16_t*)&(vr)->avail->ring[(vr)->size])
/*
* The following is used with VIRTIO_RING_F_EVENT_IDX.
* Assuming a given event_idx value from the other size, if we have
* just incremented index from old to new_idx, should we trigger an
* event?
*/
static __rte_always_inline int
vhost_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old)
{
return (uint16_t)(new_idx - event_idx - 1) < (uint16_t)(new_idx - old);
}
static __rte_always_inline void
vhost_vring_call_split(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
/* Flush used->idx update before we read avail->flags. */
rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
/* Don't kick guest if we don't reach index specified by guest. */
if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX)) {
uint16_t old = vq->signalled_used;
uint16_t new = vq->last_used_idx;
bool signalled_used_valid = vq->signalled_used_valid;
vq->signalled_used = new;
vq->signalled_used_valid = true;
VHOST_LOG_DATA(dev->ifname, DEBUG,
"%s: used_event_idx=%d, old=%d, new=%d\n",
__func__, vhost_used_event(vq), old, new);
if ((vhost_need_event(vhost_used_event(vq), new, old) &&
(vq->callfd >= 0)) ||
unlikely(!signalled_used_valid)) {
eventfd_write(vq->callfd, (eventfd_t) 1);
if (dev->flags & VIRTIO_DEV_STATS_ENABLED)
vq->stats.guest_notifications++;
if (dev->notify_ops->guest_notified)
dev->notify_ops->guest_notified(dev->vid);
}
} else {
/* Kick the guest if necessary. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
&& (vq->callfd >= 0)) {
eventfd_write(vq->callfd, (eventfd_t)1);
if (dev->flags & VIRTIO_DEV_STATS_ENABLED)
vq->stats.guest_notifications++;
if (dev->notify_ops->guest_notified)
dev->notify_ops->guest_notified(dev->vid);
}
}
}
static __rte_always_inline void
vhost_vring_call_packed(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
uint16_t old, new, off, off_wrap;
bool signalled_used_valid, kick = false;
/* Flush used desc update. */
rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
if (!(dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX))) {
if (vq->driver_event->flags !=
VRING_EVENT_F_DISABLE)
kick = true;
goto kick;
}
old = vq->signalled_used;
new = vq->last_used_idx;
vq->signalled_used = new;
signalled_used_valid = vq->signalled_used_valid;
vq->signalled_used_valid = true;
if (vq->driver_event->flags != VRING_EVENT_F_DESC) {
if (vq->driver_event->flags != VRING_EVENT_F_DISABLE)
kick = true;
goto kick;
}
if (unlikely(!signalled_used_valid)) {
kick = true;
goto kick;
}
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
off_wrap = vq->driver_event->off_wrap;
off = off_wrap & ~(1 << 15);
if (new <= old)
old -= vq->size;
if (vq->used_wrap_counter != off_wrap >> 15)
off -= vq->size;
if (vhost_need_event(off, new, old))
kick = true;
kick:
if (kick) {
eventfd_write(vq->callfd, (eventfd_t)1);
if (dev->notify_ops->guest_notified)
dev->notify_ops->guest_notified(dev->vid);
}
}
static __rte_always_inline void
free_ind_table(void *idesc)
{
rte_free(idesc);
}
static __rte_always_inline void
restore_mbuf(struct rte_mbuf *m)
{
uint32_t mbuf_size, priv_size;
while (m) {
priv_size = rte_pktmbuf_priv_size(m->pool);
mbuf_size = sizeof(struct rte_mbuf) + priv_size;
/* start of buffer is after mbuf structure and priv data */
m->buf_addr = (char *)m + mbuf_size;
m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
m = m->next;
}
}
static __rte_always_inline bool
mbuf_is_consumed(struct rte_mbuf *m)
{
while (m) {
if (rte_mbuf_refcnt_read(m) > 1)
return false;
m = m->next;
}
return true;
}
#endif /* _VHOST_NET_CDEV_H_ */