numam-dpdk/app/test/test_memzone.c
Sergio Gonzalez Monroy fdf20fa7be add prefix to cache line macros
CACHE_LINE_SIZE is a macro defined in machine/param.h in FreeBSD and
conflicts with DPDK macro version.
Adding RTE_ prefix to avoid conflicts.
CACHE_LINE_MASK and CACHE_LINE_ROUNDUP are also prefixed.

Signed-off-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
[Thomas: updated on HEAD, including PPC]
2014-11-27 16:21:11 +01:00

1173 lines
33 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <rte_random.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include "test.h"
/*
* Memzone
* =======
*
* - Search for three reserved zones or reserve them if they do not exist:
*
* - One is on any socket id.
* - The second is on socket 0.
* - The last one is on socket 1 (if socket 1 exists).
*
* - Check that the zones exist.
*
* - Check that the zones are cache-aligned.
*
* - Check that zones do not overlap.
*
* - Check that the zones are on the correct socket id.
*
* - Check that a lookup of the first zone returns the same pointer.
*
* - Check that it is not possible to create another zone with the
* same name as an existing zone.
*
* - Check flags for specific huge page size reservation
*/
/* Test if memory overlaps: return 1 if true, or 0 if false. */
static int
is_memory_overlap(phys_addr_t ptr1, size_t len1, phys_addr_t ptr2, size_t len2)
{
if (ptr2 >= ptr1 && (ptr2 - ptr1) < len1)
return 1;
else if (ptr2 < ptr1 && (ptr1 - ptr2) < len2)
return 1;
return 0;
}
static int
test_memzone_invalid_alignment(void)
{
const struct rte_memzone * mz;
mz = rte_memzone_lookup("invalid_alignment");
if (mz != NULL) {
printf("Zone with invalid alignment has been reserved\n");
return -1;
}
mz = rte_memzone_reserve_aligned("invalid_alignment", 100,
SOCKET_ID_ANY, 0, 100);
if (mz != NULL) {
printf("Zone with invalid alignment has been reserved\n");
return -1;
}
return 0;
}
static int
test_memzone_reserving_zone_size_bigger_than_the_maximum(void)
{
const struct rte_memzone * mz;
mz = rte_memzone_lookup("zone_size_bigger_than_the_maximum");
if (mz != NULL) {
printf("zone_size_bigger_than_the_maximum has been reserved\n");
return -1;
}
mz = rte_memzone_reserve("zone_size_bigger_than_the_maximum", (size_t)-1,
SOCKET_ID_ANY, 0);
if (mz != NULL) {
printf("It is impossible to reserve such big a memzone\n");
return -1;
}
return 0;
}
static int
test_memzone_reserve_flags(void)
{
const struct rte_memzone *mz;
const struct rte_memseg *ms;
int hugepage_2MB_avail = 0;
int hugepage_1GB_avail = 0;
int hugepage_16MB_avail = 0;
int hugepage_16GB_avail = 0;
const size_t size = 100;
int i = 0;
ms = rte_eal_get_physmem_layout();
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
if (ms[i].hugepage_sz == RTE_PGSIZE_2M)
hugepage_2MB_avail = 1;
if (ms[i].hugepage_sz == RTE_PGSIZE_1G)
hugepage_1GB_avail = 1;
if (ms[i].hugepage_sz == RTE_PGSIZE_16M)
hugepage_16MB_avail = 1;
if (ms[i].hugepage_sz == RTE_PGSIZE_16G)
hugepage_16GB_avail = 1;
}
/* Display the availability of 2MB ,1GB, 16MB, 16GB pages */
if (hugepage_2MB_avail)
printf("2MB Huge pages available\n");
if (hugepage_1GB_avail)
printf("1GB Huge pages available\n");
if (hugepage_16MB_avail)
printf("16MB Huge pages available\n");
if (hugepage_16GB_avail)
printf("16GB Huge pages available\n");
/*
* If 2MB pages available, check that a small memzone is correctly
* reserved from 2MB huge pages when requested by the RTE_MEMZONE_2MB flag.
* Also check that RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an
* available page size (i.e 1GB ) when 2MB pages are unavailable.
*/
if (hugepage_2MB_avail) {
mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB);
if (mz == NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails unless
* HINT flag is indicated
*/
if (!hugepage_1GB_avail) {
mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB);
if (mz != NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
}
}
/*As with 2MB tests above for 1GB huge page requests*/
if (hugepage_1GB_avail) {
mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails unless
* HINT flag is indicated
*/
if (!hugepage_2MB_avail) {
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL){
printf("MEMZONE FLAG 2MB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB);
if (mz != NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
}
if (hugepage_2MB_avail && hugepage_1GB_avail) {
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_1GB);
if (mz != NULL) {
printf("BOTH SIZES SET\n");
return -1;
}
}
}
/*
* This option is for IBM Power. If 16MB pages available, check
* that a small memzone is correctly reserved from 16MB huge pages
* when requested by the RTE_MEMZONE_16MB flag. Also check that
* RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an available
* page size (i.e 16GB ) when 16MB pages are unavailable.
*/
if (hugepage_16MB_avail) {
mz = rte_memzone_reserve("flag_zone_16M", size, SOCKET_ID_ANY,
RTE_MEMZONE_16MB);
if (mz == NULL) {
printf("MEMZONE FLAG 16MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
printf("hugepage_sz not equal 16M\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
SOCKET_ID_ANY, RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
printf("hugepage_sz not equal 16M\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails
* unless HINT flag is indicated
*/
if (!hugepage_16GB_avail) {
mz = rte_memzone_reserve("flag_zone_16G_HINT", size,
SOCKET_ID_ANY,
RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 16GB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
printf("hugepage_sz not equal 16M\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_16G", size,
SOCKET_ID_ANY, RTE_MEMZONE_16GB);
if (mz != NULL) {
printf("MEMZONE FLAG 16GB\n");
return -1;
}
}
}
/*As with 16MB tests above for 16GB huge page requests*/
if (hugepage_16GB_avail) {
mz = rte_memzone_reserve("flag_zone_16G", size, SOCKET_ID_ANY,
RTE_MEMZONE_16GB);
if (mz == NULL) {
printf("MEMZONE FLAG 16GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
printf("hugepage_sz not equal 16G\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_16G_HINT", size,
SOCKET_ID_ANY, RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 16GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
printf("hugepage_sz not equal 16G\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails
* unless HINT flag is indicated
*/
if (!hugepage_16MB_avail) {
mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
SOCKET_ID_ANY,
RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 16MB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
printf("hugepage_sz not equal 16G\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_16M", size,
SOCKET_ID_ANY, RTE_MEMZONE_16MB);
if (mz != NULL) {
printf("MEMZONE FLAG 16MB\n");
return -1;
}
}
if (hugepage_16MB_avail && hugepage_16GB_avail) {
mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
SOCKET_ID_ANY,
RTE_MEMZONE_16MB|RTE_MEMZONE_16GB);
if (mz != NULL) {
printf("BOTH SIZES SET\n");
return -1;
}
}
}
return 0;
}
static int
test_memzone_reserve_max(void)
{
const struct rte_memzone *mz;
const struct rte_config *config;
const struct rte_memseg *ms;
int memseg_idx = 0;
int memzone_idx = 0;
size_t len = 0;
void* last_addr;
size_t maxlen = 0;
/* get pointer to global configuration */
config = rte_eal_get_configuration();
ms = rte_eal_get_physmem_layout();
for (memseg_idx = 0; memseg_idx < RTE_MAX_MEMSEG; memseg_idx++){
/* ignore smaller memsegs as they can only get smaller */
if (ms[memseg_idx].len < maxlen)
continue;
/* align everything */
last_addr = RTE_PTR_ALIGN_CEIL(ms[memseg_idx].addr, RTE_CACHE_LINE_SIZE);
len = ms[memseg_idx].len - RTE_PTR_DIFF(last_addr, ms[memseg_idx].addr);
len &= ~((size_t) RTE_CACHE_LINE_MASK);
/* cycle through all memzones */
for (memzone_idx = 0; memzone_idx < RTE_MAX_MEMZONE; memzone_idx++) {
/* stop when reaching last allocated memzone */
if (config->mem_config->memzone[memzone_idx].addr == NULL)
break;
/* check if the memzone is in our memseg and subtract length */
if ((config->mem_config->memzone[memzone_idx].addr >=
ms[memseg_idx].addr) &&
(config->mem_config->memzone[memzone_idx].addr <
(RTE_PTR_ADD(ms[memseg_idx].addr, ms[memseg_idx].len)))) {
/* since the zones can now be aligned and occasionally skip
* some space, we should calculate the length based on
* reported length and start addresses difference. Addresses
* are allocated sequentially so we don't need to worry about
* them being in the right order.
*/
len -= RTE_PTR_DIFF(
config->mem_config->memzone[memzone_idx].addr,
last_addr);
len -= config->mem_config->memzone[memzone_idx].len;
last_addr = RTE_PTR_ADD(config->mem_config->memzone[memzone_idx].addr,
(size_t) config->mem_config->memzone[memzone_idx].len);
}
}
/* we don't need to calculate offset here since length
* is always cache-aligned */
if (len > maxlen)
maxlen = len;
}
if (maxlen == 0) {
printf("There is no space left!\n");
return 0;
}
mz = rte_memzone_reserve("max_zone", 0, SOCKET_ID_ANY, 0);
if (mz == NULL){
printf("Failed to reserve a big chunk of memory\n");
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
if (mz->len != maxlen) {
printf("Memzone reserve with 0 size did not return bigest block\n");
printf("Expected size = %zu, actual size = %zu\n",
maxlen, mz->len);
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
return 0;
}
static int
test_memzone_reserve_max_aligned(void)
{
const struct rte_memzone *mz;
const struct rte_config *config;
const struct rte_memseg *ms;
int memseg_idx = 0;
int memzone_idx = 0;
uintptr_t addr_offset;
size_t len = 0;
void* last_addr;
size_t maxlen = 0;
/* random alignment */
rte_srand((unsigned)rte_rdtsc());
const unsigned align = 1 << ((rte_rand() % 8) + 5); /* from 128 up to 4k alignment */
/* get pointer to global configuration */
config = rte_eal_get_configuration();
ms = rte_eal_get_physmem_layout();
addr_offset = 0;
for (memseg_idx = 0; memseg_idx < RTE_MAX_MEMSEG; memseg_idx++){
/* ignore smaller memsegs as they can only get smaller */
if (ms[memseg_idx].len < maxlen)
continue;
/* align everything */
last_addr = RTE_PTR_ALIGN_CEIL(ms[memseg_idx].addr, RTE_CACHE_LINE_SIZE);
len = ms[memseg_idx].len - RTE_PTR_DIFF(last_addr, ms[memseg_idx].addr);
len &= ~((size_t) RTE_CACHE_LINE_MASK);
/* cycle through all memzones */
for (memzone_idx = 0; memzone_idx < RTE_MAX_MEMZONE; memzone_idx++) {
/* stop when reaching last allocated memzone */
if (config->mem_config->memzone[memzone_idx].addr == NULL)
break;
/* check if the memzone is in our memseg and subtract length */
if ((config->mem_config->memzone[memzone_idx].addr >=
ms[memseg_idx].addr) &&
(config->mem_config->memzone[memzone_idx].addr <
(RTE_PTR_ADD(ms[memseg_idx].addr, ms[memseg_idx].len)))) {
/* since the zones can now be aligned and occasionally skip
* some space, we should calculate the length based on
* reported length and start addresses difference.
*/
len -= (uintptr_t) RTE_PTR_SUB(
config->mem_config->memzone[memzone_idx].addr,
(uintptr_t) last_addr);
len -= config->mem_config->memzone[memzone_idx].len;
last_addr =
RTE_PTR_ADD(config->mem_config->memzone[memzone_idx].addr,
(size_t) config->mem_config->memzone[memzone_idx].len);
}
}
/* make sure we get the alignment offset */
if (len > maxlen) {
addr_offset = RTE_PTR_ALIGN_CEIL((uintptr_t) last_addr, align) - (uintptr_t) last_addr;
maxlen = len;
}
}
if (maxlen == 0 || maxlen == addr_offset) {
printf("There is no space left for biggest %u-aligned memzone!\n", align);
return 0;
}
maxlen -= addr_offset;
mz = rte_memzone_reserve_aligned("max_zone_aligned", 0,
SOCKET_ID_ANY, 0, align);
if (mz == NULL){
printf("Failed to reserve a big chunk of memory\n");
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
if (mz->len != maxlen) {
printf("Memzone reserve with 0 size and alignment %u did not return"
" bigest block\n", align);
printf("Expected size = %zu, actual size = %zu\n",
maxlen, mz->len);
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
return 0;
}
static int
test_memzone_aligned(void)
{
const struct rte_memzone *memzone_aligned_32;
const struct rte_memzone *memzone_aligned_128;
const struct rte_memzone *memzone_aligned_256;
const struct rte_memzone *memzone_aligned_512;
const struct rte_memzone *memzone_aligned_1024;
/* memzone that should automatically be adjusted to align on 64 bytes */
memzone_aligned_32 = rte_memzone_reserve_aligned("aligned_32", 100,
SOCKET_ID_ANY, 0, 32);
/* memzone that is supposed to be aligned on a 128 byte boundary */
memzone_aligned_128 = rte_memzone_reserve_aligned("aligned_128", 100,
SOCKET_ID_ANY, 0, 128);
/* memzone that is supposed to be aligned on a 256 byte boundary */
memzone_aligned_256 = rte_memzone_reserve_aligned("aligned_256", 100,
SOCKET_ID_ANY, 0, 256);
/* memzone that is supposed to be aligned on a 512 byte boundary */
memzone_aligned_512 = rte_memzone_reserve_aligned("aligned_512", 100,
SOCKET_ID_ANY, 0, 512);
/* memzone that is supposed to be aligned on a 1024 byte boundary */
memzone_aligned_1024 = rte_memzone_reserve_aligned("aligned_1024", 100,
SOCKET_ID_ANY, 0, 1024);
printf("check alignments and lengths\n");
if (memzone_aligned_32 == NULL) {
printf("Unable to reserve 64-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_32->phys_addr & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (((uintptr_t) memzone_aligned_32->addr & RTE_CACHE_LINE_MASK) != 0)
return -1;
if ((memzone_aligned_32->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_128 == NULL) {
printf("Unable to reserve 128-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_128->phys_addr & 127) != 0)
return -1;
if (((uintptr_t) memzone_aligned_128->addr & 127) != 0)
return -1;
if ((memzone_aligned_128->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_256 == NULL) {
printf("Unable to reserve 256-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_256->phys_addr & 255) != 0)
return -1;
if (((uintptr_t) memzone_aligned_256->addr & 255) != 0)
return -1;
if ((memzone_aligned_256->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_512 == NULL) {
printf("Unable to reserve 512-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_512->phys_addr & 511) != 0)
return -1;
if (((uintptr_t) memzone_aligned_512->addr & 511) != 0)
return -1;
if ((memzone_aligned_512->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_1024 == NULL) {
printf("Unable to reserve 1024-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_1024->phys_addr & 1023) != 0)
return -1;
if (((uintptr_t) memzone_aligned_1024->addr & 1023) != 0)
return -1;
if ((memzone_aligned_1024->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
/* check that zones don't overlap */
printf("check overlapping\n");
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_128->phys_addr, memzone_aligned_128->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_256->phys_addr, memzone_aligned_256->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
memzone_aligned_256->phys_addr, memzone_aligned_256->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_512->phys_addr, memzone_aligned_512->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
return 0;
}
static int
check_memzone_bounded(const char *name, uint32_t len, uint32_t align,
uint32_t bound)
{
const struct rte_memzone *mz;
phys_addr_t bmask;
bmask = ~((phys_addr_t)bound - 1);
if ((mz = rte_memzone_reserve_bounded(name, len, SOCKET_ID_ANY, 0,
align, bound)) == NULL) {
printf("%s(%s): memzone creation failed\n",
__func__, name);
return (-1);
}
if ((mz->phys_addr & ((phys_addr_t)align - 1)) != 0) {
printf("%s(%s): invalid phys addr alignment\n",
__func__, mz->name);
return (-1);
}
if (((uintptr_t) mz->addr & ((uintptr_t)align - 1)) != 0) {
printf("%s(%s): invalid virtual addr alignment\n",
__func__, mz->name);
return (-1);
}
if ((mz->len & RTE_CACHE_LINE_MASK) != 0 || mz->len < len ||
mz->len < RTE_CACHE_LINE_SIZE) {
printf("%s(%s): invalid length\n",
__func__, mz->name);
return (-1);
}
if ((mz->phys_addr & bmask) !=
((mz->phys_addr + mz->len - 1) & bmask)) {
printf("%s(%s): invalid memzone boundary %u crossed\n",
__func__, mz->name, bound);
return (-1);
}
return (0);
}
static int
test_memzone_bounded(void)
{
const struct rte_memzone *memzone_err;
const char *name;
int rc;
/* should fail as boundary is not power of two */
name = "bounded_error_31";
if ((memzone_err = rte_memzone_reserve_bounded(name,
100, SOCKET_ID_ANY, 0, 32, UINT32_MAX)) != NULL) {
printf("%s(%s)created a memzone with invalid boundary "
"conditions\n", __func__, memzone_err->name);
return (-1);
}
/* should fail as len is greater then boundary */
name = "bounded_error_32";
if ((memzone_err = rte_memzone_reserve_bounded(name,
100, SOCKET_ID_ANY, 0, 32, 32)) != NULL) {
printf("%s(%s)created a memzone with invalid boundary "
"conditions\n", __func__, memzone_err->name);
return (-1);
}
if ((rc = check_memzone_bounded("bounded_128", 100, 128, 128)) != 0)
return (rc);
if ((rc = check_memzone_bounded("bounded_256", 100, 256, 128)) != 0)
return (rc);
if ((rc = check_memzone_bounded("bounded_1K", 100, 64, 1024)) != 0)
return (rc);
if ((rc = check_memzone_bounded("bounded_1K_MAX", 0, 64, 1024)) != 0)
return (rc);
return (0);
}
static int
test_memzone_reserve_memory_in_smallest_segment(void)
{
const struct rte_memzone *mz;
const struct rte_memseg *ms, *min_ms, *prev_min_ms;
size_t min_len, prev_min_len;
const struct rte_config *config;
int i;
config = rte_eal_get_configuration();
min_ms = NULL; /*< smallest segment */
prev_min_ms = NULL; /*< second smallest segment */
/* find two smallest segments */
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
ms = &config->mem_config->free_memseg[i];
if (ms->addr == NULL)
break;
if (ms->len == 0)
continue;
if (min_ms == NULL)
min_ms = ms;
else if (min_ms->len > ms->len) {
/* set last smallest to second last */
prev_min_ms = min_ms;
/* set new smallest */
min_ms = ms;
} else if ((prev_min_ms == NULL)
|| (prev_min_ms->len > ms->len))
prev_min_ms = ms;
}
if (min_ms == NULL || prev_min_ms == NULL) {
printf("Smallest segments not found!\n");
return -1;
}
min_len = min_ms->len;
prev_min_len = prev_min_ms->len;
/* try reserving a memzone in the smallest memseg */
mz = rte_memzone_reserve("smallest_mz", RTE_CACHE_LINE_SIZE,
SOCKET_ID_ANY, 0);
if (mz == NULL) {
printf("Failed to reserve memory from smallest memseg!\n");
return -1;
}
if (prev_min_ms->len != prev_min_len &&
min_ms->len != min_len - RTE_CACHE_LINE_SIZE) {
printf("Reserved memory from wrong memseg!\n");
return -1;
}
return 0;
}
/* this test is a bit tricky, and thus warrants explanation.
*
* first, we find two smallest memsegs to conduct our experiments on.
*
* then, we bring them within alignment from each other: if second segment is
* twice+ as big as the first, reserve memory from that segment; if second
* segment is comparable in length to the first, then cut the first segment
* down until it becomes less than half of second segment, and then cut down
* the second segment to be within alignment of the first.
*
* then, we have to pass the following test: if segments are within alignment
* of each other (that is, the difference is less than 256 bytes, which is what
* our alignment will be), segment with smallest offset should be picked.
*
* we know that min_ms will be our smallest segment, so we need to make sure
* that we adjust the alignments so that the bigger segment has smallest
* alignment (in our case, smallest segment will have 64-byte alignment, while
* bigger segment will have 128-byte alignment).
*/
static int
test_memzone_reserve_memory_with_smallest_offset(void)
{
const struct rte_memseg *ms, *min_ms, *prev_min_ms;
size_t len, min_len, prev_min_len;
const struct rte_config *config;
int i, align;
config = rte_eal_get_configuration();
min_ms = NULL; /*< smallest segment */
prev_min_ms = NULL; /*< second smallest segment */
align = RTE_CACHE_LINE_SIZE * 4;
/* find two smallest segments */
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
ms = &config->mem_config->free_memseg[i];
if (ms->addr == NULL)
break;
if (ms->len == 0)
continue;
if (min_ms == NULL)
min_ms = ms;
else if (min_ms->len > ms->len) {
/* set last smallest to second last */
prev_min_ms = min_ms;
/* set new smallest */
min_ms = ms;
} else if ((prev_min_ms == NULL)
|| (prev_min_ms->len > ms->len)) {
prev_min_ms = ms;
}
}
if (min_ms == NULL || prev_min_ms == NULL) {
printf("Smallest segments not found!\n");
return -1;
}
prev_min_len = prev_min_ms->len;
min_len = min_ms->len;
/* if smallest segment is bigger than half of bigger segment */
if (prev_min_ms->len - min_ms->len <= min_ms->len) {
len = (min_ms->len * 2) - prev_min_ms->len;
/* make sure final length is *not* aligned */
while (((min_ms->addr_64 + len) & (align-1)) == 0)
len += RTE_CACHE_LINE_SIZE;
if (rte_memzone_reserve("dummy_mz1", len, SOCKET_ID_ANY, 0) == NULL) {
printf("Cannot reserve memory!\n");
return -1;
}
/* check if we got memory from correct segment */
if (min_ms->len != min_len - len) {
printf("Reserved memory from wrong segment!\n");
return -1;
}
}
/* if we don't need to touch smallest segment but it's aligned */
else if ((min_ms->addr_64 & (align-1)) == 0) {
if (rte_memzone_reserve("align_mz1", RTE_CACHE_LINE_SIZE,
SOCKET_ID_ANY, 0) == NULL) {
printf("Cannot reserve memory!\n");
return -1;
}
if (min_ms->len != min_len - RTE_CACHE_LINE_SIZE) {
printf("Reserved memory from wrong segment!\n");
return -1;
}
}
/* if smallest segment is less than half of bigger segment */
if (prev_min_ms->len - min_ms->len > min_ms->len) {
len = prev_min_ms->len - min_ms->len - align;
/* make sure final length is aligned */
while (((prev_min_ms->addr_64 + len) & (align-1)) != 0)
len += RTE_CACHE_LINE_SIZE;
if (rte_memzone_reserve("dummy_mz2", len, SOCKET_ID_ANY, 0) == NULL) {
printf("Cannot reserve memory!\n");
return -1;
}
/* check if we got memory from correct segment */
if (prev_min_ms->len != prev_min_len - len) {
printf("Reserved memory from wrong segment!\n");
return -1;
}
}
len = RTE_CACHE_LINE_SIZE;
prev_min_len = prev_min_ms->len;
min_len = min_ms->len;
if (min_len >= prev_min_len || prev_min_len - min_len > (unsigned) align) {
printf("Segments are of wrong lengths!\n");
return -1;
}
/* try reserving from a bigger segment */
if (rte_memzone_reserve_aligned("smallest_offset", len, SOCKET_ID_ANY, 0, align) ==
NULL) {
printf("Cannot reserve memory!\n");
return -1;
}
/* check if we got memory from correct segment */
if (min_ms->len != min_len && prev_min_ms->len != (prev_min_len - len)) {
printf("Reserved memory from segment with smaller offset!\n");
return -1;
}
return 0;
}
static int
test_memzone_reserve_remainder(void)
{
const struct rte_memzone *mz1, *mz2;
const struct rte_memseg *ms, *min_ms = NULL;
size_t min_len;
const struct rte_config *config;
int i, align;
min_len = 0;
align = RTE_CACHE_LINE_SIZE;
config = rte_eal_get_configuration();
/* find minimum free contiguous length */
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
ms = &config->mem_config->free_memseg[i];
if (ms->addr == NULL)
break;
if (ms->len == 0)
continue;
if (min_len == 0 || ms->len < min_len) {
min_len = ms->len;
min_ms = ms;
/* find maximum alignment this segment is able to hold */
align = RTE_CACHE_LINE_SIZE;
while ((ms->addr_64 & (align-1)) == 0) {
align <<= 1;
}
}
}
if (min_ms == NULL) {
printf("Minimal sized segment not found!\n");
return -1;
}
/* try reserving min_len bytes with alignment - this should not affect our
* memseg, the memory will be taken from a different one.
*/
mz1 = rte_memzone_reserve_aligned("reserve_remainder_1", min_len,
SOCKET_ID_ANY, 0, align);
if (mz1 == NULL) {
printf("Failed to reserve %zu bytes aligned on %i bytes\n", min_len,
align);
return -1;
}
if (min_ms->len != min_len) {
printf("Memseg memory should not have been reserved!\n");
return -1;
}
/* try reserving min_len bytes with less alignment - this should fill up
* the segment.
*/
mz2 = rte_memzone_reserve("reserve_remainder_2", min_len,
SOCKET_ID_ANY, 0);
if (mz2 == NULL) {
printf("Failed to reserve %zu bytes\n", min_len);
return -1;
}
if (min_ms->len != 0) {
printf("Memseg memory should have been reserved!\n");
return -1;
}
return 0;
}
static int
test_memzone(void)
{
const struct rte_memzone *memzone1;
const struct rte_memzone *memzone2;
const struct rte_memzone *memzone3;
const struct rte_memzone *memzone4;
const struct rte_memzone *mz;
memzone1 = rte_memzone_reserve("testzone1", 100,
SOCKET_ID_ANY, 0);
memzone2 = rte_memzone_reserve("testzone2", 1000,
0, 0);
memzone3 = rte_memzone_reserve("testzone3", 1000,
1, 0);
memzone4 = rte_memzone_reserve("testzone4", 1024,
SOCKET_ID_ANY, 0);
/* memzone3 may be NULL if we don't have NUMA */
if (memzone1 == NULL || memzone2 == NULL || memzone4 == NULL)
return -1;
rte_memzone_dump(stdout);
/* check cache-line alignments */
printf("check alignments and lengths\n");
if ((memzone1->phys_addr & RTE_CACHE_LINE_MASK) != 0)
return -1;
if ((memzone2->phys_addr & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone3 != NULL && (memzone3->phys_addr & RTE_CACHE_LINE_MASK) != 0)
return -1;
if ((memzone1->len & RTE_CACHE_LINE_MASK) != 0 || memzone1->len == 0)
return -1;
if ((memzone2->len & RTE_CACHE_LINE_MASK) != 0 || memzone2->len == 0)
return -1;
if (memzone3 != NULL && ((memzone3->len & RTE_CACHE_LINE_MASK) != 0 ||
memzone3->len == 0))
return -1;
if (memzone4->len != 1024)
return -1;
/* check that zones don't overlap */
printf("check overlapping\n");
if (is_memory_overlap(memzone1->phys_addr, memzone1->len,
memzone2->phys_addr, memzone2->len))
return -1;
if (memzone3 != NULL &&
is_memory_overlap(memzone1->phys_addr, memzone1->len,
memzone3->phys_addr, memzone3->len))
return -1;
if (memzone3 != NULL &&
is_memory_overlap(memzone2->phys_addr, memzone2->len,
memzone3->phys_addr, memzone3->len))
return -1;
printf("check socket ID\n");
/* memzone2 must be on socket id 0 and memzone3 on socket 1 */
if (memzone2->socket_id != 0)
return -1;
if (memzone3 != NULL && memzone3->socket_id != 1)
return -1;
printf("test zone lookup\n");
mz = rte_memzone_lookup("testzone1");
if (mz != memzone1)
return -1;
printf("test duplcate zone name\n");
mz = rte_memzone_reserve("testzone1", 100,
SOCKET_ID_ANY, 0);
if (mz != NULL)
return -1;
printf("test reserving memzone with bigger size than the maximum\n");
if (test_memzone_reserving_zone_size_bigger_than_the_maximum() < 0)
return -1;
printf("test reserving memory in smallest segments\n");
if (test_memzone_reserve_memory_in_smallest_segment() < 0)
return -1;
printf("test reserving memory in segments with smallest offsets\n");
if (test_memzone_reserve_memory_with_smallest_offset() < 0)
return -1;
printf("test memzone_reserve flags\n");
if (test_memzone_reserve_flags() < 0)
return -1;
printf("test alignment for memzone_reserve\n");
if (test_memzone_aligned() < 0)
return -1;
printf("test boundary alignment for memzone_reserve\n");
if (test_memzone_bounded() < 0)
return -1;
printf("test invalid alignment for memzone_reserve\n");
if (test_memzone_invalid_alignment() < 0)
return -1;
printf("test reserving amounts of memory equal to segment's length\n");
if (test_memzone_reserve_remainder() < 0)
return -1;
printf("test reserving the largest size memzone possible\n");
if (test_memzone_reserve_max() < 0)
return -1;
printf("test reserving the largest size aligned memzone possible\n");
if (test_memzone_reserve_max_aligned() < 0)
return -1;
return 0;
}
static struct test_command memzone_cmd = {
.command = "memzone_autotest",
.callback = test_memzone,
};
REGISTER_TEST_COMMAND(memzone_cmd);