942405f9e2
Remove all tests from the builtin commands list and use the dynamic commands list register macro. Signed-off-by: David Marchand <david.marchand@6wind.com> Acked-by: Bruce Richardson <bruce.richardson@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
342 lines
9.6 KiB
C
342 lines
9.6 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_tailq.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_atomic.h>
|
|
|
|
#include "test.h"
|
|
|
|
/*
|
|
* Spinlock test
|
|
* =============
|
|
*
|
|
* - There is a global spinlock and a table of spinlocks (one per lcore).
|
|
*
|
|
* - The test function takes all of these locks and launches the
|
|
* ``test_spinlock_per_core()`` function on each core (except the master).
|
|
*
|
|
* - The function takes the global lock, display something, then releases
|
|
* the global lock.
|
|
* - The function takes the per-lcore lock, display something, then releases
|
|
* the per-core lock.
|
|
*
|
|
* - The main function unlocks the per-lcore locks sequentially and
|
|
* waits between each lock. This triggers the display of a message
|
|
* for each core, in the correct order. The autotest script checks that
|
|
* this order is correct.
|
|
*
|
|
* - A load test is carried out, with all cores attempting to lock a single lock
|
|
* multiple times
|
|
*/
|
|
|
|
static rte_spinlock_t sl, sl_try;
|
|
static rte_spinlock_t sl_tab[RTE_MAX_LCORE];
|
|
static rte_spinlock_recursive_t slr;
|
|
static unsigned count = 0;
|
|
|
|
static rte_atomic32_t synchro;
|
|
|
|
static int
|
|
test_spinlock_per_core(__attribute__((unused)) void *arg)
|
|
{
|
|
rte_spinlock_lock(&sl);
|
|
printf("Global lock taken on core %u\n", rte_lcore_id());
|
|
rte_spinlock_unlock(&sl);
|
|
|
|
rte_spinlock_lock(&sl_tab[rte_lcore_id()]);
|
|
printf("Hello from core %u !\n", rte_lcore_id());
|
|
rte_spinlock_unlock(&sl_tab[rte_lcore_id()]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_spinlock_recursive_per_core(__attribute__((unused)) void *arg)
|
|
{
|
|
unsigned id = rte_lcore_id();
|
|
|
|
rte_spinlock_recursive_lock(&slr);
|
|
printf("Global recursive lock taken on core %u - count = %d\n",
|
|
id, slr.count);
|
|
rte_spinlock_recursive_lock(&slr);
|
|
printf("Global recursive lock taken on core %u - count = %d\n",
|
|
id, slr.count);
|
|
rte_spinlock_recursive_lock(&slr);
|
|
printf("Global recursive lock taken on core %u - count = %d\n",
|
|
id, slr.count);
|
|
|
|
printf("Hello from within recursive locks from core %u !\n", id);
|
|
|
|
rte_spinlock_recursive_unlock(&slr);
|
|
printf("Global recursive lock released on core %u - count = %d\n",
|
|
id, slr.count);
|
|
rte_spinlock_recursive_unlock(&slr);
|
|
printf("Global recursive lock released on core %u - count = %d\n",
|
|
id, slr.count);
|
|
rte_spinlock_recursive_unlock(&slr);
|
|
printf("Global recursive lock released on core %u - count = %d\n",
|
|
id, slr.count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static rte_spinlock_t lk = RTE_SPINLOCK_INITIALIZER;
|
|
static uint64_t lock_count[RTE_MAX_LCORE] = {0};
|
|
|
|
#define TIME_S 5
|
|
|
|
static int
|
|
load_loop_fn(void *func_param)
|
|
{
|
|
uint64_t time_diff = 0, begin;
|
|
uint64_t hz = rte_get_timer_hz();
|
|
uint64_t lcount = 0;
|
|
const int use_lock = *(int*)func_param;
|
|
const unsigned lcore = rte_lcore_id();
|
|
|
|
/* wait synchro for slaves */
|
|
if (lcore != rte_get_master_lcore())
|
|
while (rte_atomic32_read(&synchro) == 0);
|
|
|
|
begin = rte_get_timer_cycles();
|
|
while (time_diff / hz < TIME_S) {
|
|
if (use_lock)
|
|
rte_spinlock_lock(&lk);
|
|
lcount++;
|
|
if (use_lock)
|
|
rte_spinlock_unlock(&lk);
|
|
/* delay to make lock duty cycle slighlty realistic */
|
|
rte_delay_us(1);
|
|
time_diff = rte_get_timer_cycles() - begin;
|
|
}
|
|
lock_count[lcore] = lcount;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_spinlock_perf(void)
|
|
{
|
|
unsigned int i;
|
|
uint64_t total = 0;
|
|
int lock = 0;
|
|
const unsigned lcore = rte_lcore_id();
|
|
|
|
printf("\nTest with no lock on single core...\n");
|
|
load_loop_fn(&lock);
|
|
printf("Core [%u] count = %"PRIu64"\n", lcore, lock_count[lcore]);
|
|
memset(lock_count, 0, sizeof(lock_count));
|
|
|
|
printf("\nTest with lock on single core...\n");
|
|
lock = 1;
|
|
load_loop_fn(&lock);
|
|
printf("Core [%u] count = %"PRIu64"\n", lcore, lock_count[lcore]);
|
|
memset(lock_count, 0, sizeof(lock_count));
|
|
|
|
printf("\nTest with lock on %u cores...\n", rte_lcore_count());
|
|
|
|
/* Clear synchro and start slaves */
|
|
rte_atomic32_set(&synchro, 0);
|
|
rte_eal_mp_remote_launch(load_loop_fn, &lock, SKIP_MASTER);
|
|
|
|
/* start synchro and launch test on master */
|
|
rte_atomic32_set(&synchro, 1);
|
|
load_loop_fn(&lock);
|
|
|
|
rte_eal_mp_wait_lcore();
|
|
|
|
RTE_LCORE_FOREACH(i) {
|
|
printf("Core [%u] count = %"PRIu64"\n", i, lock_count[i]);
|
|
total += lock_count[i];
|
|
}
|
|
|
|
printf("Total count = %"PRIu64"\n", total);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Use rte_spinlock_trylock() to trylock a spinlock object,
|
|
* If it could not lock the object sucessfully, it would
|
|
* return immediately and the variable of "count" would be
|
|
* increased by one per times. the value of "count" could be
|
|
* checked as the result later.
|
|
*/
|
|
static int
|
|
test_spinlock_try(__attribute__((unused)) void *arg)
|
|
{
|
|
if (rte_spinlock_trylock(&sl_try) == 0) {
|
|
rte_spinlock_lock(&sl);
|
|
count ++;
|
|
rte_spinlock_unlock(&sl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Test rte_eal_get_lcore_state() in addition to spinlocks
|
|
* as we have "waiting" then "running" lcores.
|
|
*/
|
|
static int
|
|
test_spinlock(void)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
|
|
/* slave cores should be waiting: print it */
|
|
RTE_LCORE_FOREACH_SLAVE(i) {
|
|
printf("lcore %d state: %d\n", i,
|
|
(int) rte_eal_get_lcore_state(i));
|
|
}
|
|
|
|
rte_spinlock_init(&sl);
|
|
rte_spinlock_init(&sl_try);
|
|
rte_spinlock_recursive_init(&slr);
|
|
for (i=0; i<RTE_MAX_LCORE; i++)
|
|
rte_spinlock_init(&sl_tab[i]);
|
|
|
|
rte_spinlock_lock(&sl);
|
|
|
|
RTE_LCORE_FOREACH_SLAVE(i) {
|
|
rte_spinlock_lock(&sl_tab[i]);
|
|
rte_eal_remote_launch(test_spinlock_per_core, NULL, i);
|
|
}
|
|
|
|
/* slave cores should be busy: print it */
|
|
RTE_LCORE_FOREACH_SLAVE(i) {
|
|
printf("lcore %d state: %d\n", i,
|
|
(int) rte_eal_get_lcore_state(i));
|
|
}
|
|
rte_spinlock_unlock(&sl);
|
|
|
|
RTE_LCORE_FOREACH_SLAVE(i) {
|
|
rte_spinlock_unlock(&sl_tab[i]);
|
|
rte_delay_ms(100);
|
|
}
|
|
|
|
rte_eal_mp_wait_lcore();
|
|
|
|
rte_spinlock_recursive_lock(&slr);
|
|
|
|
/*
|
|
* Try to acquire a lock that we already own
|
|
*/
|
|
if(!rte_spinlock_recursive_trylock(&slr)) {
|
|
printf("rte_spinlock_recursive_trylock failed on a lock that "
|
|
"we already own\n");
|
|
ret = -1;
|
|
} else
|
|
rte_spinlock_recursive_unlock(&slr);
|
|
|
|
RTE_LCORE_FOREACH_SLAVE(i) {
|
|
rte_eal_remote_launch(test_spinlock_recursive_per_core, NULL, i);
|
|
}
|
|
rte_spinlock_recursive_unlock(&slr);
|
|
rte_eal_mp_wait_lcore();
|
|
|
|
/*
|
|
* Test if it could return immediately from try-locking a locked object.
|
|
* Here it will lock the spinlock object first, then launch all the slave
|
|
* lcores to trylock the same spinlock object.
|
|
* All the slave lcores should give up try-locking a locked object and
|
|
* return immediately, and then increase the "count" initialized with zero
|
|
* by one per times.
|
|
* We can check if the "count" is finally equal to the number of all slave
|
|
* lcores to see if the behavior of try-locking a locked spinlock object
|
|
* is correct.
|
|
*/
|
|
if (rte_spinlock_trylock(&sl_try) == 0) {
|
|
return -1;
|
|
}
|
|
count = 0;
|
|
RTE_LCORE_FOREACH_SLAVE(i) {
|
|
rte_eal_remote_launch(test_spinlock_try, NULL, i);
|
|
}
|
|
rte_eal_mp_wait_lcore();
|
|
rte_spinlock_unlock(&sl_try);
|
|
if (rte_spinlock_is_locked(&sl)) {
|
|
printf("spinlock is locked but it should not be\n");
|
|
return -1;
|
|
}
|
|
rte_spinlock_lock(&sl);
|
|
if (count != ( rte_lcore_count() - 1)) {
|
|
ret = -1;
|
|
}
|
|
rte_spinlock_unlock(&sl);
|
|
|
|
/*
|
|
* Test if it can trylock recursively.
|
|
* Use rte_spinlock_recursive_trylock() to check if it can lock a spinlock
|
|
* object recursively. Here it will try to lock a spinlock object twice.
|
|
*/
|
|
if (rte_spinlock_recursive_trylock(&slr) == 0) {
|
|
printf("It failed to do the first spinlock_recursive_trylock but it should able to do\n");
|
|
return -1;
|
|
}
|
|
if (rte_spinlock_recursive_trylock(&slr) == 0) {
|
|
printf("It failed to do the second spinlock_recursive_trylock but it should able to do\n");
|
|
return -1;
|
|
}
|
|
rte_spinlock_recursive_unlock(&slr);
|
|
rte_spinlock_recursive_unlock(&slr);
|
|
|
|
if (test_spinlock_perf() < 0)
|
|
return -1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct test_command spinlock_cmd = {
|
|
.command = "spinlock_autotest",
|
|
.callback = test_spinlock,
|
|
};
|
|
REGISTER_TEST_COMMAND(spinlock_cmd);
|