numam-dpdk/app/test/test_timer.c
David Marchand 7822c43aba app/test: only build what has been selected in config
Avoid building tests if their counterparts are not selected in config.
This has the nice side effect of fixing build errors when disabling parts of
the dpdk.

Signed-off-by: David Marchand <david.marchand@6wind.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
2014-08-26 17:52:34 +02:00

527 lines
15 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "test.h"
/*
* Timer
* =====
*
* #. Stress test 1.
*
* The objective of the timer stress tests is to check that there are no
* race conditions in list and status management. This test launches,
* resets and stops the timer very often on many cores at the same
* time.
*
* - Only one timer is used for this test.
* - On each core, the rte_timer_manage() function is called from the main
* loop every 3 microseconds.
* - In the main loop, the timer may be reset (randomly, with a
* probability of 0.5 %) 100 microseconds later on a random core, or
* stopped (with a probability of 0.5 % also).
* - In callback, the timer is can be reset (randomly, with a
* probability of 0.5 %) 100 microseconds later on the same core or
* on another core (same probability), or stopped (same
* probability).
*
* # Stress test 2.
*
* The objective of this test is similar to the first in that it attempts
* to find if there are any race conditions in the timer library. However,
* it is less complex in terms of operations performed and duration, as it
* is designed to have a predictable outcome that can be tested.
*
* - A set of timers is initialized for use by the test
* - All cores then simultaneously are set to schedule all the timers at
* the same time, so conflicts should occur.
* - Then there is a delay while we wait for the timers to expire
* - Then the master lcore calls timer_manage() and we check that all
* timers have had their callbacks called exactly once - no more no less.
* - Then we repeat the process, except after setting up the timers, we have
* all cores randomly reschedule them.
* - Again we check that the expected number of callbacks has occurred when
* we call timer-manage.
*
* #. Basic test.
*
* This test performs basic functional checks of the timers. The test
* uses four different timers that are loaded and stopped under
* specific conditions in specific contexts.
*
* - Four timers are used for this test.
* - On each core, the rte_timer_manage() function is called from main loop
* every 3 microseconds.
*
* The autotest python script checks that the behavior is correct:
*
* - timer0
*
* - At initialization, timer0 is loaded by the master core, on master core
* in "single" mode (time = 1 second).
* - In the first 19 callbacks, timer0 is reloaded on the same core,
* then, it is explicitly stopped at the 20th call.
* - At t=25s, timer0 is reloaded once by timer2.
*
* - timer1
*
* - At initialization, timer1 is loaded by the master core, on the
* master core in "single" mode (time = 2 seconds).
* - In the first 9 callbacks, timer1 is reloaded on another
* core. After the 10th callback, timer1 is not reloaded anymore.
*
* - timer2
*
* - At initialization, timer2 is loaded by the master core, on the
* master core in "periodical" mode (time = 1 second).
* - In the callback, when t=25s, it stops timer3 and reloads timer0
* on the current core.
*
* - timer3
*
* - At initialization, timer3 is loaded by the master core, on
* another core in "periodical" mode (time = 1 second).
* - It is stopped at t=25s by timer2.
*/
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <math.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_cycles.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_timer.h>
#include <rte_random.h>
#include <rte_malloc.h>
#define TEST_DURATION_S 20 /* in seconds */
#define NB_TIMER 4
#define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
static volatile uint64_t end_time;
struct mytimerinfo {
struct rte_timer tim;
unsigned id;
unsigned count;
};
static struct mytimerinfo mytiminfo[NB_TIMER];
static void timer_basic_cb(struct rte_timer *tim, void *arg);
static void
mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
enum rte_timer_type type, unsigned tim_lcore,
rte_timer_cb_t fct)
{
rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
fct, timinfo);
}
/* timer callback for stress tests */
static void
timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
__attribute__((unused)) void *arg)
{
long r;
unsigned lcore_id = rte_lcore_id();
uint64_t hz = rte_get_timer_hz();
if (rte_timer_pending(tim))
return;
r = rte_rand();
if ((r & 0xff) == 0) {
mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
timer_stress_cb);
}
else if ((r & 0xff) == 1) {
mytimer_reset(&mytiminfo[0], hz, SINGLE,
rte_get_next_lcore(lcore_id, 0, 1),
timer_stress_cb);
}
else if ((r & 0xff) == 2) {
rte_timer_stop(&mytiminfo[0].tim);
}
}
static int
timer_stress_main_loop(__attribute__((unused)) void *arg)
{
uint64_t hz = rte_get_timer_hz();
unsigned lcore_id = rte_lcore_id();
uint64_t cur_time;
int64_t diff = 0;
long r;
while (diff >= 0) {
/* call the timer handler on each core */
rte_timer_manage();
/* simulate the processing of a packet
* (1 us = 2000 cycles at 2 Ghz) */
rte_delay_us(1);
/* randomly stop or reset timer */
r = rte_rand();
lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
if ((r & 0xff) == 0) {
/* 100 us */
mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
timer_stress_cb);
}
else if ((r & 0xff) == 1) {
rte_timer_stop_sync(&mytiminfo[0].tim);
}
cur_time = rte_get_timer_cycles();
diff = end_time - cur_time;
}
lcore_id = rte_lcore_id();
RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
return 0;
}
static volatile int cb_count = 0;
/* callback for second stress test. will only be called
* on master lcore */
static void
timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
{
cb_count++;
}
#define NB_STRESS2_TIMERS 8192
static int
timer_stress2_main_loop(__attribute__((unused)) void *arg)
{
static struct rte_timer *timers;
int i;
static volatile int ready = 0;
uint64_t delay = rte_get_timer_hz() / 4;
unsigned lcore_id = rte_lcore_id();
if (lcore_id == rte_get_master_lcore()) {
timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
if (timers == NULL) {
printf("Test Failed\n");
printf("- Cannot allocate memory for timers\n" );
return -1;
}
for (i = 0; i < NB_STRESS2_TIMERS; i++)
rte_timer_init(&timers[i]);
ready = 1;
} else {
while (!ready)
rte_pause();
}
/* have all cores schedule all timers on master lcore */
for (i = 0; i < NB_STRESS2_TIMERS; i++)
rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
timer_stress2_cb, NULL);
ready = 0;
rte_delay_ms(500);
/* now check that we get the right number of callbacks */
if (lcore_id == rte_get_master_lcore()) {
rte_timer_manage();
if (cb_count != NB_STRESS2_TIMERS) {
printf("Test Failed\n");
printf("- Stress test 2, part 1 failed\n");
printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
cb_count);
return -1;
}
ready = 1;
} else {
while (!ready)
rte_pause();
}
/* now test again, just stop and restart timers at random after init*/
for (i = 0; i < NB_STRESS2_TIMERS; i++)
rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
timer_stress2_cb, NULL);
cb_count = 0;
/* pick random timer to reset, stopping them first half the time */
for (i = 0; i < 100000; i++) {
int r = rand() % NB_STRESS2_TIMERS;
if (i % 2)
rte_timer_stop(&timers[r]);
rte_timer_reset(&timers[r], delay, SINGLE, rte_get_master_lcore(),
timer_stress2_cb, NULL);
}
rte_delay_ms(500);
/* now check that we get the right number of callbacks */
if (lcore_id == rte_get_master_lcore()) {
rte_timer_manage();
if (cb_count != NB_STRESS2_TIMERS) {
printf("Test Failed\n");
printf("- Stress test 2, part 2 failed\n");
printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
cb_count);
return -1;
}
printf("Test OK\n");
}
return 0;
}
/* timer callback for basic tests */
static void
timer_basic_cb(struct rte_timer *tim, void *arg)
{
struct mytimerinfo *timinfo = arg;
uint64_t hz = rte_get_timer_hz();
unsigned lcore_id = rte_lcore_id();
uint64_t cur_time = rte_get_timer_cycles();
if (rte_timer_pending(tim))
return;
timinfo->count ++;
RTE_LOG(INFO, TESTTIMER,
"%"PRIu64": callback id=%u count=%u on core %u\n",
cur_time, timinfo->id, timinfo->count, lcore_id);
/* reload timer 0 on same core */
if (timinfo->id == 0 && timinfo->count < 20) {
mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
return;
}
/* reload timer 1 on next core */
if (timinfo->id == 1 && timinfo->count < 10) {
mytimer_reset(timinfo, hz*2, SINGLE,
rte_get_next_lcore(lcore_id, 0, 1),
timer_basic_cb);
return;
}
/* Explicitelly stop timer 0. Once stop() called, we can even
* erase the content of the structure: it is not referenced
* anymore by any code (in case of dynamic structure, it can
* be freed) */
if (timinfo->id == 0 && timinfo->count == 20) {
/* stop_sync() is not needed, because we know that the
* status of timer is only modified by this core */
rte_timer_stop(tim);
memset(tim, 0xAA, sizeof(struct rte_timer));
return;
}
/* stop timer3, and restart a new timer0 (it was removed 5
* seconds ago) for a single shot */
if (timinfo->id == 2 && timinfo->count == 25) {
rte_timer_stop_sync(&mytiminfo[3].tim);
/* need to reinit because structure was erased with 0xAA */
rte_timer_init(&mytiminfo[0].tim);
mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
timer_basic_cb);
}
}
static int
timer_basic_main_loop(__attribute__((unused)) void *arg)
{
uint64_t hz = rte_get_timer_hz();
unsigned lcore_id = rte_lcore_id();
uint64_t cur_time;
int64_t diff = 0;
/* launch all timers on core 0 */
if (lcore_id == rte_get_master_lcore()) {
mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
timer_basic_cb);
mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id,
timer_basic_cb);
mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id,
timer_basic_cb);
mytimer_reset(&mytiminfo[3], hz, PERIODICAL,
rte_get_next_lcore(lcore_id, 0, 1),
timer_basic_cb);
}
while (diff >= 0) {
/* call the timer handler on each core */
rte_timer_manage();
/* simulate the processing of a packet
* (3 us = 6000 cycles at 2 Ghz) */
rte_delay_us(3);
cur_time = rte_get_timer_cycles();
diff = end_time - cur_time;
}
RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
return 0;
}
static int
timer_sanity_check(void)
{
#ifdef RTE_LIBEAL_USE_HPET
if (eal_timer_source != EAL_TIMER_HPET) {
printf("Not using HPET, can't sanity check timer sources\n");
return 0;
}
const uint64_t t_hz = rte_get_tsc_hz();
const uint64_t h_hz = rte_get_hpet_hz();
printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
const uint64_t tsc_start = rte_get_tsc_cycles();
const uint64_t hpet_start = rte_get_hpet_cycles();
rte_delay_ms(100); /* delay 1/10 second */
const uint64_t tsc_end = rte_get_tsc_cycles();
const uint64_t hpet_end = rte_get_hpet_cycles();
printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
tsc_end-tsc_start, hpet_end-hpet_start);
const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
/* get the percentage that the times differ by */
const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
time_diff);
if (time_diff > 0.1) {
printf("Error times differ by >0.1%%");
return -1;
}
#endif
return 0;
}
static int
test_timer(void)
{
unsigned i;
uint64_t cur_time;
uint64_t hz;
/* sanity check our timer sources and timer config values */
if (timer_sanity_check() < 0) {
printf("Timer sanity checks failed\n");
return -1;
}
if (rte_lcore_count() < 2) {
printf("not enough lcores for this test\n");
return -1;
}
/* init timer */
for (i=0; i<NB_TIMER; i++) {
memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
mytiminfo[i].id = i;
rte_timer_init(&mytiminfo[i].tim);
}
/* calculate the "end of test" time */
cur_time = rte_get_timer_cycles();
hz = rte_get_timer_hz();
end_time = cur_time + (hz * TEST_DURATION_S);
/* start other cores */
printf("Start timer stress tests (%d seconds)\n", TEST_DURATION_S);
rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
rte_eal_mp_wait_lcore();
/* stop timer 0 used for stress test */
rte_timer_stop_sync(&mytiminfo[0].tim);
/* run a second, slightly different set of stress tests */
printf("Start timer stress tests 2\n");
rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
rte_eal_mp_wait_lcore();
/* calculate the "end of test" time */
cur_time = rte_get_timer_cycles();
hz = rte_get_timer_hz();
end_time = cur_time + (hz * TEST_DURATION_S);
/* start other cores */
printf("Start timer basic tests (%d seconds)\n", TEST_DURATION_S);
rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
rte_eal_mp_wait_lcore();
/* stop all timers */
for (i=0; i<NB_TIMER; i++) {
rte_timer_stop_sync(&mytiminfo[i].tim);
}
rte_timer_dump_stats(stdout);
return 0;
}
static struct test_command timer_cmd = {
.command = "timer_autotest",
.callback = test_timer,
};
REGISTER_TEST_COMMAND(timer_cmd);