numam-dpdk/lib/librte_eal/freebsd/eal_memory.c
Thomas Monjalon 19653eed40 remove config prefix used with make
The config options CONFIG_RTE_* are simple RTE_* defines with meson.
Now that make support is dropped, update the names in logs and comments.

Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Ruifeng Wang <ruifeng.wang@arm.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Haiyue Wang <haiyue.wang@intel.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Acked-by: David Marchand <david.marchand@redhat.com>
2020-10-23 19:25:21 +02:00

475 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <sys/mman.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <inttypes.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <rte_eal.h>
#include <rte_errno.h>
#include <rte_log.h>
#include <rte_string_fns.h>
#include "eal_private.h"
#include "eal_internal_cfg.h"
#include "eal_filesystem.h"
#include "eal_memcfg.h"
#include "eal_options.h"
#define EAL_PAGE_SIZE (sysconf(_SC_PAGESIZE))
uint64_t eal_get_baseaddr(void)
{
/*
* FreeBSD may allocate something in the space we will be mapping things
* before we get a chance to do that, so use a base address that's far
* away from where malloc() et al usually map things.
*/
return 0x1000000000ULL;
}
/*
* Get physical address of any mapped virtual address in the current process.
*/
phys_addr_t
rte_mem_virt2phy(const void *virtaddr)
{
/* XXX not implemented. This function is only used by
* rte_mempool_virt2iova() when hugepages are disabled. */
(void)virtaddr;
return RTE_BAD_IOVA;
}
rte_iova_t
rte_mem_virt2iova(const void *virtaddr)
{
return rte_mem_virt2phy(virtaddr);
}
int
rte_eal_hugepage_init(void)
{
struct rte_mem_config *mcfg;
uint64_t total_mem = 0;
void *addr;
unsigned int i, j, seg_idx = 0;
struct internal_config *internal_conf =
eal_get_internal_configuration();
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
/* for debug purposes, hugetlbfs can be disabled */
if (internal_conf->no_hugetlbfs) {
struct rte_memseg_list *msl;
uint64_t mem_sz, page_sz;
int n_segs;
/* create a memseg list */
msl = &mcfg->memsegs[0];
mem_sz = internal_conf->memory;
page_sz = RTE_PGSIZE_4K;
n_segs = mem_sz / page_sz;
if (eal_memseg_list_init_named(
msl, "nohugemem", page_sz, n_segs, 0, true)) {
return -1;
}
addr = mmap(NULL, mem_sz, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (addr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
strerror(errno));
return -1;
}
msl->base_va = addr;
msl->len = mem_sz;
eal_memseg_list_populate(msl, addr, n_segs);
return 0;
}
/* map all hugepages and sort them */
for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
struct hugepage_info *hpi;
rte_iova_t prev_end = 0;
int prev_ms_idx = -1;
uint64_t page_sz, mem_needed;
unsigned int n_pages, max_pages;
hpi = &internal_conf->hugepage_info[i];
page_sz = hpi->hugepage_sz;
max_pages = hpi->num_pages[0];
mem_needed = RTE_ALIGN_CEIL(internal_conf->memory - total_mem,
page_sz);
n_pages = RTE_MIN(mem_needed / page_sz, max_pages);
for (j = 0; j < n_pages; j++) {
struct rte_memseg_list *msl;
struct rte_fbarray *arr;
struct rte_memseg *seg;
int msl_idx, ms_idx;
rte_iova_t physaddr;
int error;
size_t sysctl_size = sizeof(physaddr);
char physaddr_str[64];
bool is_adjacent;
/* first, check if this segment is IOVA-adjacent to
* the previous one.
*/
snprintf(physaddr_str, sizeof(physaddr_str),
"hw.contigmem.physaddr.%d", j);
error = sysctlbyname(physaddr_str, &physaddr,
&sysctl_size, NULL, 0);
if (error < 0) {
RTE_LOG(ERR, EAL, "Failed to get physical addr for buffer %u "
"from %s\n", j, hpi->hugedir);
return -1;
}
is_adjacent = prev_end != 0 && physaddr == prev_end;
prev_end = physaddr + hpi->hugepage_sz;
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS;
msl_idx++) {
bool empty, need_hole;
msl = &mcfg->memsegs[msl_idx];
arr = &msl->memseg_arr;
if (msl->page_sz != page_sz)
continue;
empty = arr->count == 0;
/* we need a hole if this isn't an empty memseg
* list, and if previous segment was not
* adjacent to current one.
*/
need_hole = !empty && !is_adjacent;
/* we need 1, plus hole if not adjacent */
ms_idx = rte_fbarray_find_next_n_free(arr,
0, 1 + (need_hole ? 1 : 0));
/* memseg list is full? */
if (ms_idx < 0)
continue;
if (need_hole && prev_ms_idx == ms_idx - 1)
ms_idx++;
prev_ms_idx = ms_idx;
break;
}
if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n",
RTE_STR(RTE_MAX_MEMSEG_PER_TYPE),
RTE_STR(RTE_MAX_MEM_MB_PER_TYPE));
return -1;
}
arr = &msl->memseg_arr;
seg = rte_fbarray_get(arr, ms_idx);
addr = RTE_PTR_ADD(msl->base_va,
(size_t)msl->page_sz * ms_idx);
/* address is already mapped in memseg list, so using
* MAP_FIXED here is safe.
*/
addr = mmap(addr, page_sz, PROT_READ|PROT_WRITE,
MAP_SHARED | MAP_FIXED,
hpi->lock_descriptor,
j * EAL_PAGE_SIZE);
if (addr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "Failed to mmap buffer %u from %s\n",
j, hpi->hugedir);
return -1;
}
seg->addr = addr;
seg->iova = physaddr;
seg->hugepage_sz = page_sz;
seg->len = page_sz;
seg->nchannel = mcfg->nchannel;
seg->nrank = mcfg->nrank;
seg->socket_id = 0;
rte_fbarray_set_used(arr, ms_idx);
RTE_LOG(INFO, EAL, "Mapped memory segment %u @ %p: physaddr:0x%"
PRIx64", len %zu\n",
seg_idx++, addr, physaddr, page_sz);
total_mem += seg->len;
}
if (total_mem >= internal_conf->memory)
break;
}
if (total_mem < internal_conf->memory) {
RTE_LOG(ERR, EAL, "Couldn't reserve requested memory, "
"requested: %" PRIu64 "M "
"available: %" PRIu64 "M\n",
internal_conf->memory >> 20, total_mem >> 20);
return -1;
}
return 0;
}
struct attach_walk_args {
int fd_hugepage;
int seg_idx;
};
static int
attach_segment(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
void *arg)
{
struct attach_walk_args *wa = arg;
void *addr;
if (msl->external)
return 0;
addr = mmap(ms->addr, ms->len, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED, wa->fd_hugepage,
wa->seg_idx * EAL_PAGE_SIZE);
if (addr == MAP_FAILED || addr != ms->addr)
return -1;
wa->seg_idx++;
return 0;
}
int
rte_eal_hugepage_attach(void)
{
struct hugepage_info *hpi;
int fd_hugepage = -1;
unsigned int i;
struct internal_config *internal_conf =
eal_get_internal_configuration();
hpi = &internal_conf->hugepage_info[0];
for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
const struct hugepage_info *cur_hpi = &hpi[i];
struct attach_walk_args wa;
memset(&wa, 0, sizeof(wa));
/* Obtain a file descriptor for contiguous memory */
fd_hugepage = open(cur_hpi->hugedir, O_RDWR);
if (fd_hugepage < 0) {
RTE_LOG(ERR, EAL, "Could not open %s\n",
cur_hpi->hugedir);
goto error;
}
wa.fd_hugepage = fd_hugepage;
wa.seg_idx = 0;
/* Map the contiguous memory into each memory segment */
if (rte_memseg_walk(attach_segment, &wa) < 0) {
RTE_LOG(ERR, EAL, "Failed to mmap buffer %u from %s\n",
wa.seg_idx, cur_hpi->hugedir);
goto error;
}
close(fd_hugepage);
fd_hugepage = -1;
}
/* hugepage_info is no longer required */
return 0;
error:
if (fd_hugepage >= 0)
close(fd_hugepage);
return -1;
}
int
rte_eal_using_phys_addrs(void)
{
return 0;
}
static uint64_t
get_mem_amount(uint64_t page_sz, uint64_t max_mem)
{
uint64_t area_sz, max_pages;
/* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
max_pages = RTE_MAX_MEMSEG_PER_LIST;
max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
area_sz = RTE_MIN(page_sz * max_pages, max_mem);
/* make sure the list isn't smaller than the page size */
area_sz = RTE_MAX(area_sz, page_sz);
return RTE_ALIGN(area_sz, page_sz);
}
static int
memseg_list_alloc(struct rte_memseg_list *msl)
{
int flags = 0;
#ifdef RTE_ARCH_PPC_64
flags |= EAL_RESERVE_HUGEPAGES;
#endif
return eal_memseg_list_alloc(msl, flags);
}
static int
memseg_primary_init(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int hpi_idx, msl_idx = 0;
struct rte_memseg_list *msl;
uint64_t max_mem, total_mem;
struct internal_config *internal_conf =
eal_get_internal_configuration();
/* no-huge does not need this at all */
if (internal_conf->no_hugetlbfs)
return 0;
/* FreeBSD has an issue where core dump will dump the entire memory
* contents, including anonymous zero-page memory. Therefore, while we
* will be limiting total amount of memory to RTE_MAX_MEM_MB, we will
* also be further limiting total memory amount to whatever memory is
* available to us through contigmem driver (plus spacing blocks).
*
* so, at each stage, we will be checking how much memory we are
* preallocating, and adjust all the values accordingly.
*/
max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
total_mem = 0;
/* create memseg lists */
for (hpi_idx = 0; hpi_idx < (int) internal_conf->num_hugepage_sizes;
hpi_idx++) {
uint64_t max_type_mem, total_type_mem = 0;
uint64_t avail_mem;
int type_msl_idx, max_segs, avail_segs, total_segs = 0;
struct hugepage_info *hpi;
uint64_t hugepage_sz;
hpi = &internal_conf->hugepage_info[hpi_idx];
hugepage_sz = hpi->hugepage_sz;
/* no NUMA support on FreeBSD */
/* check if we've already exceeded total memory amount */
if (total_mem >= max_mem)
break;
/* first, calculate theoretical limits according to config */
max_type_mem = RTE_MIN(max_mem - total_mem,
(uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20);
max_segs = RTE_MAX_MEMSEG_PER_TYPE;
/* now, limit all of that to whatever will actually be
* available to us, because without dynamic allocation support,
* all of that extra memory will be sitting there being useless
* and slowing down core dumps in case of a crash.
*
* we need (N*2)-1 segments because we cannot guarantee that
* each segment will be IOVA-contiguous with the previous one,
* so we will allocate more and put spaces between segments
* that are non-contiguous.
*/
avail_segs = (hpi->num_pages[0] * 2) - 1;
avail_mem = avail_segs * hugepage_sz;
max_type_mem = RTE_MIN(avail_mem, max_type_mem);
max_segs = RTE_MIN(avail_segs, max_segs);
type_msl_idx = 0;
while (total_type_mem < max_type_mem &&
total_segs < max_segs) {
uint64_t cur_max_mem, cur_mem;
unsigned int n_segs;
if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
RTE_LOG(ERR, EAL,
"No more space in memseg lists, please increase %s\n",
RTE_STR(RTE_MAX_MEMSEG_LISTS));
return -1;
}
msl = &mcfg->memsegs[msl_idx++];
cur_max_mem = max_type_mem - total_type_mem;
cur_mem = get_mem_amount(hugepage_sz,
cur_max_mem);
n_segs = cur_mem / hugepage_sz;
if (eal_memseg_list_init(msl, hugepage_sz, n_segs,
0, type_msl_idx, false))
return -1;
total_segs += msl->memseg_arr.len;
total_type_mem = total_segs * hugepage_sz;
type_msl_idx++;
if (memseg_list_alloc(msl)) {
RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
return -1;
}
}
total_mem += total_type_mem;
}
return 0;
}
static int
memseg_secondary_init(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int msl_idx = 0;
struct rte_memseg_list *msl;
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
msl = &mcfg->memsegs[msl_idx];
/* skip empty memseg lists */
if (msl->memseg_arr.len == 0)
continue;
if (rte_fbarray_attach(&msl->memseg_arr)) {
RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
return -1;
}
/* preallocate VA space */
if (memseg_list_alloc(msl)) {
RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
return -1;
}
}
return 0;
}
int
rte_eal_memseg_init(void)
{
return rte_eal_process_type() == RTE_PROC_PRIMARY ?
memseg_primary_init() :
memseg_secondary_init();
}