numam-dpdk/app/test/packet_burst_generator.c
Lance Richardson 9fdba32788 test: fix TCP header initialization
Initialize TCP data offset field with TCP header length, this
field is used to derive L4 header length and by hardware to
validate a TCP header.

Fixes: 41f72ec94074 ("test: add packet burst generator functions")
Cc: stable@dpdk.org

Signed-off-by: Lance Richardson <lance.richardson@broadcom.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2021-04-09 12:43:25 +02:00

459 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <rte_byteorder.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include "packet_burst_generator.h"
#define UDP_SRC_PORT 1024
#define UDP_DST_PORT 1024
#define IP_DEFTTL 64 /* from RFC 1340. */
static void
copy_buf_to_pkt_segs(void *buf, unsigned len, struct rte_mbuf *pkt,
unsigned offset)
{
struct rte_mbuf *seg;
void *seg_buf;
unsigned copy_len;
seg = pkt;
while (offset >= seg->data_len) {
offset -= seg->data_len;
seg = seg->next;
}
copy_len = seg->data_len - offset;
seg_buf = rte_pktmbuf_mtod_offset(seg, char *, offset);
while (len > copy_len) {
rte_memcpy(seg_buf, buf, (size_t) copy_len);
len -= copy_len;
buf = ((char *) buf + copy_len);
seg = seg->next;
seg_buf = rte_pktmbuf_mtod(seg, void *);
}
rte_memcpy(seg_buf, buf, (size_t) len);
}
static inline void
copy_buf_to_pkt(void *buf, unsigned len, struct rte_mbuf *pkt, unsigned offset)
{
if (offset + len <= pkt->data_len) {
rte_memcpy(rte_pktmbuf_mtod_offset(pkt, char *, offset), buf,
(size_t) len);
return;
}
copy_buf_to_pkt_segs(buf, len, pkt, offset);
}
void
initialize_eth_header(struct rte_ether_hdr *eth_hdr,
struct rte_ether_addr *src_mac,
struct rte_ether_addr *dst_mac, uint16_t ether_type,
uint8_t vlan_enabled, uint16_t van_id)
{
rte_ether_addr_copy(dst_mac, &eth_hdr->d_addr);
rte_ether_addr_copy(src_mac, &eth_hdr->s_addr);
if (vlan_enabled) {
struct rte_vlan_hdr *vhdr = (struct rte_vlan_hdr *)(
(uint8_t *)eth_hdr + sizeof(struct rte_ether_hdr));
eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
vhdr->eth_proto = rte_cpu_to_be_16(ether_type);
vhdr->vlan_tci = van_id;
} else {
eth_hdr->ether_type = rte_cpu_to_be_16(ether_type);
}
}
void
initialize_arp_header(struct rte_arp_hdr *arp_hdr,
struct rte_ether_addr *src_mac,
struct rte_ether_addr *dst_mac,
uint32_t src_ip, uint32_t dst_ip,
uint32_t opcode)
{
arp_hdr->arp_hardware = rte_cpu_to_be_16(RTE_ARP_HRD_ETHER);
arp_hdr->arp_protocol = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
arp_hdr->arp_hlen = RTE_ETHER_ADDR_LEN;
arp_hdr->arp_plen = sizeof(uint32_t);
arp_hdr->arp_opcode = rte_cpu_to_be_16(opcode);
rte_ether_addr_copy(src_mac, &arp_hdr->arp_data.arp_sha);
arp_hdr->arp_data.arp_sip = src_ip;
rte_ether_addr_copy(dst_mac, &arp_hdr->arp_data.arp_tha);
arp_hdr->arp_data.arp_tip = dst_ip;
}
uint16_t
initialize_udp_header(struct rte_udp_hdr *udp_hdr, uint16_t src_port,
uint16_t dst_port, uint16_t pkt_data_len)
{
uint16_t pkt_len;
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
udp_hdr->src_port = rte_cpu_to_be_16(src_port);
udp_hdr->dst_port = rte_cpu_to_be_16(dst_port);
udp_hdr->dgram_len = rte_cpu_to_be_16(pkt_len);
udp_hdr->dgram_cksum = 0; /* No UDP checksum. */
return pkt_len;
}
uint16_t
initialize_tcp_header(struct rte_tcp_hdr *tcp_hdr, uint16_t src_port,
uint16_t dst_port, uint16_t pkt_data_len)
{
uint16_t pkt_len;
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_tcp_hdr));
memset(tcp_hdr, 0, sizeof(struct rte_tcp_hdr));
tcp_hdr->src_port = rte_cpu_to_be_16(src_port);
tcp_hdr->dst_port = rte_cpu_to_be_16(dst_port);
tcp_hdr->data_off = (sizeof(struct rte_tcp_hdr) << 2) & 0xF0;
return pkt_len;
}
uint16_t
initialize_sctp_header(struct rte_sctp_hdr *sctp_hdr, uint16_t src_port,
uint16_t dst_port, uint16_t pkt_data_len)
{
uint16_t pkt_len;
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
sctp_hdr->src_port = rte_cpu_to_be_16(src_port);
sctp_hdr->dst_port = rte_cpu_to_be_16(dst_port);
sctp_hdr->tag = 0;
sctp_hdr->cksum = 0; /* No SCTP checksum. */
return pkt_len;
}
uint16_t
initialize_ipv6_header(struct rte_ipv6_hdr *ip_hdr, uint8_t *src_addr,
uint8_t *dst_addr, uint16_t pkt_data_len)
{
ip_hdr->vtc_flow = 0;
ip_hdr->payload_len = pkt_data_len;
ip_hdr->proto = IPPROTO_UDP;
ip_hdr->hop_limits = IP_DEFTTL;
rte_memcpy(ip_hdr->src_addr, src_addr, sizeof(ip_hdr->src_addr));
rte_memcpy(ip_hdr->dst_addr, dst_addr, sizeof(ip_hdr->dst_addr));
return (uint16_t) (pkt_data_len + sizeof(struct rte_ipv6_hdr));
}
uint16_t
initialize_ipv4_header(struct rte_ipv4_hdr *ip_hdr, uint32_t src_addr,
uint32_t dst_addr, uint16_t pkt_data_len)
{
uint16_t pkt_len;
unaligned_uint16_t *ptr16;
uint32_t ip_cksum;
/*
* Initialize IP header.
*/
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_ipv4_hdr));
ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
ip_hdr->type_of_service = 0;
ip_hdr->fragment_offset = 0;
ip_hdr->time_to_live = IP_DEFTTL;
ip_hdr->next_proto_id = IPPROTO_UDP;
ip_hdr->packet_id = 0;
ip_hdr->total_length = rte_cpu_to_be_16(pkt_len);
ip_hdr->src_addr = rte_cpu_to_be_32(src_addr);
ip_hdr->dst_addr = rte_cpu_to_be_32(dst_addr);
/*
* Compute IP header checksum.
*/
ptr16 = (unaligned_uint16_t *)ip_hdr;
ip_cksum = 0;
ip_cksum += ptr16[0]; ip_cksum += ptr16[1];
ip_cksum += ptr16[2]; ip_cksum += ptr16[3];
ip_cksum += ptr16[4];
ip_cksum += ptr16[6]; ip_cksum += ptr16[7];
ip_cksum += ptr16[8]; ip_cksum += ptr16[9];
/*
* Reduce 32 bit checksum to 16 bits and complement it.
*/
ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) +
(ip_cksum & 0x0000FFFF);
ip_cksum %= 65536;
ip_cksum = (~ip_cksum) & 0x0000FFFF;
if (ip_cksum == 0)
ip_cksum = 0xFFFF;
ip_hdr->hdr_checksum = (uint16_t) ip_cksum;
return pkt_len;
}
uint16_t
initialize_ipv4_header_proto(struct rte_ipv4_hdr *ip_hdr, uint32_t src_addr,
uint32_t dst_addr, uint16_t pkt_data_len, uint8_t proto)
{
uint16_t pkt_len;
unaligned_uint16_t *ptr16;
uint32_t ip_cksum;
/*
* Initialize IP header.
*/
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_ipv4_hdr));
ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
ip_hdr->type_of_service = 0;
ip_hdr->fragment_offset = 0;
ip_hdr->time_to_live = IP_DEFTTL;
ip_hdr->next_proto_id = proto;
ip_hdr->packet_id = 0;
ip_hdr->total_length = rte_cpu_to_be_16(pkt_len);
ip_hdr->src_addr = rte_cpu_to_be_32(src_addr);
ip_hdr->dst_addr = rte_cpu_to_be_32(dst_addr);
/*
* Compute IP header checksum.
*/
ptr16 = (unaligned_uint16_t *)ip_hdr;
ip_cksum = 0;
ip_cksum += ptr16[0]; ip_cksum += ptr16[1];
ip_cksum += ptr16[2]; ip_cksum += ptr16[3];
ip_cksum += ptr16[4];
ip_cksum += ptr16[6]; ip_cksum += ptr16[7];
ip_cksum += ptr16[8]; ip_cksum += ptr16[9];
/*
* Reduce 32 bit checksum to 16 bits and complement it.
*/
ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) +
(ip_cksum & 0x0000FFFF);
ip_cksum %= 65536;
ip_cksum = (~ip_cksum) & 0x0000FFFF;
if (ip_cksum == 0)
ip_cksum = 0xFFFF;
ip_hdr->hdr_checksum = (uint16_t) ip_cksum;
return pkt_len;
}
/*
* The maximum number of segments per packet is used when creating
* scattered transmit packets composed of a list of mbufs.
*/
#define RTE_MAX_SEGS_PER_PKT 255 /**< pkt.nb_segs is a 8-bit unsigned char. */
int
generate_packet_burst(struct rte_mempool *mp, struct rte_mbuf **pkts_burst,
struct rte_ether_hdr *eth_hdr, uint8_t vlan_enabled,
void *ip_hdr, uint8_t ipv4, struct rte_udp_hdr *udp_hdr,
int nb_pkt_per_burst, uint8_t pkt_len, uint8_t nb_pkt_segs)
{
int i, nb_pkt = 0;
size_t eth_hdr_size;
struct rte_mbuf *pkt_seg;
struct rte_mbuf *pkt;
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
pkt = rte_pktmbuf_alloc(mp);
if (pkt == NULL) {
nomore_mbuf:
if (nb_pkt == 0)
return -1;
break;
}
pkt->data_len = pkt_len;
pkt_seg = pkt;
for (i = 1; i < nb_pkt_segs; i++) {
pkt_seg->next = rte_pktmbuf_alloc(mp);
if (pkt_seg->next == NULL) {
pkt->nb_segs = i;
rte_pktmbuf_free(pkt);
goto nomore_mbuf;
}
pkt_seg = pkt_seg->next;
pkt_seg->data_len = pkt_len;
}
pkt_seg->next = NULL; /* Last segment of packet. */
/*
* Copy headers in first packet segment(s).
*/
if (vlan_enabled)
eth_hdr_size = sizeof(struct rte_ether_hdr) +
sizeof(struct rte_vlan_hdr);
else
eth_hdr_size = sizeof(struct rte_ether_hdr);
copy_buf_to_pkt(eth_hdr, eth_hdr_size, pkt, 0);
if (ipv4) {
copy_buf_to_pkt(ip_hdr, sizeof(struct rte_ipv4_hdr),
pkt, eth_hdr_size);
copy_buf_to_pkt(udp_hdr, sizeof(*udp_hdr), pkt,
eth_hdr_size + sizeof(struct rte_ipv4_hdr));
} else {
copy_buf_to_pkt(ip_hdr, sizeof(struct rte_ipv6_hdr),
pkt, eth_hdr_size);
copy_buf_to_pkt(udp_hdr, sizeof(*udp_hdr), pkt,
eth_hdr_size + sizeof(struct rte_ipv6_hdr));
}
/*
* Complete first mbuf of packet and append it to the
* burst of packets to be transmitted.
*/
pkt->nb_segs = nb_pkt_segs;
pkt->pkt_len = pkt_len;
pkt->l2_len = eth_hdr_size;
if (ipv4) {
pkt->vlan_tci = RTE_ETHER_TYPE_IPV4;
pkt->l3_len = sizeof(struct rte_ipv4_hdr);
} else {
pkt->vlan_tci = RTE_ETHER_TYPE_IPV6;
pkt->l3_len = sizeof(struct rte_ipv6_hdr);
}
pkts_burst[nb_pkt] = pkt;
}
return nb_pkt;
}
int
generate_packet_burst_proto(struct rte_mempool *mp,
struct rte_mbuf **pkts_burst, struct rte_ether_hdr *eth_hdr,
uint8_t vlan_enabled, void *ip_hdr,
uint8_t ipv4, uint8_t proto, void *proto_hdr,
int nb_pkt_per_burst, uint8_t pkt_len, uint8_t nb_pkt_segs)
{
int i, nb_pkt = 0;
size_t eth_hdr_size;
struct rte_mbuf *pkt_seg;
struct rte_mbuf *pkt;
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
pkt = rte_pktmbuf_alloc(mp);
if (pkt == NULL) {
nomore_mbuf:
if (nb_pkt == 0)
return -1;
break;
}
pkt->data_len = pkt_len;
pkt_seg = pkt;
for (i = 1; i < nb_pkt_segs; i++) {
pkt_seg->next = rte_pktmbuf_alloc(mp);
if (pkt_seg->next == NULL) {
pkt->nb_segs = i;
rte_pktmbuf_free(pkt);
goto nomore_mbuf;
}
pkt_seg = pkt_seg->next;
pkt_seg->data_len = pkt_len;
}
pkt_seg->next = NULL; /* Last segment of packet. */
/*
* Copy headers in first packet segment(s).
*/
if (vlan_enabled)
eth_hdr_size = sizeof(struct rte_ether_hdr) +
sizeof(struct rte_vlan_hdr);
else
eth_hdr_size = sizeof(struct rte_ether_hdr);
copy_buf_to_pkt(eth_hdr, eth_hdr_size, pkt, 0);
if (ipv4) {
copy_buf_to_pkt(ip_hdr, sizeof(struct rte_ipv4_hdr),
pkt, eth_hdr_size);
switch (proto) {
case IPPROTO_UDP:
copy_buf_to_pkt(proto_hdr,
sizeof(struct rte_udp_hdr), pkt,
eth_hdr_size +
sizeof(struct rte_ipv4_hdr));
break;
case IPPROTO_TCP:
copy_buf_to_pkt(proto_hdr,
sizeof(struct rte_tcp_hdr), pkt,
eth_hdr_size +
sizeof(struct rte_ipv4_hdr));
break;
case IPPROTO_SCTP:
copy_buf_to_pkt(proto_hdr,
sizeof(struct rte_sctp_hdr), pkt,
eth_hdr_size +
sizeof(struct rte_ipv4_hdr));
break;
default:
break;
}
} else {
copy_buf_to_pkt(ip_hdr, sizeof(struct rte_ipv6_hdr),
pkt, eth_hdr_size);
switch (proto) {
case IPPROTO_UDP:
copy_buf_to_pkt(proto_hdr,
sizeof(struct rte_udp_hdr), pkt,
eth_hdr_size +
sizeof(struct rte_ipv6_hdr));
break;
case IPPROTO_TCP:
copy_buf_to_pkt(proto_hdr,
sizeof(struct rte_tcp_hdr), pkt,
eth_hdr_size +
sizeof(struct rte_ipv6_hdr));
break;
case IPPROTO_SCTP:
copy_buf_to_pkt(proto_hdr,
sizeof(struct rte_sctp_hdr), pkt,
eth_hdr_size +
sizeof(struct rte_ipv6_hdr));
break;
default:
break;
}
}
/*
* Complete first mbuf of packet and append it to the
* burst of packets to be transmitted.
*/
pkt->nb_segs = nb_pkt_segs;
pkt->pkt_len = pkt_len;
pkt->l2_len = eth_hdr_size;
if (ipv4) {
pkt->vlan_tci = RTE_ETHER_TYPE_IPV4;
pkt->l3_len = sizeof(struct rte_ipv4_hdr);
} else {
pkt->vlan_tci = RTE_ETHER_TYPE_IPV6;
pkt->l3_len = sizeof(struct rte_ipv6_hdr);
}
pkts_burst[nb_pkt] = pkt;
}
return nb_pkt;
}