numam-dpdk/app/test/test_distributor_perf.c
Stanislaw Kardach 6cda39af86 test/distributor: fix burst flush on worker quit
While working on RISC-V port I have encountered a situation where worker
threads get stuck in the rte_distributor_return_pkt() function in the
burst test.
Investigation showed some of the threads enter this function with
flag RTE_DISTRIB_GET_BUF set in the d->retptr64[0]. At the same time the
main thread has already passed rte_distributor_process() so nobody will
clear this flag and hence workers can't return.

What I've noticed is that adding a flush just after the last _process(),
similarly to how quit_workers() function is written in the
test_distributor.c fixes the issue.
Lukasz Wojciechowski reproduced the same issue on x86 using a VM with 32
emulated CPU cores to force some lcores not to be woken up.

Fixes: 7c3287a10535 ("test/distributor: add performance test for burst mode")
Cc: stable@dpdk.org

Signed-off-by: Stanislaw Kardach <kda@semihalf.com>
Acked-by: David Hunt <david.hunt@intel.com>
Tested-by: Lukasz Wojciechowski <l.wojciechow@partner.samsung.com>
Reviewed-by: Lukasz Wojciechowski <l.wojciechow@partner.samsung.com>
2021-05-05 18:21:26 +02:00

271 lines
6.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2017 Intel Corporation
*/
#include "test.h"
#include <unistd.h>
#include <string.h>
#include <rte_mempool.h>
#include <rte_cycles.h>
#include <rte_common.h>
#include <rte_mbuf.h>
#include <rte_distributor.h>
#include <rte_pause.h>
#define ITER_POWER_CL 25 /* log 2 of how many iterations for Cache Line test */
#define ITER_POWER 21 /* log 2 of how many iterations we do when timing. */
#define BURST 64
#define BIG_BATCH 1024
/* static vars - zero initialized by default */
static volatile int quit;
static volatile unsigned worker_idx;
struct worker_stats {
volatile unsigned handled_packets;
} __rte_cache_aligned;
static struct worker_stats worker_stats[RTE_MAX_LCORE];
/*
* worker thread used for testing the time to do a round-trip of a cache
* line between two cores and back again
*/
static int
flip_bit(volatile uint64_t *arg)
{
uint64_t old_val = 0;
while (old_val != 2) {
while (!*arg)
rte_pause();
old_val = *arg;
*arg = 0;
}
return 0;
}
/*
* test case to time the number of cycles to round-trip a cache line between
* two cores and back again.
*/
static void
time_cache_line_switch(void)
{
/* allocate a full cache line for data, we use only first byte of it */
uint64_t data[RTE_CACHE_LINE_SIZE*3 / sizeof(uint64_t)];
unsigned int i, workerid = rte_get_next_lcore(rte_lcore_id(), 0, 0);
volatile uint64_t *pdata = &data[0];
*pdata = 1;
rte_eal_remote_launch((lcore_function_t *)flip_bit, &data[0], workerid);
while (*pdata)
rte_pause();
const uint64_t start_time = rte_rdtsc();
for (i = 0; i < (1 << ITER_POWER_CL); i++) {
while (*pdata)
rte_pause();
*pdata = 1;
}
const uint64_t end_time = rte_rdtsc();
while (*pdata)
rte_pause();
*pdata = 2;
rte_eal_wait_lcore(workerid);
printf("==== Cache line switch test ===\n");
printf("Time for %u iterations = %"PRIu64" ticks\n", (1<<ITER_POWER_CL),
end_time-start_time);
printf("Ticks per iteration = %"PRIu64"\n\n",
(end_time-start_time) >> ITER_POWER_CL);
}
/*
* returns the total count of the number of packets handled by the worker
* functions given below.
*/
static unsigned
total_packet_count(void)
{
unsigned i, count = 0;
for (i = 0; i < worker_idx; i++)
count += worker_stats[i].handled_packets;
return count;
}
/* resets the packet counts for a new test */
static void
clear_packet_count(void)
{
memset(&worker_stats, 0, sizeof(worker_stats));
}
/*
* This is the basic worker function for performance tests.
* it does nothing but return packets and count them.
*/
static int
handle_work(void *arg)
{
struct rte_distributor *d = arg;
unsigned int count = 0;
unsigned int num = 0;
int i;
unsigned int id = __atomic_fetch_add(&worker_idx, 1, __ATOMIC_RELAXED);
struct rte_mbuf *buf[8] __rte_cache_aligned;
for (i = 0; i < 8; i++)
buf[i] = NULL;
num = rte_distributor_get_pkt(d, id, buf, buf, num);
while (!quit) {
worker_stats[id].handled_packets += num;
count += num;
num = rte_distributor_get_pkt(d, id, buf, buf, num);
}
worker_stats[id].handled_packets += num;
count += num;
rte_distributor_return_pkt(d, id, buf, num);
return 0;
}
/*
* This basic performance test just repeatedly sends in 32 packets at a time
* to the distributor and verifies at the end that we got them all in the worker
* threads and finally how long per packet the processing took.
*/
static inline int
perf_test(struct rte_distributor *d, struct rte_mempool *p)
{
unsigned int i;
uint64_t start, end;
struct rte_mbuf *bufs[BURST];
clear_packet_count();
if (rte_mempool_get_bulk(p, (void *)bufs, BURST) != 0) {
printf("Error getting mbufs from pool\n");
return -1;
}
/* ensure we have different hash value for each pkt */
for (i = 0; i < BURST; i++)
bufs[i]->hash.usr = i;
start = rte_rdtsc();
for (i = 0; i < (1<<ITER_POWER); i++)
rte_distributor_process(d, bufs, BURST);
end = rte_rdtsc();
do {
usleep(100);
rte_distributor_process(d, NULL, 0);
} while (total_packet_count() < (BURST << ITER_POWER));
rte_distributor_clear_returns(d);
printf("Time per burst: %"PRIu64"\n", (end - start) >> ITER_POWER);
printf("Time per packet: %"PRIu64"\n\n",
((end - start) >> ITER_POWER)/BURST);
rte_mempool_put_bulk(p, (void *)bufs, BURST);
for (i = 0; i < rte_lcore_count() - 1; i++)
printf("Worker %u handled %u packets\n", i,
worker_stats[i].handled_packets);
printf("Total packets: %u (%x)\n", total_packet_count(),
total_packet_count());
printf("=== Perf test done ===\n\n");
return 0;
}
/* Useful function which ensures that all worker functions terminate */
static void
quit_workers(struct rte_distributor *d, struct rte_mempool *p)
{
const unsigned int num_workers = rte_lcore_count() - 1;
unsigned int i;
struct rte_mbuf *bufs[RTE_MAX_LCORE];
rte_mempool_get_bulk(p, (void *)bufs, num_workers);
quit = 1;
for (i = 0; i < num_workers; i++) {
bufs[i]->hash.usr = i << 1;
rte_distributor_process(d, &bufs[i], 1);
}
rte_mempool_put_bulk(p, (void *)bufs, num_workers);
rte_distributor_process(d, NULL, 0);
rte_distributor_flush(d);
rte_eal_mp_wait_lcore();
quit = 0;
worker_idx = 0;
}
static int
test_distributor_perf(void)
{
static struct rte_distributor *ds;
static struct rte_distributor *db;
static struct rte_mempool *p;
if (rte_lcore_count() < 2) {
printf("Not enough cores for distributor_perf_autotest, expecting at least 2\n");
return TEST_SKIPPED;
}
/* first time how long it takes to round-trip a cache line */
time_cache_line_switch();
if (ds == NULL) {
ds = rte_distributor_create("Test_perf", rte_socket_id(),
rte_lcore_count() - 1,
RTE_DIST_ALG_SINGLE);
if (ds == NULL) {
printf("Error creating distributor\n");
return -1;
}
} else {
rte_distributor_clear_returns(ds);
}
if (db == NULL) {
db = rte_distributor_create("Test_burst", rte_socket_id(),
rte_lcore_count() - 1,
RTE_DIST_ALG_BURST);
if (db == NULL) {
printf("Error creating burst distributor\n");
return -1;
}
} else {
rte_distributor_clear_returns(db);
}
const unsigned nb_bufs = (511 * rte_lcore_count()) < BIG_BATCH ?
(BIG_BATCH * 2) - 1 : (511 * rte_lcore_count());
if (p == NULL) {
p = rte_pktmbuf_pool_create("DPT_MBUF_POOL", nb_bufs, BURST,
0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (p == NULL) {
printf("Error creating mempool\n");
return -1;
}
}
printf("=== Performance test of distributor (single mode) ===\n");
rte_eal_mp_remote_launch(handle_work, ds, SKIP_MAIN);
if (perf_test(ds, p) < 0)
return -1;
quit_workers(ds, p);
printf("=== Performance test of distributor (burst mode) ===\n");
rte_eal_mp_remote_launch(handle_work, db, SKIP_MAIN);
if (perf_test(db, p) < 0)
return -1;
quit_workers(db, p);
return 0;
}
REGISTER_TEST_COMMAND(distributor_perf_autotest, test_distributor_perf);