7c0d798aab
The rte_kernel_driver enum actually only pointed at PCI drivers and is only used in the PCI subsystem. Remove it from the generic device API and use a private enum in the PCI code. Signed-off-by: David Marchand <david.marchand@redhat.com> Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
3775 lines
98 KiB
C
3775 lines
98 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright (c) 2014-2018 Netronome Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Small portions derived from code Copyright(c) 2010-2015 Intel Corporation.
|
|
*/
|
|
|
|
/*
|
|
* vim:shiftwidth=8:noexpandtab
|
|
*
|
|
* @file dpdk/pmd/nfp_net.c
|
|
*
|
|
* Netronome vNIC DPDK Poll-Mode Driver: Main entry point
|
|
*/
|
|
|
|
#include <rte_byteorder.h>
|
|
#include <rte_common.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_ethdev_driver.h>
|
|
#include <rte_ethdev_pci.h>
|
|
#include <rte_dev.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_version.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_alarm.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_service_component.h>
|
|
|
|
#include "nfpcore/nfp_cpp.h"
|
|
#include "nfpcore/nfp_nffw.h"
|
|
#include "nfpcore/nfp_hwinfo.h"
|
|
#include "nfpcore/nfp_mip.h"
|
|
#include "nfpcore/nfp_rtsym.h"
|
|
#include "nfpcore/nfp_nsp.h"
|
|
|
|
#include "nfp_net_pmd.h"
|
|
#include "nfp_net_logs.h"
|
|
#include "nfp_net_ctrl.h"
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/un.h>
|
|
#include <unistd.h>
|
|
#include <stdio.h>
|
|
#include <sys/ioctl.h>
|
|
#include <errno.h>
|
|
|
|
/* Prototypes */
|
|
static void nfp_net_close(struct rte_eth_dev *dev);
|
|
static int nfp_net_configure(struct rte_eth_dev *dev);
|
|
static void nfp_net_dev_interrupt_handler(void *param);
|
|
static void nfp_net_dev_interrupt_delayed_handler(void *param);
|
|
static int nfp_net_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
|
|
static int nfp_net_infos_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_dev_info *dev_info);
|
|
static int nfp_net_init(struct rte_eth_dev *eth_dev);
|
|
static int nfp_net_link_update(struct rte_eth_dev *dev, int wait_to_complete);
|
|
static int nfp_net_promisc_enable(struct rte_eth_dev *dev);
|
|
static int nfp_net_promisc_disable(struct rte_eth_dev *dev);
|
|
static int nfp_net_rx_fill_freelist(struct nfp_net_rxq *rxq);
|
|
static uint32_t nfp_net_rx_queue_count(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx);
|
|
static uint16_t nfp_net_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts);
|
|
static void nfp_net_rx_queue_release(void *rxq);
|
|
static int nfp_net_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
|
|
uint16_t nb_desc, unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mp);
|
|
static int nfp_net_tx_free_bufs(struct nfp_net_txq *txq);
|
|
static void nfp_net_tx_queue_release(void *txq);
|
|
static int nfp_net_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
|
|
uint16_t nb_desc, unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf);
|
|
static int nfp_net_start(struct rte_eth_dev *dev);
|
|
static int nfp_net_stats_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_stats *stats);
|
|
static int nfp_net_stats_reset(struct rte_eth_dev *dev);
|
|
static void nfp_net_stop(struct rte_eth_dev *dev);
|
|
static uint16_t nfp_net_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts);
|
|
|
|
static int nfp_net_rss_config_default(struct rte_eth_dev *dev);
|
|
static int nfp_net_rss_hash_update(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_conf *rss_conf);
|
|
static int nfp_net_rss_reta_write(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta_entry64 *reta_conf,
|
|
uint16_t reta_size);
|
|
static int nfp_net_rss_hash_write(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_conf *rss_conf);
|
|
static int nfp_set_mac_addr(struct rte_eth_dev *dev,
|
|
struct rte_ether_addr *mac_addr);
|
|
|
|
/* The offset of the queue controller queues in the PCIe Target */
|
|
#define NFP_PCIE_QUEUE(_q) (0x80000 + (NFP_QCP_QUEUE_ADDR_SZ * ((_q) & 0xff)))
|
|
|
|
/* Maximum value which can be added to a queue with one transaction */
|
|
#define NFP_QCP_MAX_ADD 0x7f
|
|
|
|
#define RTE_MBUF_DMA_ADDR_DEFAULT(mb) \
|
|
(uint64_t)((mb)->buf_iova + RTE_PKTMBUF_HEADROOM)
|
|
|
|
/* nfp_qcp_ptr - Read or Write Pointer of a queue */
|
|
enum nfp_qcp_ptr {
|
|
NFP_QCP_READ_PTR = 0,
|
|
NFP_QCP_WRITE_PTR
|
|
};
|
|
|
|
/*
|
|
* nfp_qcp_ptr_add - Add the value to the selected pointer of a queue
|
|
* @q: Base address for queue structure
|
|
* @ptr: Add to the Read or Write pointer
|
|
* @val: Value to add to the queue pointer
|
|
*
|
|
* If @val is greater than @NFP_QCP_MAX_ADD multiple writes are performed.
|
|
*/
|
|
static inline void
|
|
nfp_qcp_ptr_add(uint8_t *q, enum nfp_qcp_ptr ptr, uint32_t val)
|
|
{
|
|
uint32_t off;
|
|
|
|
if (ptr == NFP_QCP_READ_PTR)
|
|
off = NFP_QCP_QUEUE_ADD_RPTR;
|
|
else
|
|
off = NFP_QCP_QUEUE_ADD_WPTR;
|
|
|
|
while (val > NFP_QCP_MAX_ADD) {
|
|
nn_writel(rte_cpu_to_le_32(NFP_QCP_MAX_ADD), q + off);
|
|
val -= NFP_QCP_MAX_ADD;
|
|
}
|
|
|
|
nn_writel(rte_cpu_to_le_32(val), q + off);
|
|
}
|
|
|
|
/*
|
|
* nfp_qcp_read - Read the current Read/Write pointer value for a queue
|
|
* @q: Base address for queue structure
|
|
* @ptr: Read or Write pointer
|
|
*/
|
|
static inline uint32_t
|
|
nfp_qcp_read(uint8_t *q, enum nfp_qcp_ptr ptr)
|
|
{
|
|
uint32_t off;
|
|
uint32_t val;
|
|
|
|
if (ptr == NFP_QCP_READ_PTR)
|
|
off = NFP_QCP_QUEUE_STS_LO;
|
|
else
|
|
off = NFP_QCP_QUEUE_STS_HI;
|
|
|
|
val = rte_cpu_to_le_32(nn_readl(q + off));
|
|
|
|
if (ptr == NFP_QCP_READ_PTR)
|
|
return val & NFP_QCP_QUEUE_STS_LO_READPTR_mask;
|
|
else
|
|
return val & NFP_QCP_QUEUE_STS_HI_WRITEPTR_mask;
|
|
}
|
|
|
|
/*
|
|
* Functions to read/write from/to Config BAR
|
|
* Performs any endian conversion necessary.
|
|
*/
|
|
static inline uint8_t
|
|
nn_cfg_readb(struct nfp_net_hw *hw, int off)
|
|
{
|
|
return nn_readb(hw->ctrl_bar + off);
|
|
}
|
|
|
|
static inline void
|
|
nn_cfg_writeb(struct nfp_net_hw *hw, int off, uint8_t val)
|
|
{
|
|
nn_writeb(val, hw->ctrl_bar + off);
|
|
}
|
|
|
|
static inline uint32_t
|
|
nn_cfg_readl(struct nfp_net_hw *hw, int off)
|
|
{
|
|
return rte_le_to_cpu_32(nn_readl(hw->ctrl_bar + off));
|
|
}
|
|
|
|
static inline void
|
|
nn_cfg_writel(struct nfp_net_hw *hw, int off, uint32_t val)
|
|
{
|
|
nn_writel(rte_cpu_to_le_32(val), hw->ctrl_bar + off);
|
|
}
|
|
|
|
static inline uint64_t
|
|
nn_cfg_readq(struct nfp_net_hw *hw, int off)
|
|
{
|
|
return rte_le_to_cpu_64(nn_readq(hw->ctrl_bar + off));
|
|
}
|
|
|
|
static inline void
|
|
nn_cfg_writeq(struct nfp_net_hw *hw, int off, uint64_t val)
|
|
{
|
|
nn_writeq(rte_cpu_to_le_64(val), hw->ctrl_bar + off);
|
|
}
|
|
|
|
static void
|
|
nfp_net_rx_queue_release_mbufs(struct nfp_net_rxq *rxq)
|
|
{
|
|
unsigned i;
|
|
|
|
if (rxq->rxbufs == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < rxq->rx_count; i++) {
|
|
if (rxq->rxbufs[i].mbuf) {
|
|
rte_pktmbuf_free_seg(rxq->rxbufs[i].mbuf);
|
|
rxq->rxbufs[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
nfp_net_rx_queue_release(void *rx_queue)
|
|
{
|
|
struct nfp_net_rxq *rxq = rx_queue;
|
|
|
|
if (rxq) {
|
|
nfp_net_rx_queue_release_mbufs(rxq);
|
|
rte_free(rxq->rxbufs);
|
|
rte_free(rxq);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nfp_net_reset_rx_queue(struct nfp_net_rxq *rxq)
|
|
{
|
|
nfp_net_rx_queue_release_mbufs(rxq);
|
|
rxq->rd_p = 0;
|
|
rxq->nb_rx_hold = 0;
|
|
}
|
|
|
|
static void
|
|
nfp_net_tx_queue_release_mbufs(struct nfp_net_txq *txq)
|
|
{
|
|
unsigned i;
|
|
|
|
if (txq->txbufs == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < txq->tx_count; i++) {
|
|
if (txq->txbufs[i].mbuf) {
|
|
rte_pktmbuf_free_seg(txq->txbufs[i].mbuf);
|
|
txq->txbufs[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
nfp_net_tx_queue_release(void *tx_queue)
|
|
{
|
|
struct nfp_net_txq *txq = tx_queue;
|
|
|
|
if (txq) {
|
|
nfp_net_tx_queue_release_mbufs(txq);
|
|
rte_free(txq->txbufs);
|
|
rte_free(txq);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nfp_net_reset_tx_queue(struct nfp_net_txq *txq)
|
|
{
|
|
nfp_net_tx_queue_release_mbufs(txq);
|
|
txq->wr_p = 0;
|
|
txq->rd_p = 0;
|
|
}
|
|
|
|
static int
|
|
__nfp_net_reconfig(struct nfp_net_hw *hw, uint32_t update)
|
|
{
|
|
int cnt;
|
|
uint32_t new;
|
|
struct timespec wait;
|
|
|
|
PMD_DRV_LOG(DEBUG, "Writing to the configuration queue (%p)...",
|
|
hw->qcp_cfg);
|
|
|
|
if (hw->qcp_cfg == NULL)
|
|
rte_panic("Bad configuration queue pointer\n");
|
|
|
|
nfp_qcp_ptr_add(hw->qcp_cfg, NFP_QCP_WRITE_PTR, 1);
|
|
|
|
wait.tv_sec = 0;
|
|
wait.tv_nsec = 1000000;
|
|
|
|
PMD_DRV_LOG(DEBUG, "Polling for update ack...");
|
|
|
|
/* Poll update field, waiting for NFP to ack the config */
|
|
for (cnt = 0; ; cnt++) {
|
|
new = nn_cfg_readl(hw, NFP_NET_CFG_UPDATE);
|
|
if (new == 0)
|
|
break;
|
|
if (new & NFP_NET_CFG_UPDATE_ERR) {
|
|
PMD_INIT_LOG(ERR, "Reconfig error: 0x%08x", new);
|
|
return -1;
|
|
}
|
|
if (cnt >= NFP_NET_POLL_TIMEOUT) {
|
|
PMD_INIT_LOG(ERR, "Reconfig timeout for 0x%08x after"
|
|
" %dms", update, cnt);
|
|
rte_panic("Exiting\n");
|
|
}
|
|
nanosleep(&wait, 0); /* waiting for a 1ms */
|
|
}
|
|
PMD_DRV_LOG(DEBUG, "Ack DONE");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reconfigure the NIC
|
|
* @nn: device to reconfigure
|
|
* @ctrl: The value for the ctrl field in the BAR config
|
|
* @update: The value for the update field in the BAR config
|
|
*
|
|
* Write the update word to the BAR and ping the reconfig queue. Then poll
|
|
* until the firmware has acknowledged the update by zeroing the update word.
|
|
*/
|
|
static int
|
|
nfp_net_reconfig(struct nfp_net_hw *hw, uint32_t ctrl, uint32_t update)
|
|
{
|
|
uint32_t err;
|
|
|
|
PMD_DRV_LOG(DEBUG, "nfp_net_reconfig: ctrl=%08x update=%08x",
|
|
ctrl, update);
|
|
|
|
rte_spinlock_lock(&hw->reconfig_lock);
|
|
|
|
nn_cfg_writel(hw, NFP_NET_CFG_CTRL, ctrl);
|
|
nn_cfg_writel(hw, NFP_NET_CFG_UPDATE, update);
|
|
|
|
rte_wmb();
|
|
|
|
err = __nfp_net_reconfig(hw, update);
|
|
|
|
rte_spinlock_unlock(&hw->reconfig_lock);
|
|
|
|
if (!err)
|
|
return 0;
|
|
|
|
/*
|
|
* Reconfig errors imply situations where they can be handled.
|
|
* Otherwise, rte_panic is called inside __nfp_net_reconfig
|
|
*/
|
|
PMD_INIT_LOG(ERR, "Error nfp_net reconfig for ctrl: %x update: %x",
|
|
ctrl, update);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Configure an Ethernet device. This function must be invoked first
|
|
* before any other function in the Ethernet API. This function can
|
|
* also be re-invoked when a device is in the stopped state.
|
|
*/
|
|
static int
|
|
nfp_net_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_conf *dev_conf;
|
|
struct rte_eth_rxmode *rxmode;
|
|
struct rte_eth_txmode *txmode;
|
|
struct nfp_net_hw *hw;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/*
|
|
* A DPDK app sends info about how many queues to use and how
|
|
* those queues need to be configured. This is used by the
|
|
* DPDK core and it makes sure no more queues than those
|
|
* advertised by the driver are requested. This function is
|
|
* called after that internal process
|
|
*/
|
|
|
|
PMD_INIT_LOG(DEBUG, "Configure");
|
|
|
|
dev_conf = &dev->data->dev_conf;
|
|
rxmode = &dev_conf->rxmode;
|
|
txmode = &dev_conf->txmode;
|
|
|
|
if (rxmode->mq_mode & ETH_MQ_RX_RSS_FLAG)
|
|
rxmode->offloads |= DEV_RX_OFFLOAD_RSS_HASH;
|
|
|
|
/* Checking TX mode */
|
|
if (txmode->mq_mode) {
|
|
PMD_INIT_LOG(INFO, "TX mq_mode DCB and VMDq not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Checking RX mode */
|
|
if (rxmode->mq_mode & ETH_MQ_RX_RSS &&
|
|
!(hw->cap & NFP_NET_CFG_CTRL_RSS)) {
|
|
PMD_INIT_LOG(INFO, "RSS not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nfp_net_enable_queues(struct rte_eth_dev *dev)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
uint64_t enabled_queues = 0;
|
|
int i;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* Enabling the required TX queues in the device */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++)
|
|
enabled_queues |= (1 << i);
|
|
|
|
nn_cfg_writeq(hw, NFP_NET_CFG_TXRS_ENABLE, enabled_queues);
|
|
|
|
enabled_queues = 0;
|
|
|
|
/* Enabling the required RX queues in the device */
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++)
|
|
enabled_queues |= (1 << i);
|
|
|
|
nn_cfg_writeq(hw, NFP_NET_CFG_RXRS_ENABLE, enabled_queues);
|
|
}
|
|
|
|
static void
|
|
nfp_net_disable_queues(struct rte_eth_dev *dev)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
uint32_t new_ctrl, update = 0;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
nn_cfg_writeq(hw, NFP_NET_CFG_TXRS_ENABLE, 0);
|
|
nn_cfg_writeq(hw, NFP_NET_CFG_RXRS_ENABLE, 0);
|
|
|
|
new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_ENABLE;
|
|
update = NFP_NET_CFG_UPDATE_GEN | NFP_NET_CFG_UPDATE_RING |
|
|
NFP_NET_CFG_UPDATE_MSIX;
|
|
|
|
if (hw->cap & NFP_NET_CFG_CTRL_RINGCFG)
|
|
new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
|
|
|
|
/* If an error when reconfig we avoid to change hw state */
|
|
if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
|
|
return;
|
|
|
|
hw->ctrl = new_ctrl;
|
|
}
|
|
|
|
static int
|
|
nfp_net_rx_freelist_setup(struct rte_eth_dev *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
if (nfp_net_rx_fill_freelist(dev->data->rx_queues[i]) < 0)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nfp_net_params_setup(struct nfp_net_hw *hw)
|
|
{
|
|
nn_cfg_writel(hw, NFP_NET_CFG_MTU, hw->mtu);
|
|
nn_cfg_writel(hw, NFP_NET_CFG_FLBUFSZ, hw->flbufsz);
|
|
}
|
|
|
|
static void
|
|
nfp_net_cfg_queue_setup(struct nfp_net_hw *hw)
|
|
{
|
|
hw->qcp_cfg = hw->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
|
|
}
|
|
|
|
#define ETH_ADDR_LEN 6
|
|
|
|
static void
|
|
nfp_eth_copy_mac(uint8_t *dst, const uint8_t *src)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ETH_ADDR_LEN; i++)
|
|
dst[i] = src[i];
|
|
}
|
|
|
|
static int
|
|
nfp_net_pf_read_mac(struct nfp_net_hw *hw, int port)
|
|
{
|
|
struct nfp_eth_table *nfp_eth_table;
|
|
|
|
nfp_eth_table = nfp_eth_read_ports(hw->cpp);
|
|
/*
|
|
* hw points to port0 private data. We need hw now pointing to
|
|
* right port.
|
|
*/
|
|
hw += port;
|
|
nfp_eth_copy_mac((uint8_t *)&hw->mac_addr,
|
|
(uint8_t *)&nfp_eth_table->ports[port].mac_addr);
|
|
|
|
free(nfp_eth_table);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nfp_net_vf_read_mac(struct nfp_net_hw *hw)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = rte_be_to_cpu_32(nn_cfg_readl(hw, NFP_NET_CFG_MACADDR));
|
|
memcpy(&hw->mac_addr[0], &tmp, 4);
|
|
|
|
tmp = rte_be_to_cpu_32(nn_cfg_readl(hw, NFP_NET_CFG_MACADDR + 4));
|
|
memcpy(&hw->mac_addr[4], &tmp, 2);
|
|
}
|
|
|
|
static void
|
|
nfp_net_write_mac(struct nfp_net_hw *hw, uint8_t *mac)
|
|
{
|
|
uint32_t mac0 = *(uint32_t *)mac;
|
|
uint16_t mac1;
|
|
|
|
nn_writel(rte_cpu_to_be_32(mac0), hw->ctrl_bar + NFP_NET_CFG_MACADDR);
|
|
|
|
mac += 4;
|
|
mac1 = *(uint16_t *)mac;
|
|
nn_writew(rte_cpu_to_be_16(mac1),
|
|
hw->ctrl_bar + NFP_NET_CFG_MACADDR + 6);
|
|
}
|
|
|
|
int
|
|
nfp_set_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
uint32_t update, ctrl;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
if ((hw->ctrl & NFP_NET_CFG_CTRL_ENABLE) &&
|
|
!(hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)) {
|
|
PMD_INIT_LOG(INFO, "MAC address unable to change when"
|
|
" port enabled");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if ((hw->ctrl & NFP_NET_CFG_CTRL_ENABLE) &&
|
|
!(hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR))
|
|
return -EBUSY;
|
|
|
|
/* Writing new MAC to the specific port BAR address */
|
|
nfp_net_write_mac(hw, (uint8_t *)mac_addr);
|
|
|
|
/* Signal the NIC about the change */
|
|
update = NFP_NET_CFG_UPDATE_MACADDR;
|
|
ctrl = hw->ctrl;
|
|
if ((hw->ctrl & NFP_NET_CFG_CTRL_ENABLE) &&
|
|
(hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR))
|
|
ctrl |= NFP_NET_CFG_CTRL_LIVE_ADDR;
|
|
if (nfp_net_reconfig(hw, ctrl, update) < 0) {
|
|
PMD_INIT_LOG(INFO, "MAC address update failed");
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_configure_rx_interrupt(struct rte_eth_dev *dev,
|
|
struct rte_intr_handle *intr_handle)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
int i;
|
|
|
|
if (!intr_handle->intr_vec) {
|
|
intr_handle->intr_vec =
|
|
rte_zmalloc("intr_vec",
|
|
dev->data->nb_rx_queues * sizeof(int), 0);
|
|
if (!intr_handle->intr_vec) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
|
|
" intr_vec", dev->data->nb_rx_queues);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (intr_handle->type == RTE_INTR_HANDLE_UIO) {
|
|
PMD_INIT_LOG(INFO, "VF: enabling RX interrupt with UIO");
|
|
/* UIO just supports one queue and no LSC*/
|
|
nn_cfg_writeb(hw, NFP_NET_CFG_RXR_VEC(0), 0);
|
|
intr_handle->intr_vec[0] = 0;
|
|
} else {
|
|
PMD_INIT_LOG(INFO, "VF: enabling RX interrupt with VFIO");
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
/*
|
|
* The first msix vector is reserved for non
|
|
* efd interrupts
|
|
*/
|
|
nn_cfg_writeb(hw, NFP_NET_CFG_RXR_VEC(i), i + 1);
|
|
intr_handle->intr_vec[i] = i + 1;
|
|
PMD_INIT_LOG(DEBUG, "intr_vec[%d]= %d", i,
|
|
intr_handle->intr_vec[i]);
|
|
}
|
|
}
|
|
|
|
/* Avoiding TX interrupts */
|
|
hw->ctrl |= NFP_NET_CFG_CTRL_MSIX_TX_OFF;
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
nfp_check_offloads(struct rte_eth_dev *dev)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
struct rte_eth_conf *dev_conf;
|
|
struct rte_eth_rxmode *rxmode;
|
|
struct rte_eth_txmode *txmode;
|
|
uint32_t ctrl = 0;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
dev_conf = &dev->data->dev_conf;
|
|
rxmode = &dev_conf->rxmode;
|
|
txmode = &dev_conf->txmode;
|
|
|
|
if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM) {
|
|
if (hw->cap & NFP_NET_CFG_CTRL_RXCSUM)
|
|
ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
|
|
}
|
|
|
|
if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP) {
|
|
if (hw->cap & NFP_NET_CFG_CTRL_RXVLAN)
|
|
ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
|
|
}
|
|
|
|
if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
|
|
hw->mtu = rxmode->max_rx_pkt_len;
|
|
|
|
if (txmode->offloads & DEV_TX_OFFLOAD_VLAN_INSERT)
|
|
ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
|
|
|
|
/* L2 broadcast */
|
|
if (hw->cap & NFP_NET_CFG_CTRL_L2BC)
|
|
ctrl |= NFP_NET_CFG_CTRL_L2BC;
|
|
|
|
/* L2 multicast */
|
|
if (hw->cap & NFP_NET_CFG_CTRL_L2MC)
|
|
ctrl |= NFP_NET_CFG_CTRL_L2MC;
|
|
|
|
/* TX checksum offload */
|
|
if (txmode->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM ||
|
|
txmode->offloads & DEV_TX_OFFLOAD_UDP_CKSUM ||
|
|
txmode->offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
|
|
ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
|
|
|
|
/* LSO offload */
|
|
if (txmode->offloads & DEV_TX_OFFLOAD_TCP_TSO) {
|
|
if (hw->cap & NFP_NET_CFG_CTRL_LSO)
|
|
ctrl |= NFP_NET_CFG_CTRL_LSO;
|
|
else
|
|
ctrl |= NFP_NET_CFG_CTRL_LSO2;
|
|
}
|
|
|
|
/* RX gather */
|
|
if (txmode->offloads & DEV_TX_OFFLOAD_MULTI_SEGS)
|
|
ctrl |= NFP_NET_CFG_CTRL_GATHER;
|
|
|
|
return ctrl;
|
|
}
|
|
|
|
static int
|
|
nfp_net_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
uint32_t new_ctrl, update = 0;
|
|
struct nfp_net_hw *hw;
|
|
struct rte_eth_conf *dev_conf;
|
|
struct rte_eth_rxmode *rxmode;
|
|
uint32_t intr_vector;
|
|
int ret;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
PMD_INIT_LOG(DEBUG, "Start");
|
|
|
|
/* Disabling queues just in case... */
|
|
nfp_net_disable_queues(dev);
|
|
|
|
/* Enabling the required queues in the device */
|
|
nfp_net_enable_queues(dev);
|
|
|
|
/* check and configure queue intr-vector mapping */
|
|
if (dev->data->dev_conf.intr_conf.rxq != 0) {
|
|
if (hw->pf_multiport_enabled) {
|
|
PMD_INIT_LOG(ERR, "PMD rx interrupt is not supported "
|
|
"with NFP multiport PF");
|
|
return -EINVAL;
|
|
}
|
|
if (intr_handle->type == RTE_INTR_HANDLE_UIO) {
|
|
/*
|
|
* Better not to share LSC with RX interrupts.
|
|
* Unregistering LSC interrupt handler
|
|
*/
|
|
rte_intr_callback_unregister(&pci_dev->intr_handle,
|
|
nfp_net_dev_interrupt_handler, (void *)dev);
|
|
|
|
if (dev->data->nb_rx_queues > 1) {
|
|
PMD_INIT_LOG(ERR, "PMD rx interrupt only "
|
|
"supports 1 queue with UIO");
|
|
return -EIO;
|
|
}
|
|
}
|
|
intr_vector = dev->data->nb_rx_queues;
|
|
if (rte_intr_efd_enable(intr_handle, intr_vector))
|
|
return -1;
|
|
|
|
nfp_configure_rx_interrupt(dev, intr_handle);
|
|
update = NFP_NET_CFG_UPDATE_MSIX;
|
|
}
|
|
|
|
rte_intr_enable(intr_handle);
|
|
|
|
new_ctrl = nfp_check_offloads(dev);
|
|
|
|
/* Writing configuration parameters in the device */
|
|
nfp_net_params_setup(hw);
|
|
|
|
dev_conf = &dev->data->dev_conf;
|
|
rxmode = &dev_conf->rxmode;
|
|
|
|
if (rxmode->mq_mode & ETH_MQ_RX_RSS) {
|
|
nfp_net_rss_config_default(dev);
|
|
update |= NFP_NET_CFG_UPDATE_RSS;
|
|
new_ctrl |= NFP_NET_CFG_CTRL_RSS;
|
|
}
|
|
|
|
/* Enable device */
|
|
new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
|
|
|
|
update |= NFP_NET_CFG_UPDATE_GEN | NFP_NET_CFG_UPDATE_RING;
|
|
|
|
if (hw->cap & NFP_NET_CFG_CTRL_RINGCFG)
|
|
new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
|
|
|
|
nn_cfg_writel(hw, NFP_NET_CFG_CTRL, new_ctrl);
|
|
if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
|
|
return -EIO;
|
|
|
|
/*
|
|
* Allocating rte mbufs for configured rx queues.
|
|
* This requires queues being enabled before
|
|
*/
|
|
if (nfp_net_rx_freelist_setup(dev) < 0) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
if (hw->is_pf) {
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
|
|
/* Configure the physical port up */
|
|
nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 1);
|
|
else
|
|
nfp_eth_set_configured(dev->process_private,
|
|
hw->pf_port_idx, 1);
|
|
}
|
|
|
|
hw->ctrl = new_ctrl;
|
|
|
|
return 0;
|
|
|
|
error:
|
|
/*
|
|
* An error returned by this function should mean the app
|
|
* exiting and then the system releasing all the memory
|
|
* allocated even memory coming from hugepages.
|
|
*
|
|
* The device could be enabled at this point with some queues
|
|
* ready for getting packets. This is true if the call to
|
|
* nfp_net_rx_freelist_setup() succeeds for some queues but
|
|
* fails for subsequent queues.
|
|
*
|
|
* This should make the app exiting but better if we tell the
|
|
* device first.
|
|
*/
|
|
nfp_net_disable_queues(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Stop device: disable rx and tx functions to allow for reconfiguring. */
|
|
static void
|
|
nfp_net_stop(struct rte_eth_dev *dev)
|
|
{
|
|
int i;
|
|
struct nfp_net_hw *hw;
|
|
|
|
PMD_INIT_LOG(DEBUG, "Stop");
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
nfp_net_disable_queues(dev);
|
|
|
|
/* Clear queues */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
nfp_net_reset_tx_queue(
|
|
(struct nfp_net_txq *)dev->data->tx_queues[i]);
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
nfp_net_reset_rx_queue(
|
|
(struct nfp_net_rxq *)dev->data->rx_queues[i]);
|
|
}
|
|
|
|
if (hw->is_pf) {
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
|
|
/* Configure the physical port down */
|
|
nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 0);
|
|
else
|
|
nfp_eth_set_configured(dev->process_private,
|
|
hw->pf_port_idx, 0);
|
|
}
|
|
}
|
|
|
|
/* Set the link up. */
|
|
static int
|
|
nfp_net_set_link_up(struct rte_eth_dev *dev)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
|
|
PMD_DRV_LOG(DEBUG, "Set link up");
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (!hw->is_pf)
|
|
return -ENOTSUP;
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
|
|
/* Configure the physical port down */
|
|
return nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 1);
|
|
else
|
|
return nfp_eth_set_configured(dev->process_private,
|
|
hw->pf_port_idx, 1);
|
|
}
|
|
|
|
/* Set the link down. */
|
|
static int
|
|
nfp_net_set_link_down(struct rte_eth_dev *dev)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
|
|
PMD_DRV_LOG(DEBUG, "Set link down");
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (!hw->is_pf)
|
|
return -ENOTSUP;
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
|
|
/* Configure the physical port down */
|
|
return nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 0);
|
|
else
|
|
return nfp_eth_set_configured(dev->process_private,
|
|
hw->pf_port_idx, 0);
|
|
}
|
|
|
|
/* Reset and stop device. The device can not be restarted. */
|
|
static void
|
|
nfp_net_close(struct rte_eth_dev *dev)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
struct rte_pci_device *pci_dev;
|
|
int i;
|
|
|
|
PMD_INIT_LOG(DEBUG, "Close");
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
pci_dev = RTE_ETH_DEV_TO_PCI(dev);
|
|
|
|
/*
|
|
* We assume that the DPDK application is stopping all the
|
|
* threads/queues before calling the device close function.
|
|
*/
|
|
|
|
nfp_net_disable_queues(dev);
|
|
|
|
/* Clear queues */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
nfp_net_reset_tx_queue(
|
|
(struct nfp_net_txq *)dev->data->tx_queues[i]);
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
nfp_net_reset_rx_queue(
|
|
(struct nfp_net_rxq *)dev->data->rx_queues[i]);
|
|
}
|
|
|
|
rte_intr_disable(&pci_dev->intr_handle);
|
|
nn_cfg_writeb(hw, NFP_NET_CFG_LSC, 0xff);
|
|
|
|
/* unregister callback func from eal lib */
|
|
rte_intr_callback_unregister(&pci_dev->intr_handle,
|
|
nfp_net_dev_interrupt_handler,
|
|
(void *)dev);
|
|
|
|
/*
|
|
* The ixgbe PMD driver disables the pcie master on the
|
|
* device. The i40e does not...
|
|
*/
|
|
}
|
|
|
|
static int
|
|
nfp_net_promisc_enable(struct rte_eth_dev *dev)
|
|
{
|
|
uint32_t new_ctrl, update = 0;
|
|
struct nfp_net_hw *hw;
|
|
int ret;
|
|
|
|
PMD_DRV_LOG(DEBUG, "Promiscuous mode enable");
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (!(hw->cap & NFP_NET_CFG_CTRL_PROMISC)) {
|
|
PMD_INIT_LOG(INFO, "Promiscuous mode not supported");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (hw->ctrl & NFP_NET_CFG_CTRL_PROMISC) {
|
|
PMD_DRV_LOG(INFO, "Promiscuous mode already enabled");
|
|
return 0;
|
|
}
|
|
|
|
new_ctrl = hw->ctrl | NFP_NET_CFG_CTRL_PROMISC;
|
|
update = NFP_NET_CFG_UPDATE_GEN;
|
|
|
|
/*
|
|
* DPDK sets promiscuous mode on just after this call assuming
|
|
* it can not fail ...
|
|
*/
|
|
ret = nfp_net_reconfig(hw, new_ctrl, update);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
hw->ctrl = new_ctrl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_net_promisc_disable(struct rte_eth_dev *dev)
|
|
{
|
|
uint32_t new_ctrl, update = 0;
|
|
struct nfp_net_hw *hw;
|
|
int ret;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if ((hw->ctrl & NFP_NET_CFG_CTRL_PROMISC) == 0) {
|
|
PMD_DRV_LOG(INFO, "Promiscuous mode already disabled");
|
|
return 0;
|
|
}
|
|
|
|
new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_PROMISC;
|
|
update = NFP_NET_CFG_UPDATE_GEN;
|
|
|
|
/*
|
|
* DPDK sets promiscuous mode off just before this call
|
|
* assuming it can not fail ...
|
|
*/
|
|
ret = nfp_net_reconfig(hw, new_ctrl, update);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
hw->ctrl = new_ctrl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* return 0 means link status changed, -1 means not changed
|
|
*
|
|
* Wait to complete is needed as it can take up to 9 seconds to get the Link
|
|
* status.
|
|
*/
|
|
static int
|
|
nfp_net_link_update(struct rte_eth_dev *dev, __rte_unused int wait_to_complete)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
struct rte_eth_link link;
|
|
uint32_t nn_link_status;
|
|
int ret;
|
|
|
|
static const uint32_t ls_to_ethtool[] = {
|
|
[NFP_NET_CFG_STS_LINK_RATE_UNSUPPORTED] = ETH_SPEED_NUM_NONE,
|
|
[NFP_NET_CFG_STS_LINK_RATE_UNKNOWN] = ETH_SPEED_NUM_NONE,
|
|
[NFP_NET_CFG_STS_LINK_RATE_1G] = ETH_SPEED_NUM_1G,
|
|
[NFP_NET_CFG_STS_LINK_RATE_10G] = ETH_SPEED_NUM_10G,
|
|
[NFP_NET_CFG_STS_LINK_RATE_25G] = ETH_SPEED_NUM_25G,
|
|
[NFP_NET_CFG_STS_LINK_RATE_40G] = ETH_SPEED_NUM_40G,
|
|
[NFP_NET_CFG_STS_LINK_RATE_50G] = ETH_SPEED_NUM_50G,
|
|
[NFP_NET_CFG_STS_LINK_RATE_100G] = ETH_SPEED_NUM_100G,
|
|
};
|
|
|
|
PMD_DRV_LOG(DEBUG, "Link update");
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
nn_link_status = nn_cfg_readl(hw, NFP_NET_CFG_STS);
|
|
|
|
memset(&link, 0, sizeof(struct rte_eth_link));
|
|
|
|
if (nn_link_status & NFP_NET_CFG_STS_LINK)
|
|
link.link_status = ETH_LINK_UP;
|
|
|
|
link.link_duplex = ETH_LINK_FULL_DUPLEX;
|
|
|
|
nn_link_status = (nn_link_status >> NFP_NET_CFG_STS_LINK_RATE_SHIFT) &
|
|
NFP_NET_CFG_STS_LINK_RATE_MASK;
|
|
|
|
if (nn_link_status >= RTE_DIM(ls_to_ethtool))
|
|
link.link_speed = ETH_SPEED_NUM_NONE;
|
|
else
|
|
link.link_speed = ls_to_ethtool[nn_link_status];
|
|
|
|
ret = rte_eth_linkstatus_set(dev, &link);
|
|
if (ret == 0) {
|
|
if (link.link_status)
|
|
PMD_DRV_LOG(INFO, "NIC Link is Up");
|
|
else
|
|
PMD_DRV_LOG(INFO, "NIC Link is Down");
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nfp_net_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
|
|
{
|
|
int i;
|
|
struct nfp_net_hw *hw;
|
|
struct rte_eth_stats nfp_dev_stats;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* RTE_ETHDEV_QUEUE_STAT_CNTRS default value is 16 */
|
|
|
|
memset(&nfp_dev_stats, 0, sizeof(nfp_dev_stats));
|
|
|
|
/* reading per RX ring stats */
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
|
|
break;
|
|
|
|
nfp_dev_stats.q_ipackets[i] =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i));
|
|
|
|
nfp_dev_stats.q_ipackets[i] -=
|
|
hw->eth_stats_base.q_ipackets[i];
|
|
|
|
nfp_dev_stats.q_ibytes[i] =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i) + 0x8);
|
|
|
|
nfp_dev_stats.q_ibytes[i] -=
|
|
hw->eth_stats_base.q_ibytes[i];
|
|
}
|
|
|
|
/* reading per TX ring stats */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
|
|
break;
|
|
|
|
nfp_dev_stats.q_opackets[i] =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i));
|
|
|
|
nfp_dev_stats.q_opackets[i] -=
|
|
hw->eth_stats_base.q_opackets[i];
|
|
|
|
nfp_dev_stats.q_obytes[i] =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i) + 0x8);
|
|
|
|
nfp_dev_stats.q_obytes[i] -=
|
|
hw->eth_stats_base.q_obytes[i];
|
|
}
|
|
|
|
nfp_dev_stats.ipackets =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_FRAMES);
|
|
|
|
nfp_dev_stats.ipackets -= hw->eth_stats_base.ipackets;
|
|
|
|
nfp_dev_stats.ibytes =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_OCTETS);
|
|
|
|
nfp_dev_stats.ibytes -= hw->eth_stats_base.ibytes;
|
|
|
|
nfp_dev_stats.opackets =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_FRAMES);
|
|
|
|
nfp_dev_stats.opackets -= hw->eth_stats_base.opackets;
|
|
|
|
nfp_dev_stats.obytes =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_OCTETS);
|
|
|
|
nfp_dev_stats.obytes -= hw->eth_stats_base.obytes;
|
|
|
|
/* reading general device stats */
|
|
nfp_dev_stats.ierrors =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_ERRORS);
|
|
|
|
nfp_dev_stats.ierrors -= hw->eth_stats_base.ierrors;
|
|
|
|
nfp_dev_stats.oerrors =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_ERRORS);
|
|
|
|
nfp_dev_stats.oerrors -= hw->eth_stats_base.oerrors;
|
|
|
|
/* RX ring mbuf allocation failures */
|
|
nfp_dev_stats.rx_nombuf = dev->data->rx_mbuf_alloc_failed;
|
|
|
|
nfp_dev_stats.imissed =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_DISCARDS);
|
|
|
|
nfp_dev_stats.imissed -= hw->eth_stats_base.imissed;
|
|
|
|
if (stats) {
|
|
memcpy(stats, &nfp_dev_stats, sizeof(*stats));
|
|
return 0;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int
|
|
nfp_net_stats_reset(struct rte_eth_dev *dev)
|
|
{
|
|
int i;
|
|
struct nfp_net_hw *hw;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/*
|
|
* hw->eth_stats_base records the per counter starting point.
|
|
* Lets update it now
|
|
*/
|
|
|
|
/* reading per RX ring stats */
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
|
|
break;
|
|
|
|
hw->eth_stats_base.q_ipackets[i] =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i));
|
|
|
|
hw->eth_stats_base.q_ibytes[i] =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i) + 0x8);
|
|
}
|
|
|
|
/* reading per TX ring stats */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
|
|
break;
|
|
|
|
hw->eth_stats_base.q_opackets[i] =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i));
|
|
|
|
hw->eth_stats_base.q_obytes[i] =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i) + 0x8);
|
|
}
|
|
|
|
hw->eth_stats_base.ipackets =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_FRAMES);
|
|
|
|
hw->eth_stats_base.ibytes =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_OCTETS);
|
|
|
|
hw->eth_stats_base.opackets =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_FRAMES);
|
|
|
|
hw->eth_stats_base.obytes =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_OCTETS);
|
|
|
|
/* reading general device stats */
|
|
hw->eth_stats_base.ierrors =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_ERRORS);
|
|
|
|
hw->eth_stats_base.oerrors =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_ERRORS);
|
|
|
|
/* RX ring mbuf allocation failures */
|
|
dev->data->rx_mbuf_alloc_failed = 0;
|
|
|
|
hw->eth_stats_base.imissed =
|
|
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_DISCARDS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_net_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
dev_info->max_rx_queues = (uint16_t)hw->max_rx_queues;
|
|
dev_info->max_tx_queues = (uint16_t)hw->max_tx_queues;
|
|
dev_info->min_rx_bufsize = RTE_ETHER_MIN_MTU;
|
|
dev_info->max_rx_pktlen = hw->max_mtu;
|
|
/* Next should change when PF support is implemented */
|
|
dev_info->max_mac_addrs = 1;
|
|
|
|
if (hw->cap & NFP_NET_CFG_CTRL_RXVLAN)
|
|
dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
|
|
|
|
if (hw->cap & NFP_NET_CFG_CTRL_RXCSUM)
|
|
dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_IPV4_CKSUM |
|
|
DEV_RX_OFFLOAD_UDP_CKSUM |
|
|
DEV_RX_OFFLOAD_TCP_CKSUM;
|
|
|
|
dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_JUMBO_FRAME |
|
|
DEV_RX_OFFLOAD_RSS_HASH;
|
|
|
|
if (hw->cap & NFP_NET_CFG_CTRL_TXVLAN)
|
|
dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
|
|
|
|
if (hw->cap & NFP_NET_CFG_CTRL_TXCSUM)
|
|
dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_IPV4_CKSUM |
|
|
DEV_TX_OFFLOAD_UDP_CKSUM |
|
|
DEV_TX_OFFLOAD_TCP_CKSUM;
|
|
|
|
if (hw->cap & NFP_NET_CFG_CTRL_LSO_ANY)
|
|
dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO;
|
|
|
|
if (hw->cap & NFP_NET_CFG_CTRL_GATHER)
|
|
dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_MULTI_SEGS;
|
|
|
|
dev_info->default_rxconf = (struct rte_eth_rxconf) {
|
|
.rx_thresh = {
|
|
.pthresh = DEFAULT_RX_PTHRESH,
|
|
.hthresh = DEFAULT_RX_HTHRESH,
|
|
.wthresh = DEFAULT_RX_WTHRESH,
|
|
},
|
|
.rx_free_thresh = DEFAULT_RX_FREE_THRESH,
|
|
.rx_drop_en = 0,
|
|
};
|
|
|
|
dev_info->default_txconf = (struct rte_eth_txconf) {
|
|
.tx_thresh = {
|
|
.pthresh = DEFAULT_TX_PTHRESH,
|
|
.hthresh = DEFAULT_TX_HTHRESH,
|
|
.wthresh = DEFAULT_TX_WTHRESH,
|
|
},
|
|
.tx_free_thresh = DEFAULT_TX_FREE_THRESH,
|
|
.tx_rs_thresh = DEFAULT_TX_RSBIT_THRESH,
|
|
};
|
|
|
|
dev_info->flow_type_rss_offloads = ETH_RSS_IPV4 |
|
|
ETH_RSS_NONFRAG_IPV4_TCP |
|
|
ETH_RSS_NONFRAG_IPV4_UDP |
|
|
ETH_RSS_IPV6 |
|
|
ETH_RSS_NONFRAG_IPV6_TCP |
|
|
ETH_RSS_NONFRAG_IPV6_UDP;
|
|
|
|
dev_info->reta_size = NFP_NET_CFG_RSS_ITBL_SZ;
|
|
dev_info->hash_key_size = NFP_NET_CFG_RSS_KEY_SZ;
|
|
|
|
dev_info->speed_capa = ETH_LINK_SPEED_1G | ETH_LINK_SPEED_10G |
|
|
ETH_LINK_SPEED_25G | ETH_LINK_SPEED_40G |
|
|
ETH_LINK_SPEED_50G | ETH_LINK_SPEED_100G;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const uint32_t *
|
|
nfp_net_supported_ptypes_get(struct rte_eth_dev *dev)
|
|
{
|
|
static const uint32_t ptypes[] = {
|
|
/* refers to nfp_net_set_hash() */
|
|
RTE_PTYPE_INNER_L3_IPV4,
|
|
RTE_PTYPE_INNER_L3_IPV6,
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT,
|
|
RTE_PTYPE_INNER_L4_MASK,
|
|
RTE_PTYPE_UNKNOWN
|
|
};
|
|
|
|
if (dev->rx_pkt_burst == nfp_net_recv_pkts)
|
|
return ptypes;
|
|
return NULL;
|
|
}
|
|
|
|
static uint32_t
|
|
nfp_net_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_idx)
|
|
{
|
|
struct nfp_net_rxq *rxq;
|
|
struct nfp_net_rx_desc *rxds;
|
|
uint32_t idx;
|
|
uint32_t count;
|
|
|
|
rxq = (struct nfp_net_rxq *)dev->data->rx_queues[queue_idx];
|
|
|
|
idx = rxq->rd_p;
|
|
|
|
count = 0;
|
|
|
|
/*
|
|
* Other PMDs are just checking the DD bit in intervals of 4
|
|
* descriptors and counting all four if the first has the DD
|
|
* bit on. Of course, this is not accurate but can be good for
|
|
* performance. But ideally that should be done in descriptors
|
|
* chunks belonging to the same cache line
|
|
*/
|
|
|
|
while (count < rxq->rx_count) {
|
|
rxds = &rxq->rxds[idx];
|
|
if ((rxds->rxd.meta_len_dd & PCIE_DESC_RX_DD) == 0)
|
|
break;
|
|
|
|
count++;
|
|
idx++;
|
|
|
|
/* Wrapping? */
|
|
if ((idx) == rxq->rx_count)
|
|
idx = 0;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int
|
|
nfp_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
|
|
{
|
|
struct rte_pci_device *pci_dev;
|
|
struct nfp_net_hw *hw;
|
|
int base = 0;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
pci_dev = RTE_ETH_DEV_TO_PCI(dev);
|
|
|
|
if (pci_dev->intr_handle.type != RTE_INTR_HANDLE_UIO)
|
|
base = 1;
|
|
|
|
/* Make sure all updates are written before un-masking */
|
|
rte_wmb();
|
|
nn_cfg_writeb(hw, NFP_NET_CFG_ICR(base + queue_id),
|
|
NFP_NET_CFG_ICR_UNMASKED);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
|
|
{
|
|
struct rte_pci_device *pci_dev;
|
|
struct nfp_net_hw *hw;
|
|
int base = 0;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
pci_dev = RTE_ETH_DEV_TO_PCI(dev);
|
|
|
|
if (pci_dev->intr_handle.type != RTE_INTR_HANDLE_UIO)
|
|
base = 1;
|
|
|
|
/* Make sure all updates are written before un-masking */
|
|
rte_wmb();
|
|
nn_cfg_writeb(hw, NFP_NET_CFG_ICR(base + queue_id), 0x1);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nfp_net_dev_link_status_print(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
|
|
struct rte_eth_link link;
|
|
|
|
rte_eth_linkstatus_get(dev, &link);
|
|
if (link.link_status)
|
|
PMD_DRV_LOG(INFO, "Port %d: Link Up - speed %u Mbps - %s",
|
|
dev->data->port_id, link.link_speed,
|
|
link.link_duplex == ETH_LINK_FULL_DUPLEX
|
|
? "full-duplex" : "half-duplex");
|
|
else
|
|
PMD_DRV_LOG(INFO, " Port %d: Link Down",
|
|
dev->data->port_id);
|
|
|
|
PMD_DRV_LOG(INFO, "PCI Address: " PCI_PRI_FMT,
|
|
pci_dev->addr.domain, pci_dev->addr.bus,
|
|
pci_dev->addr.devid, pci_dev->addr.function);
|
|
}
|
|
|
|
/* Interrupt configuration and handling */
|
|
|
|
/*
|
|
* nfp_net_irq_unmask - Unmask an interrupt
|
|
*
|
|
* If MSI-X auto-masking is enabled clear the mask bit, otherwise
|
|
* clear the ICR for the entry.
|
|
*/
|
|
static void
|
|
nfp_net_irq_unmask(struct rte_eth_dev *dev)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
struct rte_pci_device *pci_dev;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
pci_dev = RTE_ETH_DEV_TO_PCI(dev);
|
|
|
|
if (hw->ctrl & NFP_NET_CFG_CTRL_MSIXAUTO) {
|
|
/* If MSI-X auto-masking is used, clear the entry */
|
|
rte_wmb();
|
|
rte_intr_ack(&pci_dev->intr_handle);
|
|
} else {
|
|
/* Make sure all updates are written before un-masking */
|
|
rte_wmb();
|
|
nn_cfg_writeb(hw, NFP_NET_CFG_ICR(NFP_NET_IRQ_LSC_IDX),
|
|
NFP_NET_CFG_ICR_UNMASKED);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nfp_net_dev_interrupt_handler(void *param)
|
|
{
|
|
int64_t timeout;
|
|
struct rte_eth_link link;
|
|
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
|
|
|
|
PMD_DRV_LOG(DEBUG, "We got a LSC interrupt!!!");
|
|
|
|
rte_eth_linkstatus_get(dev, &link);
|
|
|
|
nfp_net_link_update(dev, 0);
|
|
|
|
/* likely to up */
|
|
if (!link.link_status) {
|
|
/* handle it 1 sec later, wait it being stable */
|
|
timeout = NFP_NET_LINK_UP_CHECK_TIMEOUT;
|
|
/* likely to down */
|
|
} else {
|
|
/* handle it 4 sec later, wait it being stable */
|
|
timeout = NFP_NET_LINK_DOWN_CHECK_TIMEOUT;
|
|
}
|
|
|
|
if (rte_eal_alarm_set(timeout * 1000,
|
|
nfp_net_dev_interrupt_delayed_handler,
|
|
(void *)dev) < 0) {
|
|
PMD_INIT_LOG(ERR, "Error setting alarm");
|
|
/* Unmasking */
|
|
nfp_net_irq_unmask(dev);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Interrupt handler which shall be registered for alarm callback for delayed
|
|
* handling specific interrupt to wait for the stable nic state. As the NIC
|
|
* interrupt state is not stable for nfp after link is just down, it needs
|
|
* to wait 4 seconds to get the stable status.
|
|
*
|
|
* @param handle Pointer to interrupt handle.
|
|
* @param param The address of parameter (struct rte_eth_dev *)
|
|
*
|
|
* @return void
|
|
*/
|
|
static void
|
|
nfp_net_dev_interrupt_delayed_handler(void *param)
|
|
{
|
|
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
|
|
|
|
nfp_net_link_update(dev, 0);
|
|
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
|
|
|
|
nfp_net_dev_link_status_print(dev);
|
|
|
|
/* Unmasking */
|
|
nfp_net_irq_unmask(dev);
|
|
}
|
|
|
|
static int
|
|
nfp_net_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* check that mtu is within the allowed range */
|
|
if (mtu < RTE_ETHER_MIN_MTU || (uint32_t)mtu > hw->max_mtu)
|
|
return -EINVAL;
|
|
|
|
/* mtu setting is forbidden if port is started */
|
|
if (dev->data->dev_started) {
|
|
PMD_DRV_LOG(ERR, "port %d must be stopped before configuration",
|
|
dev->data->port_id);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* switch to jumbo mode if needed */
|
|
if ((uint32_t)mtu > RTE_ETHER_MAX_LEN)
|
|
dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
|
|
else
|
|
dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME;
|
|
|
|
/* update max frame size */
|
|
dev->data->dev_conf.rxmode.max_rx_pkt_len = (uint32_t)mtu;
|
|
|
|
/* writing to configuration space */
|
|
nn_cfg_writel(hw, NFP_NET_CFG_MTU, (uint32_t)mtu);
|
|
|
|
hw->mtu = mtu;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_net_rx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx, uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mp)
|
|
{
|
|
const struct rte_memzone *tz;
|
|
struct nfp_net_rxq *rxq;
|
|
struct nfp_net_hw *hw;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/* Validating number of descriptors */
|
|
if (((nb_desc * sizeof(struct nfp_net_rx_desc)) % 128) != 0 ||
|
|
(nb_desc > NFP_NET_MAX_RX_DESC) ||
|
|
(nb_desc < NFP_NET_MIN_RX_DESC)) {
|
|
PMD_DRV_LOG(ERR, "Wrong nb_desc value");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Free memory prior to re-allocation if needed. This is the case after
|
|
* calling nfp_net_stop
|
|
*/
|
|
if (dev->data->rx_queues[queue_idx]) {
|
|
nfp_net_rx_queue_release(dev->data->rx_queues[queue_idx]);
|
|
dev->data->rx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* Allocating rx queue data structure */
|
|
rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct nfp_net_rxq),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rxq == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Hw queues mapping based on firmware configuration */
|
|
rxq->qidx = queue_idx;
|
|
rxq->fl_qcidx = queue_idx * hw->stride_rx;
|
|
rxq->rx_qcidx = rxq->fl_qcidx + (hw->stride_rx - 1);
|
|
rxq->qcp_fl = hw->rx_bar + NFP_QCP_QUEUE_OFF(rxq->fl_qcidx);
|
|
rxq->qcp_rx = hw->rx_bar + NFP_QCP_QUEUE_OFF(rxq->rx_qcidx);
|
|
|
|
/*
|
|
* Tracking mbuf size for detecting a potential mbuf overflow due to
|
|
* RX offset
|
|
*/
|
|
rxq->mem_pool = mp;
|
|
rxq->mbuf_size = rxq->mem_pool->elt_size;
|
|
rxq->mbuf_size -= (sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM);
|
|
hw->flbufsz = rxq->mbuf_size;
|
|
|
|
rxq->rx_count = nb_desc;
|
|
rxq->port_id = dev->data->port_id;
|
|
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
|
|
rxq->drop_en = rx_conf->rx_drop_en;
|
|
|
|
/*
|
|
* Allocate RX ring hardware descriptors. A memzone large enough to
|
|
* handle the maximum ring size is allocated in order to allow for
|
|
* resizing in later calls to the queue setup function.
|
|
*/
|
|
tz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
|
|
sizeof(struct nfp_net_rx_desc) *
|
|
NFP_NET_MAX_RX_DESC, NFP_MEMZONE_ALIGN,
|
|
socket_id);
|
|
|
|
if (tz == NULL) {
|
|
PMD_DRV_LOG(ERR, "Error allocating rx dma");
|
|
nfp_net_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Saving physical and virtual addresses for the RX ring */
|
|
rxq->dma = (uint64_t)tz->iova;
|
|
rxq->rxds = (struct nfp_net_rx_desc *)tz->addr;
|
|
|
|
/* mbuf pointers array for referencing mbufs linked to RX descriptors */
|
|
rxq->rxbufs = rte_zmalloc_socket("rxq->rxbufs",
|
|
sizeof(*rxq->rxbufs) * nb_desc,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rxq->rxbufs == NULL) {
|
|
nfp_net_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
PMD_RX_LOG(DEBUG, "rxbufs=%p hw_ring=%p dma_addr=0x%" PRIx64,
|
|
rxq->rxbufs, rxq->rxds, (unsigned long int)rxq->dma);
|
|
|
|
nfp_net_reset_rx_queue(rxq);
|
|
|
|
dev->data->rx_queues[queue_idx] = rxq;
|
|
rxq->hw = hw;
|
|
|
|
/*
|
|
* Telling the HW about the physical address of the RX ring and number
|
|
* of descriptors in log2 format
|
|
*/
|
|
nn_cfg_writeq(hw, NFP_NET_CFG_RXR_ADDR(queue_idx), rxq->dma);
|
|
nn_cfg_writeb(hw, NFP_NET_CFG_RXR_SZ(queue_idx), rte_log2_u32(nb_desc));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_net_rx_fill_freelist(struct nfp_net_rxq *rxq)
|
|
{
|
|
struct nfp_net_rx_buff *rxe = rxq->rxbufs;
|
|
uint64_t dma_addr;
|
|
unsigned i;
|
|
|
|
PMD_RX_LOG(DEBUG, "nfp_net_rx_fill_freelist for %u descriptors",
|
|
rxq->rx_count);
|
|
|
|
for (i = 0; i < rxq->rx_count; i++) {
|
|
struct nfp_net_rx_desc *rxd;
|
|
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(rxq->mem_pool);
|
|
|
|
if (mbuf == NULL) {
|
|
PMD_DRV_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
|
|
(unsigned)rxq->qidx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dma_addr = rte_cpu_to_le_64(RTE_MBUF_DMA_ADDR_DEFAULT(mbuf));
|
|
|
|
rxd = &rxq->rxds[i];
|
|
rxd->fld.dd = 0;
|
|
rxd->fld.dma_addr_hi = (dma_addr >> 32) & 0xff;
|
|
rxd->fld.dma_addr_lo = dma_addr & 0xffffffff;
|
|
rxe[i].mbuf = mbuf;
|
|
PMD_RX_LOG(DEBUG, "[%d]: %" PRIx64, i, dma_addr);
|
|
}
|
|
|
|
/* Make sure all writes are flushed before telling the hardware */
|
|
rte_wmb();
|
|
|
|
/* Not advertising the whole ring as the firmware gets confused if so */
|
|
PMD_RX_LOG(DEBUG, "Increment FL write pointer in %u",
|
|
rxq->rx_count - 1);
|
|
|
|
nfp_qcp_ptr_add(rxq->qcp_fl, NFP_QCP_WRITE_PTR, rxq->rx_count - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_net_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
|
|
uint16_t nb_desc, unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
const struct rte_memzone *tz;
|
|
struct nfp_net_txq *txq;
|
|
uint16_t tx_free_thresh;
|
|
struct nfp_net_hw *hw;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/* Validating number of descriptors */
|
|
if (((nb_desc * sizeof(struct nfp_net_tx_desc)) % 128) != 0 ||
|
|
(nb_desc > NFP_NET_MAX_TX_DESC) ||
|
|
(nb_desc < NFP_NET_MIN_TX_DESC)) {
|
|
PMD_DRV_LOG(ERR, "Wrong nb_desc value");
|
|
return -EINVAL;
|
|
}
|
|
|
|
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
|
|
tx_conf->tx_free_thresh :
|
|
DEFAULT_TX_FREE_THRESH);
|
|
|
|
if (tx_free_thresh > (nb_desc)) {
|
|
PMD_DRV_LOG(ERR,
|
|
"tx_free_thresh must be less than the number of TX "
|
|
"descriptors. (tx_free_thresh=%u port=%d "
|
|
"queue=%d)", (unsigned int)tx_free_thresh,
|
|
dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Free memory prior to re-allocation if needed. This is the case after
|
|
* calling nfp_net_stop
|
|
*/
|
|
if (dev->data->tx_queues[queue_idx]) {
|
|
PMD_TX_LOG(DEBUG, "Freeing memory prior to re-allocation %d",
|
|
queue_idx);
|
|
nfp_net_tx_queue_release(dev->data->tx_queues[queue_idx]);
|
|
dev->data->tx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* Allocating tx queue data structure */
|
|
txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct nfp_net_txq),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq == NULL) {
|
|
PMD_DRV_LOG(ERR, "Error allocating tx dma");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Allocate TX ring hardware descriptors. A memzone large enough to
|
|
* handle the maximum ring size is allocated in order to allow for
|
|
* resizing in later calls to the queue setup function.
|
|
*/
|
|
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
|
|
sizeof(struct nfp_net_tx_desc) *
|
|
NFP_NET_MAX_TX_DESC, NFP_MEMZONE_ALIGN,
|
|
socket_id);
|
|
if (tz == NULL) {
|
|
PMD_DRV_LOG(ERR, "Error allocating tx dma");
|
|
nfp_net_tx_queue_release(txq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
txq->tx_count = nb_desc;
|
|
txq->tx_free_thresh = tx_free_thresh;
|
|
txq->tx_pthresh = tx_conf->tx_thresh.pthresh;
|
|
txq->tx_hthresh = tx_conf->tx_thresh.hthresh;
|
|
txq->tx_wthresh = tx_conf->tx_thresh.wthresh;
|
|
|
|
/* queue mapping based on firmware configuration */
|
|
txq->qidx = queue_idx;
|
|
txq->tx_qcidx = queue_idx * hw->stride_tx;
|
|
txq->qcp_q = hw->tx_bar + NFP_QCP_QUEUE_OFF(txq->tx_qcidx);
|
|
|
|
txq->port_id = dev->data->port_id;
|
|
|
|
/* Saving physical and virtual addresses for the TX ring */
|
|
txq->dma = (uint64_t)tz->iova;
|
|
txq->txds = (struct nfp_net_tx_desc *)tz->addr;
|
|
|
|
/* mbuf pointers array for referencing mbufs linked to TX descriptors */
|
|
txq->txbufs = rte_zmalloc_socket("txq->txbufs",
|
|
sizeof(*txq->txbufs) * nb_desc,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq->txbufs == NULL) {
|
|
nfp_net_tx_queue_release(txq);
|
|
return -ENOMEM;
|
|
}
|
|
PMD_TX_LOG(DEBUG, "txbufs=%p hw_ring=%p dma_addr=0x%" PRIx64,
|
|
txq->txbufs, txq->txds, (unsigned long int)txq->dma);
|
|
|
|
nfp_net_reset_tx_queue(txq);
|
|
|
|
dev->data->tx_queues[queue_idx] = txq;
|
|
txq->hw = hw;
|
|
|
|
/*
|
|
* Telling the HW about the physical address of the TX ring and number
|
|
* of descriptors in log2 format
|
|
*/
|
|
nn_cfg_writeq(hw, NFP_NET_CFG_TXR_ADDR(queue_idx), txq->dma);
|
|
nn_cfg_writeb(hw, NFP_NET_CFG_TXR_SZ(queue_idx), rte_log2_u32(nb_desc));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* nfp_net_tx_tso - Set TX descriptor for TSO */
|
|
static inline void
|
|
nfp_net_tx_tso(struct nfp_net_txq *txq, struct nfp_net_tx_desc *txd,
|
|
struct rte_mbuf *mb)
|
|
{
|
|
uint64_t ol_flags;
|
|
struct nfp_net_hw *hw = txq->hw;
|
|
|
|
if (!(hw->cap & NFP_NET_CFG_CTRL_LSO_ANY))
|
|
goto clean_txd;
|
|
|
|
ol_flags = mb->ol_flags;
|
|
|
|
if (!(ol_flags & PKT_TX_TCP_SEG))
|
|
goto clean_txd;
|
|
|
|
txd->l3_offset = mb->l2_len;
|
|
txd->l4_offset = mb->l2_len + mb->l3_len;
|
|
txd->lso_hdrlen = mb->l2_len + mb->l3_len + mb->l4_len;
|
|
txd->mss = rte_cpu_to_le_16(mb->tso_segsz);
|
|
txd->flags = PCIE_DESC_TX_LSO;
|
|
return;
|
|
|
|
clean_txd:
|
|
txd->flags = 0;
|
|
txd->l3_offset = 0;
|
|
txd->l4_offset = 0;
|
|
txd->lso_hdrlen = 0;
|
|
txd->mss = 0;
|
|
}
|
|
|
|
/* nfp_net_tx_cksum - Set TX CSUM offload flags in TX descriptor */
|
|
static inline void
|
|
nfp_net_tx_cksum(struct nfp_net_txq *txq, struct nfp_net_tx_desc *txd,
|
|
struct rte_mbuf *mb)
|
|
{
|
|
uint64_t ol_flags;
|
|
struct nfp_net_hw *hw = txq->hw;
|
|
|
|
if (!(hw->cap & NFP_NET_CFG_CTRL_TXCSUM))
|
|
return;
|
|
|
|
ol_flags = mb->ol_flags;
|
|
|
|
/* IPv6 does not need checksum */
|
|
if (ol_flags & PKT_TX_IP_CKSUM)
|
|
txd->flags |= PCIE_DESC_TX_IP4_CSUM;
|
|
|
|
switch (ol_flags & PKT_TX_L4_MASK) {
|
|
case PKT_TX_UDP_CKSUM:
|
|
txd->flags |= PCIE_DESC_TX_UDP_CSUM;
|
|
break;
|
|
case PKT_TX_TCP_CKSUM:
|
|
txd->flags |= PCIE_DESC_TX_TCP_CSUM;
|
|
break;
|
|
}
|
|
|
|
if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
|
|
txd->flags |= PCIE_DESC_TX_CSUM;
|
|
}
|
|
|
|
/* nfp_net_rx_cksum - set mbuf checksum flags based on RX descriptor flags */
|
|
static inline void
|
|
nfp_net_rx_cksum(struct nfp_net_rxq *rxq, struct nfp_net_rx_desc *rxd,
|
|
struct rte_mbuf *mb)
|
|
{
|
|
struct nfp_net_hw *hw = rxq->hw;
|
|
|
|
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RXCSUM))
|
|
return;
|
|
|
|
/* If IPv4 and IP checksum error, fail */
|
|
if (unlikely((rxd->rxd.flags & PCIE_DESC_RX_IP4_CSUM) &&
|
|
!(rxd->rxd.flags & PCIE_DESC_RX_IP4_CSUM_OK)))
|
|
mb->ol_flags |= PKT_RX_IP_CKSUM_BAD;
|
|
else
|
|
mb->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
|
|
/* If neither UDP nor TCP return */
|
|
if (!(rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM) &&
|
|
!(rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM))
|
|
return;
|
|
|
|
if (likely(rxd->rxd.flags & PCIE_DESC_RX_L4_CSUM_OK))
|
|
mb->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
else
|
|
mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
}
|
|
|
|
#define NFP_HASH_OFFSET ((uint8_t *)mbuf->buf_addr + mbuf->data_off - 4)
|
|
#define NFP_HASH_TYPE_OFFSET ((uint8_t *)mbuf->buf_addr + mbuf->data_off - 8)
|
|
|
|
#define NFP_DESC_META_LEN(d) (d->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK)
|
|
|
|
/*
|
|
* nfp_net_set_hash - Set mbuf hash data
|
|
*
|
|
* The RSS hash and hash-type are pre-pended to the packet data.
|
|
* Extract and decode it and set the mbuf fields.
|
|
*/
|
|
static inline void
|
|
nfp_net_set_hash(struct nfp_net_rxq *rxq, struct nfp_net_rx_desc *rxd,
|
|
struct rte_mbuf *mbuf)
|
|
{
|
|
struct nfp_net_hw *hw = rxq->hw;
|
|
uint8_t *meta_offset;
|
|
uint32_t meta_info;
|
|
uint32_t hash = 0;
|
|
uint32_t hash_type = 0;
|
|
|
|
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
|
|
return;
|
|
|
|
/* this is true for new firmwares */
|
|
if (likely(((hw->cap & NFP_NET_CFG_CTRL_RSS2) ||
|
|
(NFD_CFG_MAJOR_VERSION_of(hw->ver) == 4)) &&
|
|
NFP_DESC_META_LEN(rxd))) {
|
|
/*
|
|
* new metadata api:
|
|
* <---- 32 bit ----->
|
|
* m field type word
|
|
* e data field #2
|
|
* t data field #1
|
|
* a data field #0
|
|
* ====================
|
|
* packet data
|
|
*
|
|
* Field type word contains up to 8 4bit field types
|
|
* A 4bit field type refers to a data field word
|
|
* A data field word can have several 4bit field types
|
|
*/
|
|
meta_offset = rte_pktmbuf_mtod(mbuf, uint8_t *);
|
|
meta_offset -= NFP_DESC_META_LEN(rxd);
|
|
meta_info = rte_be_to_cpu_32(*(uint32_t *)meta_offset);
|
|
meta_offset += 4;
|
|
/* NFP PMD just supports metadata for hashing */
|
|
switch (meta_info & NFP_NET_META_FIELD_MASK) {
|
|
case NFP_NET_META_HASH:
|
|
/* next field type is about the hash type */
|
|
meta_info >>= NFP_NET_META_FIELD_SIZE;
|
|
/* hash value is in the data field */
|
|
hash = rte_be_to_cpu_32(*(uint32_t *)meta_offset);
|
|
hash_type = meta_info & NFP_NET_META_FIELD_MASK;
|
|
break;
|
|
default:
|
|
/* Unsupported metadata can be a performance issue */
|
|
return;
|
|
}
|
|
} else {
|
|
if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
|
|
return;
|
|
|
|
hash = rte_be_to_cpu_32(*(uint32_t *)NFP_HASH_OFFSET);
|
|
hash_type = rte_be_to_cpu_32(*(uint32_t *)NFP_HASH_TYPE_OFFSET);
|
|
}
|
|
|
|
mbuf->hash.rss = hash;
|
|
mbuf->ol_flags |= PKT_RX_RSS_HASH;
|
|
|
|
switch (hash_type) {
|
|
case NFP_NET_RSS_IPV4:
|
|
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV4;
|
|
break;
|
|
case NFP_NET_RSS_IPV6:
|
|
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6;
|
|
break;
|
|
case NFP_NET_RSS_IPV6_EX:
|
|
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
|
|
break;
|
|
case NFP_NET_RSS_IPV4_TCP:
|
|
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
|
|
break;
|
|
case NFP_NET_RSS_IPV6_TCP:
|
|
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
|
|
break;
|
|
case NFP_NET_RSS_IPV4_UDP:
|
|
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
|
|
break;
|
|
case NFP_NET_RSS_IPV6_UDP:
|
|
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
|
|
break;
|
|
default:
|
|
mbuf->packet_type |= RTE_PTYPE_INNER_L4_MASK;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
nfp_net_mbuf_alloc_failed(struct nfp_net_rxq *rxq)
|
|
{
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
|
|
}
|
|
|
|
#define NFP_DESC_META_LEN(d) (d->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK)
|
|
|
|
/*
|
|
* RX path design:
|
|
*
|
|
* There are some decisions to take:
|
|
* 1) How to check DD RX descriptors bit
|
|
* 2) How and when to allocate new mbufs
|
|
*
|
|
* Current implementation checks just one single DD bit each loop. As each
|
|
* descriptor is 8 bytes, it is likely a good idea to check descriptors in
|
|
* a single cache line instead. Tests with this change have not shown any
|
|
* performance improvement but it requires further investigation. For example,
|
|
* depending on which descriptor is next, the number of descriptors could be
|
|
* less than 8 for just checking those in the same cache line. This implies
|
|
* extra work which could be counterproductive by itself. Indeed, last firmware
|
|
* changes are just doing this: writing several descriptors with the DD bit
|
|
* for saving PCIe bandwidth and DMA operations from the NFP.
|
|
*
|
|
* Mbuf allocation is done when a new packet is received. Then the descriptor
|
|
* is automatically linked with the new mbuf and the old one is given to the
|
|
* user. The main drawback with this design is mbuf allocation is heavier than
|
|
* using bulk allocations allowed by DPDK with rte_mempool_get_bulk. From the
|
|
* cache point of view it does not seem allocating the mbuf early on as we are
|
|
* doing now have any benefit at all. Again, tests with this change have not
|
|
* shown any improvement. Also, rte_mempool_get_bulk returns all or nothing
|
|
* so looking at the implications of this type of allocation should be studied
|
|
* deeply
|
|
*/
|
|
|
|
static uint16_t
|
|
nfp_net_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct nfp_net_rxq *rxq;
|
|
struct nfp_net_rx_desc *rxds;
|
|
struct nfp_net_rx_buff *rxb;
|
|
struct nfp_net_hw *hw;
|
|
struct rte_mbuf *mb;
|
|
struct rte_mbuf *new_mb;
|
|
uint16_t nb_hold;
|
|
uint64_t dma_addr;
|
|
int avail;
|
|
|
|
rxq = rx_queue;
|
|
if (unlikely(rxq == NULL)) {
|
|
/*
|
|
* DPDK just checks the queue is lower than max queues
|
|
* enabled. But the queue needs to be configured
|
|
*/
|
|
RTE_LOG_DP(ERR, PMD, "RX Bad queue\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
hw = rxq->hw;
|
|
avail = 0;
|
|
nb_hold = 0;
|
|
|
|
while (avail < nb_pkts) {
|
|
rxb = &rxq->rxbufs[rxq->rd_p];
|
|
if (unlikely(rxb == NULL)) {
|
|
RTE_LOG_DP(ERR, PMD, "rxb does not exist!\n");
|
|
break;
|
|
}
|
|
|
|
rxds = &rxq->rxds[rxq->rd_p];
|
|
if ((rxds->rxd.meta_len_dd & PCIE_DESC_RX_DD) == 0)
|
|
break;
|
|
|
|
/*
|
|
* Memory barrier to ensure that we won't do other
|
|
* reads before the DD bit.
|
|
*/
|
|
rte_rmb();
|
|
|
|
/*
|
|
* We got a packet. Let's alloc a new mbuf for refilling the
|
|
* free descriptor ring as soon as possible
|
|
*/
|
|
new_mb = rte_pktmbuf_alloc(rxq->mem_pool);
|
|
if (unlikely(new_mb == NULL)) {
|
|
RTE_LOG_DP(DEBUG, PMD,
|
|
"RX mbuf alloc failed port_id=%u queue_id=%u\n",
|
|
rxq->port_id, (unsigned int)rxq->qidx);
|
|
nfp_net_mbuf_alloc_failed(rxq);
|
|
break;
|
|
}
|
|
|
|
nb_hold++;
|
|
|
|
/*
|
|
* Grab the mbuf and refill the descriptor with the
|
|
* previously allocated mbuf
|
|
*/
|
|
mb = rxb->mbuf;
|
|
rxb->mbuf = new_mb;
|
|
|
|
PMD_RX_LOG(DEBUG, "Packet len: %u, mbuf_size: %u",
|
|
rxds->rxd.data_len, rxq->mbuf_size);
|
|
|
|
/* Size of this segment */
|
|
mb->data_len = rxds->rxd.data_len - NFP_DESC_META_LEN(rxds);
|
|
/* Size of the whole packet. We just support 1 segment */
|
|
mb->pkt_len = rxds->rxd.data_len - NFP_DESC_META_LEN(rxds);
|
|
|
|
if (unlikely((mb->data_len + hw->rx_offset) >
|
|
rxq->mbuf_size)) {
|
|
/*
|
|
* This should not happen and the user has the
|
|
* responsibility of avoiding it. But we have
|
|
* to give some info about the error
|
|
*/
|
|
RTE_LOG_DP(ERR, PMD,
|
|
"mbuf overflow likely due to the RX offset.\n"
|
|
"\t\tYour mbuf size should have extra space for"
|
|
" RX offset=%u bytes.\n"
|
|
"\t\tCurrently you just have %u bytes available"
|
|
" but the received packet is %u bytes long",
|
|
hw->rx_offset,
|
|
rxq->mbuf_size - hw->rx_offset,
|
|
mb->data_len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Filling the received mbuf with packet info */
|
|
if (hw->rx_offset)
|
|
mb->data_off = RTE_PKTMBUF_HEADROOM + hw->rx_offset;
|
|
else
|
|
mb->data_off = RTE_PKTMBUF_HEADROOM +
|
|
NFP_DESC_META_LEN(rxds);
|
|
|
|
/* No scatter mode supported */
|
|
mb->nb_segs = 1;
|
|
mb->next = NULL;
|
|
|
|
mb->port = rxq->port_id;
|
|
|
|
/* Checking the RSS flag */
|
|
nfp_net_set_hash(rxq, rxds, mb);
|
|
|
|
/* Checking the checksum flag */
|
|
nfp_net_rx_cksum(rxq, rxds, mb);
|
|
|
|
if ((rxds->rxd.flags & PCIE_DESC_RX_VLAN) &&
|
|
(hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN)) {
|
|
mb->vlan_tci = rte_cpu_to_le_32(rxds->rxd.vlan);
|
|
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
|
|
}
|
|
|
|
/* Adding the mbuf to the mbuf array passed by the app */
|
|
rx_pkts[avail++] = mb;
|
|
|
|
/* Now resetting and updating the descriptor */
|
|
rxds->vals[0] = 0;
|
|
rxds->vals[1] = 0;
|
|
dma_addr = rte_cpu_to_le_64(RTE_MBUF_DMA_ADDR_DEFAULT(new_mb));
|
|
rxds->fld.dd = 0;
|
|
rxds->fld.dma_addr_hi = (dma_addr >> 32) & 0xff;
|
|
rxds->fld.dma_addr_lo = dma_addr & 0xffffffff;
|
|
|
|
rxq->rd_p++;
|
|
if (unlikely(rxq->rd_p == rxq->rx_count)) /* wrapping?*/
|
|
rxq->rd_p = 0;
|
|
}
|
|
|
|
if (nb_hold == 0)
|
|
return nb_hold;
|
|
|
|
PMD_RX_LOG(DEBUG, "RX port_id=%u queue_id=%u, %d packets received",
|
|
rxq->port_id, (unsigned int)rxq->qidx, nb_hold);
|
|
|
|
nb_hold += rxq->nb_rx_hold;
|
|
|
|
/*
|
|
* FL descriptors needs to be written before incrementing the
|
|
* FL queue WR pointer
|
|
*/
|
|
rte_wmb();
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG, "port=%u queue=%u nb_hold=%u avail=%u",
|
|
rxq->port_id, (unsigned int)rxq->qidx,
|
|
(unsigned)nb_hold, (unsigned)avail);
|
|
nfp_qcp_ptr_add(rxq->qcp_fl, NFP_QCP_WRITE_PTR, nb_hold);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
|
|
return avail;
|
|
}
|
|
|
|
/*
|
|
* nfp_net_tx_free_bufs - Check for descriptors with a complete
|
|
* status
|
|
* @txq: TX queue to work with
|
|
* Returns number of descriptors freed
|
|
*/
|
|
int
|
|
nfp_net_tx_free_bufs(struct nfp_net_txq *txq)
|
|
{
|
|
uint32_t qcp_rd_p;
|
|
int todo;
|
|
|
|
PMD_TX_LOG(DEBUG, "queue %u. Check for descriptor with a complete"
|
|
" status", txq->qidx);
|
|
|
|
/* Work out how many packets have been sent */
|
|
qcp_rd_p = nfp_qcp_read(txq->qcp_q, NFP_QCP_READ_PTR);
|
|
|
|
if (qcp_rd_p == txq->rd_p) {
|
|
PMD_TX_LOG(DEBUG, "queue %u: It seems harrier is not sending "
|
|
"packets (%u, %u)", txq->qidx,
|
|
qcp_rd_p, txq->rd_p);
|
|
return 0;
|
|
}
|
|
|
|
if (qcp_rd_p > txq->rd_p)
|
|
todo = qcp_rd_p - txq->rd_p;
|
|
else
|
|
todo = qcp_rd_p + txq->tx_count - txq->rd_p;
|
|
|
|
PMD_TX_LOG(DEBUG, "qcp_rd_p %u, txq->rd_p: %u, qcp->rd_p: %u",
|
|
qcp_rd_p, txq->rd_p, txq->rd_p);
|
|
|
|
if (todo == 0)
|
|
return todo;
|
|
|
|
txq->rd_p += todo;
|
|
if (unlikely(txq->rd_p >= txq->tx_count))
|
|
txq->rd_p -= txq->tx_count;
|
|
|
|
return todo;
|
|
}
|
|
|
|
/* Leaving always free descriptors for avoiding wrapping confusion */
|
|
static inline
|
|
uint32_t nfp_free_tx_desc(struct nfp_net_txq *txq)
|
|
{
|
|
if (txq->wr_p >= txq->rd_p)
|
|
return txq->tx_count - (txq->wr_p - txq->rd_p) - 8;
|
|
else
|
|
return txq->rd_p - txq->wr_p - 8;
|
|
}
|
|
|
|
/*
|
|
* nfp_net_txq_full - Check if the TX queue free descriptors
|
|
* is below tx_free_threshold
|
|
*
|
|
* @txq: TX queue to check
|
|
*
|
|
* This function uses the host copy* of read/write pointers
|
|
*/
|
|
static inline
|
|
uint32_t nfp_net_txq_full(struct nfp_net_txq *txq)
|
|
{
|
|
return (nfp_free_tx_desc(txq) < txq->tx_free_thresh);
|
|
}
|
|
|
|
static uint16_t
|
|
nfp_net_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct nfp_net_txq *txq;
|
|
struct nfp_net_hw *hw;
|
|
struct nfp_net_tx_desc *txds, txd;
|
|
struct rte_mbuf *pkt;
|
|
uint64_t dma_addr;
|
|
int pkt_size, dma_size;
|
|
uint16_t free_descs, issued_descs;
|
|
struct rte_mbuf **lmbuf;
|
|
int i;
|
|
|
|
txq = tx_queue;
|
|
hw = txq->hw;
|
|
txds = &txq->txds[txq->wr_p];
|
|
|
|
PMD_TX_LOG(DEBUG, "working for queue %u at pos %d and %u packets",
|
|
txq->qidx, txq->wr_p, nb_pkts);
|
|
|
|
if ((nfp_free_tx_desc(txq) < nb_pkts) || (nfp_net_txq_full(txq)))
|
|
nfp_net_tx_free_bufs(txq);
|
|
|
|
free_descs = (uint16_t)nfp_free_tx_desc(txq);
|
|
if (unlikely(free_descs == 0))
|
|
return 0;
|
|
|
|
pkt = *tx_pkts;
|
|
|
|
i = 0;
|
|
issued_descs = 0;
|
|
PMD_TX_LOG(DEBUG, "queue: %u. Sending %u packets",
|
|
txq->qidx, nb_pkts);
|
|
/* Sending packets */
|
|
while ((i < nb_pkts) && free_descs) {
|
|
/* Grabbing the mbuf linked to the current descriptor */
|
|
lmbuf = &txq->txbufs[txq->wr_p].mbuf;
|
|
/* Warming the cache for releasing the mbuf later on */
|
|
RTE_MBUF_PREFETCH_TO_FREE(*lmbuf);
|
|
|
|
pkt = *(tx_pkts + i);
|
|
|
|
if (unlikely((pkt->nb_segs > 1) &&
|
|
!(hw->cap & NFP_NET_CFG_CTRL_GATHER))) {
|
|
PMD_INIT_LOG(INFO, "NFP_NET_CFG_CTRL_GATHER not set");
|
|
rte_panic("Multisegment packet unsupported\n");
|
|
}
|
|
|
|
/* Checking if we have enough descriptors */
|
|
if (unlikely(pkt->nb_segs > free_descs))
|
|
goto xmit_end;
|
|
|
|
/*
|
|
* Checksum and VLAN flags just in the first descriptor for a
|
|
* multisegment packet, but TSO info needs to be in all of them.
|
|
*/
|
|
txd.data_len = pkt->pkt_len;
|
|
nfp_net_tx_tso(txq, &txd, pkt);
|
|
nfp_net_tx_cksum(txq, &txd, pkt);
|
|
|
|
if ((pkt->ol_flags & PKT_TX_VLAN_PKT) &&
|
|
(hw->cap & NFP_NET_CFG_CTRL_TXVLAN)) {
|
|
txd.flags |= PCIE_DESC_TX_VLAN;
|
|
txd.vlan = pkt->vlan_tci;
|
|
}
|
|
|
|
/*
|
|
* mbuf data_len is the data in one segment and pkt_len data
|
|
* in the whole packet. When the packet is just one segment,
|
|
* then data_len = pkt_len
|
|
*/
|
|
pkt_size = pkt->pkt_len;
|
|
|
|
while (pkt) {
|
|
/* Copying TSO, VLAN and cksum info */
|
|
*txds = txd;
|
|
|
|
/* Releasing mbuf used by this descriptor previously*/
|
|
if (*lmbuf)
|
|
rte_pktmbuf_free_seg(*lmbuf);
|
|
|
|
/*
|
|
* Linking mbuf with descriptor for being released
|
|
* next time descriptor is used
|
|
*/
|
|
*lmbuf = pkt;
|
|
|
|
dma_size = pkt->data_len;
|
|
dma_addr = rte_mbuf_data_iova(pkt);
|
|
PMD_TX_LOG(DEBUG, "Working with mbuf at dma address:"
|
|
"%" PRIx64 "", dma_addr);
|
|
|
|
/* Filling descriptors fields */
|
|
txds->dma_len = dma_size;
|
|
txds->data_len = txd.data_len;
|
|
txds->dma_addr_hi = (dma_addr >> 32) & 0xff;
|
|
txds->dma_addr_lo = (dma_addr & 0xffffffff);
|
|
ASSERT(free_descs > 0);
|
|
free_descs--;
|
|
|
|
txq->wr_p++;
|
|
if (unlikely(txq->wr_p == txq->tx_count)) /* wrapping?*/
|
|
txq->wr_p = 0;
|
|
|
|
pkt_size -= dma_size;
|
|
|
|
/*
|
|
* Making the EOP, packets with just one segment
|
|
* the priority
|
|
*/
|
|
if (likely(!pkt_size))
|
|
txds->offset_eop = PCIE_DESC_TX_EOP;
|
|
else
|
|
txds->offset_eop = 0;
|
|
|
|
pkt = pkt->next;
|
|
/* Referencing next free TX descriptor */
|
|
txds = &txq->txds[txq->wr_p];
|
|
lmbuf = &txq->txbufs[txq->wr_p].mbuf;
|
|
issued_descs++;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
xmit_end:
|
|
/* Increment write pointers. Force memory write before we let HW know */
|
|
rte_wmb();
|
|
nfp_qcp_ptr_add(txq->qcp_q, NFP_QCP_WRITE_PTR, issued_descs);
|
|
|
|
return i;
|
|
}
|
|
|
|
static int
|
|
nfp_net_vlan_offload_set(struct rte_eth_dev *dev, int mask)
|
|
{
|
|
uint32_t new_ctrl, update;
|
|
struct nfp_net_hw *hw;
|
|
int ret;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
new_ctrl = 0;
|
|
|
|
/* Enable vlan strip if it is not configured yet */
|
|
if ((mask & ETH_VLAN_STRIP_OFFLOAD) &&
|
|
!(hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN))
|
|
new_ctrl = hw->ctrl | NFP_NET_CFG_CTRL_RXVLAN;
|
|
|
|
/* Disable vlan strip just if it is configured */
|
|
if (!(mask & ETH_VLAN_STRIP_OFFLOAD) &&
|
|
(hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN))
|
|
new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_RXVLAN;
|
|
|
|
if (new_ctrl == 0)
|
|
return 0;
|
|
|
|
update = NFP_NET_CFG_UPDATE_GEN;
|
|
|
|
ret = nfp_net_reconfig(hw, new_ctrl, update);
|
|
if (!ret)
|
|
hw->ctrl = new_ctrl;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nfp_net_rss_reta_write(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta_entry64 *reta_conf,
|
|
uint16_t reta_size)
|
|
{
|
|
uint32_t reta, mask;
|
|
int i, j;
|
|
int idx, shift;
|
|
struct nfp_net_hw *hw =
|
|
NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (reta_size != NFP_NET_CFG_RSS_ITBL_SZ) {
|
|
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
|
|
"(%d) doesn't match the number hardware can supported "
|
|
"(%d)", reta_size, NFP_NET_CFG_RSS_ITBL_SZ);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Update Redirection Table. There are 128 8bit-entries which can be
|
|
* manage as 32 32bit-entries
|
|
*/
|
|
for (i = 0; i < reta_size; i += 4) {
|
|
/* Handling 4 RSS entries per loop */
|
|
idx = i / RTE_RETA_GROUP_SIZE;
|
|
shift = i % RTE_RETA_GROUP_SIZE;
|
|
mask = (uint8_t)((reta_conf[idx].mask >> shift) & 0xF);
|
|
|
|
if (!mask)
|
|
continue;
|
|
|
|
reta = 0;
|
|
/* If all 4 entries were set, don't need read RETA register */
|
|
if (mask != 0xF)
|
|
reta = nn_cfg_readl(hw, NFP_NET_CFG_RSS_ITBL + i);
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
if (!(mask & (0x1 << j)))
|
|
continue;
|
|
if (mask != 0xF)
|
|
/* Clearing the entry bits */
|
|
reta &= ~(0xFF << (8 * j));
|
|
reta |= reta_conf[idx].reta[shift + j] << (8 * j);
|
|
}
|
|
nn_cfg_writel(hw, NFP_NET_CFG_RSS_ITBL + (idx * 64) + shift,
|
|
reta);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Update Redirection Table(RETA) of Receive Side Scaling of Ethernet device */
|
|
static int
|
|
nfp_net_reta_update(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta_entry64 *reta_conf,
|
|
uint16_t reta_size)
|
|
{
|
|
struct nfp_net_hw *hw =
|
|
NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t update;
|
|
int ret;
|
|
|
|
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
|
|
return -EINVAL;
|
|
|
|
ret = nfp_net_rss_reta_write(dev, reta_conf, reta_size);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
update = NFP_NET_CFG_UPDATE_RSS;
|
|
|
|
if (nfp_net_reconfig(hw, hw->ctrl, update) < 0)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Query Redirection Table(RETA) of Receive Side Scaling of Ethernet device. */
|
|
static int
|
|
nfp_net_reta_query(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta_entry64 *reta_conf,
|
|
uint16_t reta_size)
|
|
{
|
|
uint8_t i, j, mask;
|
|
int idx, shift;
|
|
uint32_t reta;
|
|
struct nfp_net_hw *hw;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
|
|
return -EINVAL;
|
|
|
|
if (reta_size != NFP_NET_CFG_RSS_ITBL_SZ) {
|
|
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
|
|
"(%d) doesn't match the number hardware can supported "
|
|
"(%d)", reta_size, NFP_NET_CFG_RSS_ITBL_SZ);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Reading Redirection Table. There are 128 8bit-entries which can be
|
|
* manage as 32 32bit-entries
|
|
*/
|
|
for (i = 0; i < reta_size; i += 4) {
|
|
/* Handling 4 RSS entries per loop */
|
|
idx = i / RTE_RETA_GROUP_SIZE;
|
|
shift = i % RTE_RETA_GROUP_SIZE;
|
|
mask = (uint8_t)((reta_conf[idx].mask >> shift) & 0xF);
|
|
|
|
if (!mask)
|
|
continue;
|
|
|
|
reta = nn_cfg_readl(hw, NFP_NET_CFG_RSS_ITBL + (idx * 64) +
|
|
shift);
|
|
for (j = 0; j < 4; j++) {
|
|
if (!(mask & (0x1 << j)))
|
|
continue;
|
|
reta_conf[idx].reta[shift + j] =
|
|
(uint8_t)((reta >> (8 * j)) & 0xF);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_net_rss_hash_write(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_conf *rss_conf)
|
|
{
|
|
struct nfp_net_hw *hw;
|
|
uint64_t rss_hf;
|
|
uint32_t cfg_rss_ctrl = 0;
|
|
uint8_t key;
|
|
int i;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* Writing the key byte a byte */
|
|
for (i = 0; i < rss_conf->rss_key_len; i++) {
|
|
memcpy(&key, &rss_conf->rss_key[i], 1);
|
|
nn_cfg_writeb(hw, NFP_NET_CFG_RSS_KEY + i, key);
|
|
}
|
|
|
|
rss_hf = rss_conf->rss_hf;
|
|
|
|
if (rss_hf & ETH_RSS_IPV4)
|
|
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV4;
|
|
|
|
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
|
|
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV4_TCP;
|
|
|
|
if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
|
|
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV4_UDP;
|
|
|
|
if (rss_hf & ETH_RSS_IPV6)
|
|
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV6;
|
|
|
|
if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
|
|
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV6_TCP;
|
|
|
|
if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
|
|
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV6_UDP;
|
|
|
|
cfg_rss_ctrl |= NFP_NET_CFG_RSS_MASK;
|
|
cfg_rss_ctrl |= NFP_NET_CFG_RSS_TOEPLITZ;
|
|
|
|
/* configuring where to apply the RSS hash */
|
|
nn_cfg_writel(hw, NFP_NET_CFG_RSS_CTRL, cfg_rss_ctrl);
|
|
|
|
/* Writing the key size */
|
|
nn_cfg_writeb(hw, NFP_NET_CFG_RSS_KEY_SZ, rss_conf->rss_key_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_net_rss_hash_update(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_conf *rss_conf)
|
|
{
|
|
uint32_t update;
|
|
uint64_t rss_hf;
|
|
struct nfp_net_hw *hw;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
rss_hf = rss_conf->rss_hf;
|
|
|
|
/* Checking if RSS is enabled */
|
|
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS)) {
|
|
if (rss_hf != 0) { /* Enable RSS? */
|
|
PMD_DRV_LOG(ERR, "RSS unsupported");
|
|
return -EINVAL;
|
|
}
|
|
return 0; /* Nothing to do */
|
|
}
|
|
|
|
if (rss_conf->rss_key_len > NFP_NET_CFG_RSS_KEY_SZ) {
|
|
PMD_DRV_LOG(ERR, "hash key too long");
|
|
return -EINVAL;
|
|
}
|
|
|
|
nfp_net_rss_hash_write(dev, rss_conf);
|
|
|
|
update = NFP_NET_CFG_UPDATE_RSS;
|
|
|
|
if (nfp_net_reconfig(hw, hw->ctrl, update) < 0)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_net_rss_hash_conf_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_conf *rss_conf)
|
|
{
|
|
uint64_t rss_hf;
|
|
uint32_t cfg_rss_ctrl;
|
|
uint8_t key;
|
|
int i;
|
|
struct nfp_net_hw *hw;
|
|
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
|
|
return -EINVAL;
|
|
|
|
rss_hf = rss_conf->rss_hf;
|
|
cfg_rss_ctrl = nn_cfg_readl(hw, NFP_NET_CFG_RSS_CTRL);
|
|
|
|
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4)
|
|
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP | ETH_RSS_NONFRAG_IPV4_UDP;
|
|
|
|
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4_TCP)
|
|
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
|
|
|
|
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6_TCP)
|
|
rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
|
|
|
|
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4_UDP)
|
|
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
|
|
|
|
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6_UDP)
|
|
rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
|
|
|
|
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6)
|
|
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP | ETH_RSS_NONFRAG_IPV6_UDP;
|
|
|
|
/* Propagate current RSS hash functions to caller */
|
|
rss_conf->rss_hf = rss_hf;
|
|
|
|
/* Reading the key size */
|
|
rss_conf->rss_key_len = nn_cfg_readl(hw, NFP_NET_CFG_RSS_KEY_SZ);
|
|
|
|
/* Reading the key byte a byte */
|
|
for (i = 0; i < rss_conf->rss_key_len; i++) {
|
|
key = nn_cfg_readb(hw, NFP_NET_CFG_RSS_KEY + i);
|
|
memcpy(&rss_conf->rss_key[i], &key, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_net_rss_config_default(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_conf *dev_conf;
|
|
struct rte_eth_rss_conf rss_conf;
|
|
struct rte_eth_rss_reta_entry64 nfp_reta_conf[2];
|
|
uint16_t rx_queues = dev->data->nb_rx_queues;
|
|
uint16_t queue;
|
|
int i, j, ret;
|
|
|
|
PMD_DRV_LOG(INFO, "setting default RSS conf for %u queues",
|
|
rx_queues);
|
|
|
|
nfp_reta_conf[0].mask = ~0x0;
|
|
nfp_reta_conf[1].mask = ~0x0;
|
|
|
|
queue = 0;
|
|
for (i = 0; i < 0x40; i += 8) {
|
|
for (j = i; j < (i + 8); j++) {
|
|
nfp_reta_conf[0].reta[j] = queue;
|
|
nfp_reta_conf[1].reta[j] = queue++;
|
|
queue %= rx_queues;
|
|
}
|
|
}
|
|
ret = nfp_net_rss_reta_write(dev, nfp_reta_conf, 0x80);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
dev_conf = &dev->data->dev_conf;
|
|
if (!dev_conf) {
|
|
PMD_DRV_LOG(INFO, "wrong rss conf");
|
|
return -EINVAL;
|
|
}
|
|
rss_conf = dev_conf->rx_adv_conf.rss_conf;
|
|
|
|
ret = nfp_net_rss_hash_write(dev, &rss_conf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Initialise and register driver with DPDK Application */
|
|
static const struct eth_dev_ops nfp_net_eth_dev_ops = {
|
|
.dev_configure = nfp_net_configure,
|
|
.dev_start = nfp_net_start,
|
|
.dev_stop = nfp_net_stop,
|
|
.dev_set_link_up = nfp_net_set_link_up,
|
|
.dev_set_link_down = nfp_net_set_link_down,
|
|
.dev_close = nfp_net_close,
|
|
.promiscuous_enable = nfp_net_promisc_enable,
|
|
.promiscuous_disable = nfp_net_promisc_disable,
|
|
.link_update = nfp_net_link_update,
|
|
.stats_get = nfp_net_stats_get,
|
|
.stats_reset = nfp_net_stats_reset,
|
|
.dev_infos_get = nfp_net_infos_get,
|
|
.dev_supported_ptypes_get = nfp_net_supported_ptypes_get,
|
|
.mtu_set = nfp_net_dev_mtu_set,
|
|
.mac_addr_set = nfp_set_mac_addr,
|
|
.vlan_offload_set = nfp_net_vlan_offload_set,
|
|
.reta_update = nfp_net_reta_update,
|
|
.reta_query = nfp_net_reta_query,
|
|
.rss_hash_update = nfp_net_rss_hash_update,
|
|
.rss_hash_conf_get = nfp_net_rss_hash_conf_get,
|
|
.rx_queue_setup = nfp_net_rx_queue_setup,
|
|
.rx_queue_release = nfp_net_rx_queue_release,
|
|
.rx_queue_count = nfp_net_rx_queue_count,
|
|
.tx_queue_setup = nfp_net_tx_queue_setup,
|
|
.tx_queue_release = nfp_net_tx_queue_release,
|
|
.rx_queue_intr_enable = nfp_rx_queue_intr_enable,
|
|
.rx_queue_intr_disable = nfp_rx_queue_intr_disable,
|
|
};
|
|
|
|
/*
|
|
* All eth_dev created got its private data, but before nfp_net_init, that
|
|
* private data is referencing private data for all the PF ports. This is due
|
|
* to how the vNIC bars are mapped based on first port, so all ports need info
|
|
* about port 0 private data. Inside nfp_net_init the private data pointer is
|
|
* changed to the right address for each port once the bars have been mapped.
|
|
*
|
|
* This functions helps to find out which port and therefore which offset
|
|
* inside the private data array to use.
|
|
*/
|
|
static int
|
|
get_pf_port_number(char *name)
|
|
{
|
|
char *pf_str = name;
|
|
int size = 0;
|
|
|
|
while ((*pf_str != '_') && (*pf_str != '\0') && (size++ < 30))
|
|
pf_str++;
|
|
|
|
if (size == 30)
|
|
/*
|
|
* This should not happen at all and it would mean major
|
|
* implementation fault.
|
|
*/
|
|
rte_panic("nfp_net: problem with pf device name\n");
|
|
|
|
/* Expecting _portX with X within [0,7] */
|
|
pf_str += 5;
|
|
|
|
return (int)strtol(pf_str, NULL, 10);
|
|
}
|
|
|
|
static int
|
|
nfp_net_init(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev;
|
|
struct nfp_net_hw *hw, *hwport0;
|
|
|
|
uint64_t tx_bar_off = 0, rx_bar_off = 0;
|
|
uint32_t start_q;
|
|
int stride = 4;
|
|
int port = 0;
|
|
int err;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
|
|
/* NFP can not handle DMA addresses requiring more than 40 bits */
|
|
if (rte_mem_check_dma_mask(40)) {
|
|
RTE_LOG(ERR, PMD, "device %s can not be used:",
|
|
pci_dev->device.name);
|
|
RTE_LOG(ERR, PMD, "\trestricted dma mask to 40 bits!\n");
|
|
return -ENODEV;
|
|
};
|
|
|
|
if ((pci_dev->id.device_id == PCI_DEVICE_ID_NFP4000_PF_NIC) ||
|
|
(pci_dev->id.device_id == PCI_DEVICE_ID_NFP6000_PF_NIC)) {
|
|
port = get_pf_port_number(eth_dev->data->name);
|
|
if (port < 0 || port > 7) {
|
|
PMD_DRV_LOG(ERR, "Port value is wrong");
|
|
return -ENODEV;
|
|
}
|
|
|
|
PMD_INIT_LOG(DEBUG, "Working with PF port value %d", port);
|
|
|
|
/* This points to port 0 private data */
|
|
hwport0 = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
|
|
/* This points to the specific port private data */
|
|
hw = &hwport0[port];
|
|
} else {
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
hwport0 = 0;
|
|
}
|
|
|
|
eth_dev->dev_ops = &nfp_net_eth_dev_ops;
|
|
eth_dev->rx_pkt_burst = &nfp_net_recv_pkts;
|
|
eth_dev->tx_pkt_burst = &nfp_net_xmit_pkts;
|
|
|
|
/* For secondary processes, the primary has done all the work */
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
|
|
return 0;
|
|
|
|
rte_eth_copy_pci_info(eth_dev, pci_dev);
|
|
|
|
hw->device_id = pci_dev->id.device_id;
|
|
hw->vendor_id = pci_dev->id.vendor_id;
|
|
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
|
|
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
|
|
|
|
PMD_INIT_LOG(DEBUG, "nfp_net: device (%u:%u) %u:%u:%u:%u",
|
|
pci_dev->id.vendor_id, pci_dev->id.device_id,
|
|
pci_dev->addr.domain, pci_dev->addr.bus,
|
|
pci_dev->addr.devid, pci_dev->addr.function);
|
|
|
|
hw->ctrl_bar = (uint8_t *)pci_dev->mem_resource[0].addr;
|
|
if (hw->ctrl_bar == NULL) {
|
|
PMD_DRV_LOG(ERR,
|
|
"hw->ctrl_bar is NULL. BAR0 not configured");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (hw->is_pf && port == 0) {
|
|
hw->ctrl_bar = nfp_rtsym_map(hw->sym_tbl, "_pf0_net_bar0",
|
|
hw->total_ports * 32768,
|
|
&hw->ctrl_area);
|
|
if (!hw->ctrl_bar) {
|
|
printf("nfp_rtsym_map fails for _pf0_net_ctrl_bar");
|
|
return -EIO;
|
|
}
|
|
|
|
PMD_INIT_LOG(DEBUG, "ctrl bar: %p", hw->ctrl_bar);
|
|
}
|
|
|
|
if (port > 0) {
|
|
if (!hwport0->ctrl_bar)
|
|
return -ENODEV;
|
|
|
|
/* address based on port0 offset */
|
|
hw->ctrl_bar = hwport0->ctrl_bar +
|
|
(port * NFP_PF_CSR_SLICE_SIZE);
|
|
}
|
|
|
|
PMD_INIT_LOG(DEBUG, "ctrl bar: %p", hw->ctrl_bar);
|
|
|
|
hw->max_rx_queues = nn_cfg_readl(hw, NFP_NET_CFG_MAX_RXRINGS);
|
|
hw->max_tx_queues = nn_cfg_readl(hw, NFP_NET_CFG_MAX_TXRINGS);
|
|
|
|
/* Work out where in the BAR the queues start. */
|
|
switch (pci_dev->id.device_id) {
|
|
case PCI_DEVICE_ID_NFP4000_PF_NIC:
|
|
case PCI_DEVICE_ID_NFP6000_PF_NIC:
|
|
case PCI_DEVICE_ID_NFP6000_VF_NIC:
|
|
start_q = nn_cfg_readl(hw, NFP_NET_CFG_START_TXQ);
|
|
tx_bar_off = (uint64_t)start_q * NFP_QCP_QUEUE_ADDR_SZ;
|
|
start_q = nn_cfg_readl(hw, NFP_NET_CFG_START_RXQ);
|
|
rx_bar_off = (uint64_t)start_q * NFP_QCP_QUEUE_ADDR_SZ;
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "nfp_net: no device ID matching");
|
|
err = -ENODEV;
|
|
goto dev_err_ctrl_map;
|
|
}
|
|
|
|
PMD_INIT_LOG(DEBUG, "tx_bar_off: 0x%" PRIx64 "", tx_bar_off);
|
|
PMD_INIT_LOG(DEBUG, "rx_bar_off: 0x%" PRIx64 "", rx_bar_off);
|
|
|
|
if (hw->is_pf && port == 0) {
|
|
/* configure access to tx/rx vNIC BARs */
|
|
hwport0->hw_queues = nfp_cpp_map_area(hw->cpp, 0, 0,
|
|
NFP_PCIE_QUEUE(0),
|
|
NFP_QCP_QUEUE_AREA_SZ,
|
|
&hw->hwqueues_area);
|
|
|
|
if (!hwport0->hw_queues) {
|
|
printf("nfp_rtsym_map fails for net.qc");
|
|
err = -EIO;
|
|
goto dev_err_ctrl_map;
|
|
}
|
|
|
|
PMD_INIT_LOG(DEBUG, "tx/rx bar address: 0x%p",
|
|
hwport0->hw_queues);
|
|
}
|
|
|
|
if (hw->is_pf) {
|
|
hw->tx_bar = hwport0->hw_queues + tx_bar_off;
|
|
hw->rx_bar = hwport0->hw_queues + rx_bar_off;
|
|
eth_dev->data->dev_private = hw;
|
|
} else {
|
|
hw->tx_bar = (uint8_t *)pci_dev->mem_resource[2].addr +
|
|
tx_bar_off;
|
|
hw->rx_bar = (uint8_t *)pci_dev->mem_resource[2].addr +
|
|
rx_bar_off;
|
|
}
|
|
|
|
PMD_INIT_LOG(DEBUG, "ctrl_bar: %p, tx_bar: %p, rx_bar: %p",
|
|
hw->ctrl_bar, hw->tx_bar, hw->rx_bar);
|
|
|
|
nfp_net_cfg_queue_setup(hw);
|
|
|
|
/* Get some of the read-only fields from the config BAR */
|
|
hw->ver = nn_cfg_readl(hw, NFP_NET_CFG_VERSION);
|
|
hw->cap = nn_cfg_readl(hw, NFP_NET_CFG_CAP);
|
|
hw->max_mtu = nn_cfg_readl(hw, NFP_NET_CFG_MAX_MTU);
|
|
hw->mtu = RTE_ETHER_MTU;
|
|
|
|
/* VLAN insertion is incompatible with LSOv2 */
|
|
if (hw->cap & NFP_NET_CFG_CTRL_LSO2)
|
|
hw->cap &= ~NFP_NET_CFG_CTRL_TXVLAN;
|
|
|
|
if (NFD_CFG_MAJOR_VERSION_of(hw->ver) < 2)
|
|
hw->rx_offset = NFP_NET_RX_OFFSET;
|
|
else
|
|
hw->rx_offset = nn_cfg_readl(hw, NFP_NET_CFG_RX_OFFSET_ADDR);
|
|
|
|
PMD_INIT_LOG(INFO, "VER: %u.%u, Maximum supported MTU: %d",
|
|
NFD_CFG_MAJOR_VERSION_of(hw->ver),
|
|
NFD_CFG_MINOR_VERSION_of(hw->ver), hw->max_mtu);
|
|
|
|
PMD_INIT_LOG(INFO, "CAP: %#x, %s%s%s%s%s%s%s%s%s%s%s%s%s%s", hw->cap,
|
|
hw->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSOv2 " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "",
|
|
hw->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSSv2 " : "");
|
|
|
|
hw->ctrl = 0;
|
|
|
|
hw->stride_rx = stride;
|
|
hw->stride_tx = stride;
|
|
|
|
PMD_INIT_LOG(INFO, "max_rx_queues: %u, max_tx_queues: %u",
|
|
hw->max_rx_queues, hw->max_tx_queues);
|
|
|
|
/* Initializing spinlock for reconfigs */
|
|
rte_spinlock_init(&hw->reconfig_lock);
|
|
|
|
/* Allocating memory for mac addr */
|
|
eth_dev->data->mac_addrs = rte_zmalloc("mac_addr",
|
|
RTE_ETHER_ADDR_LEN, 0);
|
|
if (eth_dev->data->mac_addrs == NULL) {
|
|
PMD_INIT_LOG(ERR, "Failed to space for MAC address");
|
|
err = -ENOMEM;
|
|
goto dev_err_queues_map;
|
|
}
|
|
|
|
if (hw->is_pf) {
|
|
nfp_net_pf_read_mac(hwport0, port);
|
|
nfp_net_write_mac(hw, (uint8_t *)&hw->mac_addr);
|
|
} else {
|
|
nfp_net_vf_read_mac(hw);
|
|
}
|
|
|
|
if (!rte_is_valid_assigned_ether_addr(
|
|
(struct rte_ether_addr *)&hw->mac_addr)) {
|
|
PMD_INIT_LOG(INFO, "Using random mac address for port %d",
|
|
port);
|
|
/* Using random mac addresses for VFs */
|
|
rte_eth_random_addr(&hw->mac_addr[0]);
|
|
nfp_net_write_mac(hw, (uint8_t *)&hw->mac_addr);
|
|
}
|
|
|
|
/* Copying mac address to DPDK eth_dev struct */
|
|
rte_ether_addr_copy((struct rte_ether_addr *)hw->mac_addr,
|
|
ð_dev->data->mac_addrs[0]);
|
|
|
|
if (!(hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR))
|
|
eth_dev->data->dev_flags |= RTE_ETH_DEV_NOLIVE_MAC_ADDR;
|
|
|
|
PMD_INIT_LOG(INFO, "port %d VendorID=0x%x DeviceID=0x%x "
|
|
"mac=%02x:%02x:%02x:%02x:%02x:%02x",
|
|
eth_dev->data->port_id, pci_dev->id.vendor_id,
|
|
pci_dev->id.device_id,
|
|
hw->mac_addr[0], hw->mac_addr[1], hw->mac_addr[2],
|
|
hw->mac_addr[3], hw->mac_addr[4], hw->mac_addr[5]);
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
/* Registering LSC interrupt handler */
|
|
rte_intr_callback_register(&pci_dev->intr_handle,
|
|
nfp_net_dev_interrupt_handler,
|
|
(void *)eth_dev);
|
|
/* Telling the firmware about the LSC interrupt entry */
|
|
nn_cfg_writeb(hw, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
|
|
/* Recording current stats counters values */
|
|
nfp_net_stats_reset(eth_dev);
|
|
}
|
|
|
|
return 0;
|
|
|
|
dev_err_queues_map:
|
|
nfp_cpp_area_free(hw->hwqueues_area);
|
|
dev_err_ctrl_map:
|
|
nfp_cpp_area_free(hw->ctrl_area);
|
|
|
|
return err;
|
|
}
|
|
|
|
#define NFP_CPP_MEMIO_BOUNDARY (1 << 20)
|
|
|
|
/*
|
|
* Serving a write request to NFP from host programs. The request
|
|
* sends the write size and the CPP target. The bridge makes use
|
|
* of CPP interface handler configured by the PMD setup.
|
|
*/
|
|
static int
|
|
nfp_cpp_bridge_serve_write(int sockfd, struct nfp_cpp *cpp)
|
|
{
|
|
struct nfp_cpp_area *area;
|
|
off_t offset, nfp_offset;
|
|
uint32_t cpp_id, pos, len;
|
|
uint32_t tmpbuf[16];
|
|
size_t count, curlen, totlen = 0;
|
|
int err = 0;
|
|
|
|
PMD_CPP_LOG(DEBUG, "%s: offset size %zu, count_size: %zu\n", __func__,
|
|
sizeof(off_t), sizeof(size_t));
|
|
|
|
/* Reading the count param */
|
|
err = recv(sockfd, &count, sizeof(off_t), 0);
|
|
if (err != sizeof(off_t))
|
|
return -EINVAL;
|
|
|
|
curlen = count;
|
|
|
|
/* Reading the offset param */
|
|
err = recv(sockfd, &offset, sizeof(off_t), 0);
|
|
if (err != sizeof(off_t))
|
|
return -EINVAL;
|
|
|
|
/* Obtain target's CPP ID and offset in target */
|
|
cpp_id = (offset >> 40) << 8;
|
|
nfp_offset = offset & ((1ull << 40) - 1);
|
|
|
|
PMD_CPP_LOG(DEBUG, "%s: count %zu and offset %jd\n", __func__, count,
|
|
offset);
|
|
PMD_CPP_LOG(DEBUG, "%s: cpp_id %08x and nfp_offset %jd\n", __func__,
|
|
cpp_id, nfp_offset);
|
|
|
|
/* Adjust length if not aligned */
|
|
if (((nfp_offset + (off_t)count - 1) & ~(NFP_CPP_MEMIO_BOUNDARY - 1)) !=
|
|
(nfp_offset & ~(NFP_CPP_MEMIO_BOUNDARY - 1))) {
|
|
curlen = NFP_CPP_MEMIO_BOUNDARY -
|
|
(nfp_offset & (NFP_CPP_MEMIO_BOUNDARY - 1));
|
|
}
|
|
|
|
while (count > 0) {
|
|
/* configure a CPP PCIe2CPP BAR for mapping the CPP target */
|
|
area = nfp_cpp_area_alloc_with_name(cpp, cpp_id, "nfp.cdev",
|
|
nfp_offset, curlen);
|
|
if (!area) {
|
|
RTE_LOG(ERR, PMD, "%s: area alloc fail\n", __func__);
|
|
return -EIO;
|
|
}
|
|
|
|
/* mapping the target */
|
|
err = nfp_cpp_area_acquire(area);
|
|
if (err < 0) {
|
|
RTE_LOG(ERR, PMD, "area acquire failed\n");
|
|
nfp_cpp_area_free(area);
|
|
return -EIO;
|
|
}
|
|
|
|
for (pos = 0; pos < curlen; pos += len) {
|
|
len = curlen - pos;
|
|
if (len > sizeof(tmpbuf))
|
|
len = sizeof(tmpbuf);
|
|
|
|
PMD_CPP_LOG(DEBUG, "%s: Receive %u of %zu\n", __func__,
|
|
len, count);
|
|
err = recv(sockfd, tmpbuf, len, MSG_WAITALL);
|
|
if (err != (int)len) {
|
|
RTE_LOG(ERR, PMD,
|
|
"%s: error when receiving, %d of %zu\n",
|
|
__func__, err, count);
|
|
nfp_cpp_area_release(area);
|
|
nfp_cpp_area_free(area);
|
|
return -EIO;
|
|
}
|
|
err = nfp_cpp_area_write(area, pos, tmpbuf, len);
|
|
if (err < 0) {
|
|
RTE_LOG(ERR, PMD, "nfp_cpp_area_write error\n");
|
|
nfp_cpp_area_release(area);
|
|
nfp_cpp_area_free(area);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
nfp_offset += pos;
|
|
totlen += pos;
|
|
nfp_cpp_area_release(area);
|
|
nfp_cpp_area_free(area);
|
|
|
|
count -= pos;
|
|
curlen = (count > NFP_CPP_MEMIO_BOUNDARY) ?
|
|
NFP_CPP_MEMIO_BOUNDARY : count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Serving a read request to NFP from host programs. The request
|
|
* sends the read size and the CPP target. The bridge makes use
|
|
* of CPP interface handler configured by the PMD setup. The read
|
|
* data is sent to the requester using the same socket.
|
|
*/
|
|
static int
|
|
nfp_cpp_bridge_serve_read(int sockfd, struct nfp_cpp *cpp)
|
|
{
|
|
struct nfp_cpp_area *area;
|
|
off_t offset, nfp_offset;
|
|
uint32_t cpp_id, pos, len;
|
|
uint32_t tmpbuf[16];
|
|
size_t count, curlen, totlen = 0;
|
|
int err = 0;
|
|
|
|
PMD_CPP_LOG(DEBUG, "%s: offset size %zu, count_size: %zu\n", __func__,
|
|
sizeof(off_t), sizeof(size_t));
|
|
|
|
/* Reading the count param */
|
|
err = recv(sockfd, &count, sizeof(off_t), 0);
|
|
if (err != sizeof(off_t))
|
|
return -EINVAL;
|
|
|
|
curlen = count;
|
|
|
|
/* Reading the offset param */
|
|
err = recv(sockfd, &offset, sizeof(off_t), 0);
|
|
if (err != sizeof(off_t))
|
|
return -EINVAL;
|
|
|
|
/* Obtain target's CPP ID and offset in target */
|
|
cpp_id = (offset >> 40) << 8;
|
|
nfp_offset = offset & ((1ull << 40) - 1);
|
|
|
|
PMD_CPP_LOG(DEBUG, "%s: count %zu and offset %jd\n", __func__, count,
|
|
offset);
|
|
PMD_CPP_LOG(DEBUG, "%s: cpp_id %08x and nfp_offset %jd\n", __func__,
|
|
cpp_id, nfp_offset);
|
|
|
|
/* Adjust length if not aligned */
|
|
if (((nfp_offset + (off_t)count - 1) & ~(NFP_CPP_MEMIO_BOUNDARY - 1)) !=
|
|
(nfp_offset & ~(NFP_CPP_MEMIO_BOUNDARY - 1))) {
|
|
curlen = NFP_CPP_MEMIO_BOUNDARY -
|
|
(nfp_offset & (NFP_CPP_MEMIO_BOUNDARY - 1));
|
|
}
|
|
|
|
while (count > 0) {
|
|
area = nfp_cpp_area_alloc_with_name(cpp, cpp_id, "nfp.cdev",
|
|
nfp_offset, curlen);
|
|
if (!area) {
|
|
RTE_LOG(ERR, PMD, "%s: area alloc failed\n", __func__);
|
|
return -EIO;
|
|
}
|
|
|
|
err = nfp_cpp_area_acquire(area);
|
|
if (err < 0) {
|
|
RTE_LOG(ERR, PMD, "area acquire failed\n");
|
|
nfp_cpp_area_free(area);
|
|
return -EIO;
|
|
}
|
|
|
|
for (pos = 0; pos < curlen; pos += len) {
|
|
len = curlen - pos;
|
|
if (len > sizeof(tmpbuf))
|
|
len = sizeof(tmpbuf);
|
|
|
|
err = nfp_cpp_area_read(area, pos, tmpbuf, len);
|
|
if (err < 0) {
|
|
RTE_LOG(ERR, PMD, "nfp_cpp_area_read error\n");
|
|
nfp_cpp_area_release(area);
|
|
nfp_cpp_area_free(area);
|
|
return -EIO;
|
|
}
|
|
PMD_CPP_LOG(DEBUG, "%s: sending %u of %zu\n", __func__,
|
|
len, count);
|
|
|
|
err = send(sockfd, tmpbuf, len, 0);
|
|
if (err != (int)len) {
|
|
RTE_LOG(ERR, PMD,
|
|
"%s: error when sending: %d of %zu\n",
|
|
__func__, err, count);
|
|
nfp_cpp_area_release(area);
|
|
nfp_cpp_area_free(area);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
nfp_offset += pos;
|
|
totlen += pos;
|
|
nfp_cpp_area_release(area);
|
|
nfp_cpp_area_free(area);
|
|
|
|
count -= pos;
|
|
curlen = (count > NFP_CPP_MEMIO_BOUNDARY) ?
|
|
NFP_CPP_MEMIO_BOUNDARY : count;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define NFP_IOCTL 'n'
|
|
#define NFP_IOCTL_CPP_IDENTIFICATION _IOW(NFP_IOCTL, 0x8f, uint32_t)
|
|
/*
|
|
* Serving a ioctl command from host NFP tools. This usually goes to
|
|
* a kernel driver char driver but it is not available when the PF is
|
|
* bound to the PMD. Currently just one ioctl command is served and it
|
|
* does not require any CPP access at all.
|
|
*/
|
|
static int
|
|
nfp_cpp_bridge_serve_ioctl(int sockfd, struct nfp_cpp *cpp)
|
|
{
|
|
uint32_t cmd, ident_size, tmp;
|
|
int err;
|
|
|
|
/* Reading now the IOCTL command */
|
|
err = recv(sockfd, &cmd, 4, 0);
|
|
if (err != 4) {
|
|
RTE_LOG(ERR, PMD, "%s: read error from socket\n", __func__);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Only supporting NFP_IOCTL_CPP_IDENTIFICATION */
|
|
if (cmd != NFP_IOCTL_CPP_IDENTIFICATION) {
|
|
RTE_LOG(ERR, PMD, "%s: unknown cmd %d\n", __func__, cmd);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = recv(sockfd, &ident_size, 4, 0);
|
|
if (err != 4) {
|
|
RTE_LOG(ERR, PMD, "%s: read error from socket\n", __func__);
|
|
return -EIO;
|
|
}
|
|
|
|
tmp = nfp_cpp_model(cpp);
|
|
|
|
PMD_CPP_LOG(DEBUG, "%s: sending NFP model %08x\n", __func__, tmp);
|
|
|
|
err = send(sockfd, &tmp, 4, 0);
|
|
if (err != 4) {
|
|
RTE_LOG(ERR, PMD, "%s: error writing to socket\n", __func__);
|
|
return -EIO;
|
|
}
|
|
|
|
tmp = cpp->interface;
|
|
|
|
PMD_CPP_LOG(DEBUG, "%s: sending NFP interface %08x\n", __func__, tmp);
|
|
|
|
err = send(sockfd, &tmp, 4, 0);
|
|
if (err != 4) {
|
|
RTE_LOG(ERR, PMD, "%s: error writing to socket\n", __func__);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define NFP_BRIDGE_OP_READ 20
|
|
#define NFP_BRIDGE_OP_WRITE 30
|
|
#define NFP_BRIDGE_OP_IOCTL 40
|
|
|
|
/*
|
|
* This is the code to be executed by a service core. The CPP bridge interface
|
|
* is based on a unix socket and requests usually received by a kernel char
|
|
* driver, read, write and ioctl, are handled by the CPP bridge. NFP host tools
|
|
* can be executed with a wrapper library and LD_LIBRARY being completely
|
|
* unaware of the CPP bridge performing the NFP kernel char driver for CPP
|
|
* accesses.
|
|
*/
|
|
static int32_t
|
|
nfp_cpp_bridge_service_func(void *args)
|
|
{
|
|
struct sockaddr address;
|
|
struct nfp_cpp *cpp = args;
|
|
int sockfd, datafd, op, ret;
|
|
|
|
unlink("/tmp/nfp_cpp");
|
|
sockfd = socket(AF_UNIX, SOCK_STREAM, 0);
|
|
if (sockfd < 0) {
|
|
RTE_LOG(ERR, PMD, "%s: socket creation error. Service failed\n",
|
|
__func__);
|
|
return -EIO;
|
|
}
|
|
|
|
memset(&address, 0, sizeof(struct sockaddr));
|
|
|
|
address.sa_family = AF_UNIX;
|
|
strcpy(address.sa_data, "/tmp/nfp_cpp");
|
|
|
|
ret = bind(sockfd, (const struct sockaddr *)&address,
|
|
sizeof(struct sockaddr));
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, PMD, "%s: bind error (%d). Service failed\n",
|
|
__func__, errno);
|
|
close(sockfd);
|
|
return ret;
|
|
}
|
|
|
|
ret = listen(sockfd, 20);
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, PMD, "%s: listen error(%d). Service failed\n",
|
|
__func__, errno);
|
|
close(sockfd);
|
|
return ret;
|
|
}
|
|
|
|
for (;;) {
|
|
datafd = accept(sockfd, NULL, NULL);
|
|
if (datafd < 0) {
|
|
RTE_LOG(ERR, PMD, "%s: accept call error (%d)\n",
|
|
__func__, errno);
|
|
RTE_LOG(ERR, PMD, "%s: service failed\n", __func__);
|
|
close(sockfd);
|
|
return -EIO;
|
|
}
|
|
|
|
while (1) {
|
|
ret = recv(datafd, &op, 4, 0);
|
|
if (ret <= 0) {
|
|
PMD_CPP_LOG(DEBUG, "%s: socket close\n",
|
|
__func__);
|
|
break;
|
|
}
|
|
|
|
PMD_CPP_LOG(DEBUG, "%s: getting op %u\n", __func__, op);
|
|
|
|
if (op == NFP_BRIDGE_OP_READ)
|
|
nfp_cpp_bridge_serve_read(datafd, cpp);
|
|
|
|
if (op == NFP_BRIDGE_OP_WRITE)
|
|
nfp_cpp_bridge_serve_write(datafd, cpp);
|
|
|
|
if (op == NFP_BRIDGE_OP_IOCTL)
|
|
nfp_cpp_bridge_serve_ioctl(datafd, cpp);
|
|
|
|
if (op == 0)
|
|
break;
|
|
}
|
|
close(datafd);
|
|
}
|
|
close(sockfd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_pf_create_dev(struct rte_pci_device *dev, int port, int ports,
|
|
struct nfp_cpp *cpp, struct nfp_hwinfo *hwinfo,
|
|
int phys_port, struct nfp_rtsym_table *sym_tbl, void **priv)
|
|
{
|
|
struct rte_eth_dev *eth_dev;
|
|
struct nfp_net_hw *hw = NULL;
|
|
char *port_name;
|
|
struct rte_service_spec service;
|
|
int retval;
|
|
|
|
port_name = rte_zmalloc("nfp_pf_port_name", 100, 0);
|
|
if (!port_name)
|
|
return -ENOMEM;
|
|
|
|
if (ports > 1)
|
|
snprintf(port_name, 100, "%s_port%d", dev->device.name, port);
|
|
else
|
|
strlcat(port_name, dev->device.name, 100);
|
|
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
eth_dev = rte_eth_dev_allocate(port_name);
|
|
if (!eth_dev) {
|
|
rte_free(port_name);
|
|
return -ENODEV;
|
|
}
|
|
if (port == 0) {
|
|
*priv = rte_zmalloc(port_name,
|
|
sizeof(struct nfp_net_adapter) *
|
|
ports, RTE_CACHE_LINE_SIZE);
|
|
if (!*priv) {
|
|
rte_free(port_name);
|
|
rte_eth_dev_release_port(eth_dev);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
eth_dev->data->dev_private = *priv;
|
|
|
|
/*
|
|
* dev_private pointing to port0 dev_private because we need
|
|
* to configure vNIC bars based on port0 at nfp_net_init.
|
|
* Then dev_private is adjusted per port.
|
|
*/
|
|
hw = (struct nfp_net_hw *)(eth_dev->data->dev_private) + port;
|
|
hw->cpp = cpp;
|
|
hw->hwinfo = hwinfo;
|
|
hw->sym_tbl = sym_tbl;
|
|
hw->pf_port_idx = phys_port;
|
|
hw->is_pf = 1;
|
|
if (ports > 1)
|
|
hw->pf_multiport_enabled = 1;
|
|
|
|
hw->total_ports = ports;
|
|
} else {
|
|
eth_dev = rte_eth_dev_attach_secondary(port_name);
|
|
if (!eth_dev) {
|
|
RTE_LOG(ERR, EAL, "secondary process attach failed, "
|
|
"ethdev doesn't exist");
|
|
rte_free(port_name);
|
|
return -ENODEV;
|
|
}
|
|
eth_dev->process_private = cpp;
|
|
}
|
|
|
|
eth_dev->device = &dev->device;
|
|
rte_eth_copy_pci_info(eth_dev, dev);
|
|
|
|
retval = nfp_net_init(eth_dev);
|
|
|
|
if (retval) {
|
|
retval = -ENODEV;
|
|
goto probe_failed;
|
|
} else {
|
|
rte_eth_dev_probing_finish(eth_dev);
|
|
}
|
|
|
|
rte_free(port_name);
|
|
|
|
if (port == 0) {
|
|
/*
|
|
* The rte_service needs to be created just once per PMD.
|
|
* And the cpp handler needs to be linked to the service.
|
|
* Secondary processes will be used for debugging DPDK apps
|
|
* when requiring to use the CPP interface for accessing NFP
|
|
* components. And the cpp handler for secondary processes is
|
|
* available at this point.
|
|
*/
|
|
memset(&service, 0, sizeof(struct rte_service_spec));
|
|
snprintf(service.name, sizeof(service.name), "nfp_cpp_service");
|
|
service.callback = nfp_cpp_bridge_service_func;
|
|
service.callback_userdata = (void *)cpp;
|
|
|
|
hw = (struct nfp_net_hw *)(eth_dev->data->dev_private);
|
|
|
|
if (rte_service_component_register(&service,
|
|
&hw->nfp_cpp_service_id))
|
|
RTE_LOG(ERR, PMD, "NFP CPP bridge service register() failed");
|
|
else
|
|
RTE_LOG(DEBUG, PMD, "NFP CPP bridge service registered");
|
|
}
|
|
|
|
return retval;
|
|
|
|
probe_failed:
|
|
rte_free(port_name);
|
|
/* free ports private data if primary process */
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
rte_free(eth_dev->data->dev_private);
|
|
eth_dev->data->dev_private = NULL;
|
|
}
|
|
rte_eth_dev_release_port(eth_dev);
|
|
|
|
return retval;
|
|
}
|
|
|
|
#define DEFAULT_FW_PATH "/lib/firmware/netronome"
|
|
|
|
static int
|
|
nfp_fw_upload(struct rte_pci_device *dev, struct nfp_nsp *nsp, char *card)
|
|
{
|
|
struct nfp_cpp *cpp = nsp->cpp;
|
|
int fw_f;
|
|
char *fw_buf;
|
|
char fw_name[125];
|
|
char serial[40];
|
|
struct stat file_stat;
|
|
off_t fsize, bytes;
|
|
|
|
/* Looking for firmware file in order of priority */
|
|
|
|
/* First try to find a firmware image specific for this device */
|
|
snprintf(serial, sizeof(serial),
|
|
"serial-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x",
|
|
cpp->serial[0], cpp->serial[1], cpp->serial[2], cpp->serial[3],
|
|
cpp->serial[4], cpp->serial[5], cpp->interface >> 8,
|
|
cpp->interface & 0xff);
|
|
|
|
snprintf(fw_name, sizeof(fw_name), "%s/%s.nffw", DEFAULT_FW_PATH,
|
|
serial);
|
|
|
|
PMD_DRV_LOG(DEBUG, "Trying with fw file: %s", fw_name);
|
|
fw_f = open(fw_name, O_RDONLY);
|
|
if (fw_f >= 0)
|
|
goto read_fw;
|
|
|
|
/* Then try the PCI name */
|
|
snprintf(fw_name, sizeof(fw_name), "%s/pci-%s.nffw", DEFAULT_FW_PATH,
|
|
dev->device.name);
|
|
|
|
PMD_DRV_LOG(DEBUG, "Trying with fw file: %s", fw_name);
|
|
fw_f = open(fw_name, O_RDONLY);
|
|
if (fw_f >= 0)
|
|
goto read_fw;
|
|
|
|
/* Finally try the card type and media */
|
|
snprintf(fw_name, sizeof(fw_name), "%s/%s", DEFAULT_FW_PATH, card);
|
|
PMD_DRV_LOG(DEBUG, "Trying with fw file: %s", fw_name);
|
|
fw_f = open(fw_name, O_RDONLY);
|
|
if (fw_f < 0) {
|
|
PMD_DRV_LOG(INFO, "Firmware file %s not found.", fw_name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
read_fw:
|
|
if (fstat(fw_f, &file_stat) < 0) {
|
|
PMD_DRV_LOG(INFO, "Firmware file %s size is unknown", fw_name);
|
|
close(fw_f);
|
|
return -ENOENT;
|
|
}
|
|
|
|
fsize = file_stat.st_size;
|
|
PMD_DRV_LOG(INFO, "Firmware file found at %s with size: %" PRIu64 "",
|
|
fw_name, (uint64_t)fsize);
|
|
|
|
fw_buf = malloc((size_t)fsize);
|
|
if (!fw_buf) {
|
|
PMD_DRV_LOG(INFO, "malloc failed for fw buffer");
|
|
close(fw_f);
|
|
return -ENOMEM;
|
|
}
|
|
memset(fw_buf, 0, fsize);
|
|
|
|
bytes = read(fw_f, fw_buf, fsize);
|
|
if (bytes != fsize) {
|
|
PMD_DRV_LOG(INFO, "Reading fw to buffer failed."
|
|
"Just %" PRIu64 " of %" PRIu64 " bytes read",
|
|
(uint64_t)bytes, (uint64_t)fsize);
|
|
free(fw_buf);
|
|
close(fw_f);
|
|
return -EIO;
|
|
}
|
|
|
|
PMD_DRV_LOG(INFO, "Uploading the firmware ...");
|
|
nfp_nsp_load_fw(nsp, fw_buf, bytes);
|
|
PMD_DRV_LOG(INFO, "Done");
|
|
|
|
free(fw_buf);
|
|
close(fw_f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nfp_fw_setup(struct rte_pci_device *dev, struct nfp_cpp *cpp,
|
|
struct nfp_eth_table *nfp_eth_table, struct nfp_hwinfo *hwinfo)
|
|
{
|
|
struct nfp_nsp *nsp;
|
|
const char *nfp_fw_model;
|
|
char card_desc[100];
|
|
int err = 0;
|
|
|
|
nfp_fw_model = nfp_hwinfo_lookup(hwinfo, "assembly.partno");
|
|
|
|
if (nfp_fw_model) {
|
|
PMD_DRV_LOG(INFO, "firmware model found: %s", nfp_fw_model);
|
|
} else {
|
|
PMD_DRV_LOG(ERR, "firmware model NOT found");
|
|
return -EIO;
|
|
}
|
|
|
|
if (nfp_eth_table->count == 0 || nfp_eth_table->count > 8) {
|
|
PMD_DRV_LOG(ERR, "NFP ethernet table reports wrong ports: %u",
|
|
nfp_eth_table->count);
|
|
return -EIO;
|
|
}
|
|
|
|
PMD_DRV_LOG(INFO, "NFP ethernet port table reports %u ports",
|
|
nfp_eth_table->count);
|
|
|
|
PMD_DRV_LOG(INFO, "Port speed: %u", nfp_eth_table->ports[0].speed);
|
|
|
|
snprintf(card_desc, sizeof(card_desc), "nic_%s_%dx%d.nffw",
|
|
nfp_fw_model, nfp_eth_table->count,
|
|
nfp_eth_table->ports[0].speed / 1000);
|
|
|
|
nsp = nfp_nsp_open(cpp);
|
|
if (!nsp) {
|
|
PMD_DRV_LOG(ERR, "NFP error when obtaining NSP handle");
|
|
return -EIO;
|
|
}
|
|
|
|
nfp_nsp_device_soft_reset(nsp);
|
|
err = nfp_fw_upload(dev, nsp, card_desc);
|
|
|
|
nfp_nsp_close(nsp);
|
|
return err;
|
|
}
|
|
|
|
static int nfp_pf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
|
|
struct rte_pci_device *dev)
|
|
{
|
|
struct nfp_cpp *cpp;
|
|
struct nfp_hwinfo *hwinfo;
|
|
struct nfp_rtsym_table *sym_tbl;
|
|
struct nfp_eth_table *nfp_eth_table = NULL;
|
|
int total_ports;
|
|
void *priv = 0;
|
|
int ret = -ENODEV;
|
|
int err;
|
|
int i;
|
|
|
|
if (!dev)
|
|
return ret;
|
|
|
|
/*
|
|
* When device bound to UIO, the device could be used, by mistake,
|
|
* by two DPDK apps, and the UIO driver does not avoid it. This
|
|
* could lead to a serious problem when configuring the NFP CPP
|
|
* interface. Here we avoid this telling to the CPP init code to
|
|
* use a lock file if UIO is being used.
|
|
*/
|
|
if (dev->kdrv == RTE_PCI_KDRV_VFIO)
|
|
cpp = nfp_cpp_from_device_name(dev, 0);
|
|
else
|
|
cpp = nfp_cpp_from_device_name(dev, 1);
|
|
|
|
if (!cpp) {
|
|
PMD_DRV_LOG(ERR, "A CPP handle can not be obtained");
|
|
ret = -EIO;
|
|
goto error;
|
|
}
|
|
|
|
hwinfo = nfp_hwinfo_read(cpp);
|
|
if (!hwinfo) {
|
|
PMD_DRV_LOG(ERR, "Error reading hwinfo table");
|
|
return -EIO;
|
|
}
|
|
|
|
nfp_eth_table = nfp_eth_read_ports(cpp);
|
|
if (!nfp_eth_table) {
|
|
PMD_DRV_LOG(ERR, "Error reading NFP ethernet table");
|
|
return -EIO;
|
|
}
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
if (nfp_fw_setup(dev, cpp, nfp_eth_table, hwinfo)) {
|
|
PMD_DRV_LOG(INFO, "Error when uploading firmware");
|
|
ret = -EIO;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* Now the symbol table should be there */
|
|
sym_tbl = nfp_rtsym_table_read(cpp);
|
|
if (!sym_tbl) {
|
|
PMD_DRV_LOG(ERR, "Something is wrong with the firmware"
|
|
" symbol table");
|
|
ret = -EIO;
|
|
goto error;
|
|
}
|
|
|
|
total_ports = nfp_rtsym_read_le(sym_tbl, "nfd_cfg_pf0_num_ports", &err);
|
|
if (total_ports != (int)nfp_eth_table->count) {
|
|
PMD_DRV_LOG(ERR, "Inconsistent number of ports");
|
|
ret = -EIO;
|
|
goto error;
|
|
}
|
|
PMD_INIT_LOG(INFO, "Total pf ports: %d", total_ports);
|
|
|
|
if (total_ports <= 0 || total_ports > 8) {
|
|
PMD_DRV_LOG(ERR, "nfd_cfg_pf0_num_ports symbol with wrong value");
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
|
|
for (i = 0; i < total_ports; i++) {
|
|
ret = nfp_pf_create_dev(dev, i, total_ports, cpp, hwinfo,
|
|
nfp_eth_table->ports[i].index,
|
|
sym_tbl, &priv);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
error:
|
|
free(nfp_eth_table);
|
|
return ret;
|
|
}
|
|
|
|
static const struct rte_pci_id pci_id_nfp_pf_net_map[] = {
|
|
{
|
|
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETRONOME,
|
|
PCI_DEVICE_ID_NFP4000_PF_NIC)
|
|
},
|
|
{
|
|
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETRONOME,
|
|
PCI_DEVICE_ID_NFP6000_PF_NIC)
|
|
},
|
|
{
|
|
.vendor_id = 0,
|
|
},
|
|
};
|
|
|
|
static const struct rte_pci_id pci_id_nfp_vf_net_map[] = {
|
|
{
|
|
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETRONOME,
|
|
PCI_DEVICE_ID_NFP6000_VF_NIC)
|
|
},
|
|
{
|
|
.vendor_id = 0,
|
|
},
|
|
};
|
|
|
|
static int eth_nfp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
|
|
struct rte_pci_device *pci_dev)
|
|
{
|
|
return rte_eth_dev_pci_generic_probe(pci_dev,
|
|
sizeof(struct nfp_net_adapter), nfp_net_init);
|
|
}
|
|
|
|
static int eth_nfp_pci_remove(struct rte_pci_device *pci_dev)
|
|
{
|
|
struct rte_eth_dev *eth_dev;
|
|
struct nfp_net_hw *hw, *hwport0;
|
|
int port = 0;
|
|
|
|
eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
|
|
if ((pci_dev->id.device_id == PCI_DEVICE_ID_NFP4000_PF_NIC) ||
|
|
(pci_dev->id.device_id == PCI_DEVICE_ID_NFP6000_PF_NIC)) {
|
|
port = get_pf_port_number(eth_dev->data->name);
|
|
/*
|
|
* hotplug is not possible with multiport PF although freeing
|
|
* data structures can be done for first port.
|
|
*/
|
|
if (port != 0)
|
|
return -ENOTSUP;
|
|
hwport0 = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
hw = &hwport0[port];
|
|
nfp_cpp_area_free(hw->ctrl_area);
|
|
nfp_cpp_area_free(hw->hwqueues_area);
|
|
free(hw->hwinfo);
|
|
free(hw->sym_tbl);
|
|
nfp_cpp_free(hw->cpp);
|
|
} else {
|
|
hw = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
}
|
|
/* hotplug is not possible with multiport PF */
|
|
if (hw->pf_multiport_enabled)
|
|
return -ENOTSUP;
|
|
return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
|
|
}
|
|
|
|
static struct rte_pci_driver rte_nfp_net_pf_pmd = {
|
|
.id_table = pci_id_nfp_pf_net_map,
|
|
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
|
|
.probe = nfp_pf_pci_probe,
|
|
.remove = eth_nfp_pci_remove,
|
|
};
|
|
|
|
static struct rte_pci_driver rte_nfp_net_vf_pmd = {
|
|
.id_table = pci_id_nfp_vf_net_map,
|
|
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
|
|
.probe = eth_nfp_pci_probe,
|
|
.remove = eth_nfp_pci_remove,
|
|
};
|
|
|
|
RTE_PMD_REGISTER_PCI(net_nfp_pf, rte_nfp_net_pf_pmd);
|
|
RTE_PMD_REGISTER_PCI(net_nfp_vf, rte_nfp_net_vf_pmd);
|
|
RTE_PMD_REGISTER_PCI_TABLE(net_nfp_pf, pci_id_nfp_pf_net_map);
|
|
RTE_PMD_REGISTER_PCI_TABLE(net_nfp_vf, pci_id_nfp_vf_net_map);
|
|
RTE_PMD_REGISTER_KMOD_DEP(net_nfp_pf, "* igb_uio | uio_pci_generic | vfio");
|
|
RTE_PMD_REGISTER_KMOD_DEP(net_nfp_vf, "* igb_uio | uio_pci_generic | vfio");
|
|
RTE_LOG_REGISTER(nfp_logtype_init, pmd.net.nfp.init, NOTICE);
|
|
RTE_LOG_REGISTER(nfp_logtype_driver, pmd.net.nfp.driver, NOTICE);
|
|
/*
|
|
* Local variables:
|
|
* c-file-style: "Linux"
|
|
* indent-tabs-mode: t
|
|
* End:
|
|
*/
|