24b4bb8123
The cuckoo hash has a fixed number of entries per bucket, so the
configuration parameter for this is unused. We change this field in the
parameters struct to "reserved" to indicate that there is now no such
parameter value, while at the same time keeping ABI consistency.
Fixes: 48a3991196
("hash: replace with cuckoo hash implementation")
Suggested-by: Thomas Monjalon <thomas.monjalon@6wind.com>
Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2589 lines
72 KiB
C
2589 lines
72 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <sys/types.h>
|
|
#include <string.h>
|
|
#include <sys/queue.h>
|
|
#include <stdarg.h>
|
|
#include <errno.h>
|
|
#include <getopt.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_vect.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_random.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_string_fns.h>
|
|
|
|
#include <cmdline_parse.h>
|
|
#include <cmdline_parse_etheraddr.h>
|
|
|
|
#define APP_LOOKUP_EXACT_MATCH 0
|
|
#define APP_LOOKUP_LPM 1
|
|
#define DO_RFC_1812_CHECKS
|
|
|
|
#ifndef APP_LOOKUP_METHOD
|
|
#define APP_LOOKUP_METHOD APP_LOOKUP_LPM
|
|
#endif
|
|
|
|
/*
|
|
* When set to zero, simple forwaring path is eanbled.
|
|
* When set to one, optimized forwarding path is enabled.
|
|
* Note that LPM optimisation path uses SSE4.1 instructions.
|
|
*/
|
|
#if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && !defined(__SSE4_1__))
|
|
#define ENABLE_MULTI_BUFFER_OPTIMIZE 0
|
|
#else
|
|
#define ENABLE_MULTI_BUFFER_OPTIMIZE 1
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
#include <rte_hash.h>
|
|
#elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
#include <rte_lpm.h>
|
|
#include <rte_lpm6.h>
|
|
#else
|
|
#error "APP_LOOKUP_METHOD set to incorrect value"
|
|
#endif
|
|
|
|
#ifndef IPv6_BYTES
|
|
#define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
|
|
"%02x%02x:%02x%02x:%02x%02x:%02x%02x"
|
|
#define IPv6_BYTES(addr) \
|
|
addr[0], addr[1], addr[2], addr[3], \
|
|
addr[4], addr[5], addr[6], addr[7], \
|
|
addr[8], addr[9], addr[10], addr[11],\
|
|
addr[12], addr[13],addr[14], addr[15]
|
|
#endif
|
|
|
|
|
|
#define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
|
|
|
|
#define MAX_JUMBO_PKT_LEN 9600
|
|
|
|
#define IPV6_ADDR_LEN 16
|
|
|
|
#define MEMPOOL_CACHE_SIZE 256
|
|
|
|
/*
|
|
* This expression is used to calculate the number of mbufs needed depending on user input, taking
|
|
* into account memory for rx and tx hardware rings, cache per lcore and mtable per port per lcore.
|
|
* RTE_MAX is used to ensure that NB_MBUF never goes below a minimum value of 8192
|
|
*/
|
|
|
|
#define NB_MBUF RTE_MAX ( \
|
|
(nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \
|
|
nb_ports*nb_lcores*MAX_PKT_BURST + \
|
|
nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \
|
|
nb_lcores*MEMPOOL_CACHE_SIZE), \
|
|
(unsigned)8192)
|
|
|
|
#define MAX_PKT_BURST 32
|
|
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
|
|
|
|
/*
|
|
* Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send.
|
|
*/
|
|
#define MAX_TX_BURST (MAX_PKT_BURST / 2)
|
|
|
|
#define NB_SOCKETS 8
|
|
|
|
/* Configure how many packets ahead to prefetch, when reading packets */
|
|
#define PREFETCH_OFFSET 3
|
|
|
|
/* Used to mark destination port as 'invalid'. */
|
|
#define BAD_PORT ((uint16_t)-1)
|
|
|
|
#define FWDSTEP 4
|
|
|
|
/*
|
|
* Configurable number of RX/TX ring descriptors
|
|
*/
|
|
#define RTE_TEST_RX_DESC_DEFAULT 128
|
|
#define RTE_TEST_TX_DESC_DEFAULT 512
|
|
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
|
|
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
|
|
|
|
/* ethernet addresses of ports */
|
|
static uint64_t dest_eth_addr[RTE_MAX_ETHPORTS];
|
|
static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
|
|
|
|
static __m128i val_eth[RTE_MAX_ETHPORTS];
|
|
|
|
/* replace first 12B of the ethernet header. */
|
|
#define MASK_ETH 0x3f
|
|
|
|
/* mask of enabled ports */
|
|
static uint32_t enabled_port_mask = 0;
|
|
static int promiscuous_on = 0; /**< Ports set in promiscuous mode off by default. */
|
|
static int numa_on = 1; /**< NUMA is enabled by default. */
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
static int ipv6 = 0; /**< ipv6 is false by default. */
|
|
#endif
|
|
|
|
struct mbuf_table {
|
|
uint16_t len;
|
|
struct rte_mbuf *m_table[MAX_PKT_BURST];
|
|
};
|
|
|
|
struct lcore_rx_queue {
|
|
uint8_t port_id;
|
|
uint8_t queue_id;
|
|
} __rte_cache_aligned;
|
|
|
|
#define MAX_RX_QUEUE_PER_LCORE 16
|
|
#define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
|
|
#define MAX_RX_QUEUE_PER_PORT 128
|
|
|
|
#define MAX_LCORE_PARAMS 1024
|
|
struct lcore_params {
|
|
uint8_t port_id;
|
|
uint8_t queue_id;
|
|
uint8_t lcore_id;
|
|
} __rte_cache_aligned;
|
|
|
|
static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
|
|
static struct lcore_params lcore_params_array_default[] = {
|
|
{0, 0, 2},
|
|
{0, 1, 2},
|
|
{0, 2, 2},
|
|
{1, 0, 2},
|
|
{1, 1, 2},
|
|
{1, 2, 2},
|
|
{2, 0, 2},
|
|
{3, 0, 3},
|
|
{3, 1, 3},
|
|
};
|
|
|
|
static struct lcore_params * lcore_params = lcore_params_array_default;
|
|
static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
|
|
sizeof(lcore_params_array_default[0]);
|
|
|
|
static struct rte_eth_conf port_conf = {
|
|
.rxmode = {
|
|
.mq_mode = ETH_MQ_RX_RSS,
|
|
.max_rx_pkt_len = ETHER_MAX_LEN,
|
|
.split_hdr_size = 0,
|
|
.header_split = 0, /**< Header Split disabled */
|
|
.hw_ip_checksum = 1, /**< IP checksum offload enabled */
|
|
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
|
|
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
|
|
.hw_strip_crc = 0, /**< CRC stripped by hardware */
|
|
},
|
|
.rx_adv_conf = {
|
|
.rss_conf = {
|
|
.rss_key = NULL,
|
|
.rss_hf = ETH_RSS_IP,
|
|
},
|
|
},
|
|
.txmode = {
|
|
.mq_mode = ETH_MQ_TX_NONE,
|
|
},
|
|
};
|
|
|
|
static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
|
|
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
|
|
#include <rte_hash_crc.h>
|
|
#define DEFAULT_HASH_FUNC rte_hash_crc
|
|
#else
|
|
#include <rte_jhash.h>
|
|
#define DEFAULT_HASH_FUNC rte_jhash
|
|
#endif
|
|
|
|
struct ipv4_5tuple {
|
|
uint32_t ip_dst;
|
|
uint32_t ip_src;
|
|
uint16_t port_dst;
|
|
uint16_t port_src;
|
|
uint8_t proto;
|
|
} __attribute__((__packed__));
|
|
|
|
union ipv4_5tuple_host {
|
|
struct {
|
|
uint8_t pad0;
|
|
uint8_t proto;
|
|
uint16_t pad1;
|
|
uint32_t ip_src;
|
|
uint32_t ip_dst;
|
|
uint16_t port_src;
|
|
uint16_t port_dst;
|
|
};
|
|
__m128i xmm;
|
|
};
|
|
|
|
#define XMM_NUM_IN_IPV6_5TUPLE 3
|
|
|
|
struct ipv6_5tuple {
|
|
uint8_t ip_dst[IPV6_ADDR_LEN];
|
|
uint8_t ip_src[IPV6_ADDR_LEN];
|
|
uint16_t port_dst;
|
|
uint16_t port_src;
|
|
uint8_t proto;
|
|
} __attribute__((__packed__));
|
|
|
|
union ipv6_5tuple_host {
|
|
struct {
|
|
uint16_t pad0;
|
|
uint8_t proto;
|
|
uint8_t pad1;
|
|
uint8_t ip_src[IPV6_ADDR_LEN];
|
|
uint8_t ip_dst[IPV6_ADDR_LEN];
|
|
uint16_t port_src;
|
|
uint16_t port_dst;
|
|
uint64_t reserve;
|
|
};
|
|
__m128i xmm[XMM_NUM_IN_IPV6_5TUPLE];
|
|
};
|
|
|
|
struct ipv4_l3fwd_route {
|
|
struct ipv4_5tuple key;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
struct ipv6_l3fwd_route {
|
|
struct ipv6_5tuple key;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
|
|
{{IPv4(101,0,0,0), IPv4(100,10,0,1), 101, 11, IPPROTO_TCP}, 0},
|
|
{{IPv4(201,0,0,0), IPv4(200,20,0,1), 102, 12, IPPROTO_TCP}, 1},
|
|
{{IPv4(111,0,0,0), IPv4(100,30,0,1), 101, 11, IPPROTO_TCP}, 2},
|
|
{{IPv4(211,0,0,0), IPv4(200,40,0,1), 102, 12, IPPROTO_TCP}, 3},
|
|
};
|
|
|
|
static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
|
|
{{
|
|
{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
|
{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
|
101, 11, IPPROTO_TCP}, 0},
|
|
|
|
{{
|
|
{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
|
{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
|
102, 12, IPPROTO_TCP}, 1},
|
|
|
|
{{
|
|
{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
|
{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
|
101, 11, IPPROTO_TCP}, 2},
|
|
|
|
{{
|
|
{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
|
{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
|
102, 12, IPPROTO_TCP}, 3},
|
|
};
|
|
|
|
typedef struct rte_hash lookup_struct_t;
|
|
static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
|
|
static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
|
|
|
|
#ifdef RTE_ARCH_X86_64
|
|
/* default to 4 million hash entries (approx) */
|
|
#define L3FWD_HASH_ENTRIES 1024*1024*4
|
|
#else
|
|
/* 32-bit has less address-space for hugepage memory, limit to 1M entries */
|
|
#define L3FWD_HASH_ENTRIES 1024*1024*1
|
|
#endif
|
|
#define HASH_ENTRY_NUMBER_DEFAULT 4
|
|
|
|
static uint32_t hash_entry_number = HASH_ENTRY_NUMBER_DEFAULT;
|
|
|
|
static inline uint32_t
|
|
ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
|
|
uint32_t init_val)
|
|
{
|
|
const union ipv4_5tuple_host *k;
|
|
uint32_t t;
|
|
const uint32_t *p;
|
|
|
|
k = data;
|
|
t = k->proto;
|
|
p = (const uint32_t *)&k->port_src;
|
|
|
|
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
|
|
init_val = rte_hash_crc_4byte(t, init_val);
|
|
init_val = rte_hash_crc_4byte(k->ip_src, init_val);
|
|
init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
|
|
init_val = rte_hash_crc_4byte(*p, init_val);
|
|
#else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
|
|
init_val = rte_jhash_1word(t, init_val);
|
|
init_val = rte_jhash_1word(k->ip_src, init_val);
|
|
init_val = rte_jhash_1word(k->ip_dst, init_val);
|
|
init_val = rte_jhash_1word(*p, init_val);
|
|
#endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
|
|
return (init_val);
|
|
}
|
|
|
|
static inline uint32_t
|
|
ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len, uint32_t init_val)
|
|
{
|
|
const union ipv6_5tuple_host *k;
|
|
uint32_t t;
|
|
const uint32_t *p;
|
|
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
|
|
const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3;
|
|
const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
|
|
#endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
|
|
|
|
k = data;
|
|
t = k->proto;
|
|
p = (const uint32_t *)&k->port_src;
|
|
|
|
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
|
|
ip_src0 = (const uint32_t *) k->ip_src;
|
|
ip_src1 = (const uint32_t *)(k->ip_src+4);
|
|
ip_src2 = (const uint32_t *)(k->ip_src+8);
|
|
ip_src3 = (const uint32_t *)(k->ip_src+12);
|
|
ip_dst0 = (const uint32_t *) k->ip_dst;
|
|
ip_dst1 = (const uint32_t *)(k->ip_dst+4);
|
|
ip_dst2 = (const uint32_t *)(k->ip_dst+8);
|
|
ip_dst3 = (const uint32_t *)(k->ip_dst+12);
|
|
init_val = rte_hash_crc_4byte(t, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_src0, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_src1, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_src2, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_src3, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
|
|
init_val = rte_hash_crc_4byte(*p, init_val);
|
|
#else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
|
|
init_val = rte_jhash_1word(t, init_val);
|
|
init_val = rte_jhash(k->ip_src, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
|
|
init_val = rte_jhash(k->ip_dst, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
|
|
init_val = rte_jhash_1word(*p, init_val);
|
|
#endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
|
|
return (init_val);
|
|
}
|
|
|
|
#define IPV4_L3FWD_NUM_ROUTES \
|
|
(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
|
|
|
|
#define IPV6_L3FWD_NUM_ROUTES \
|
|
(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
|
|
|
|
static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
|
|
static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
|
|
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
struct ipv4_l3fwd_route {
|
|
uint32_t ip;
|
|
uint8_t depth;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
struct ipv6_l3fwd_route {
|
|
uint8_t ip[16];
|
|
uint8_t depth;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
|
|
{IPv4(1,1,1,0), 24, 0},
|
|
{IPv4(2,1,1,0), 24, 1},
|
|
{IPv4(3,1,1,0), 24, 2},
|
|
{IPv4(4,1,1,0), 24, 3},
|
|
{IPv4(5,1,1,0), 24, 4},
|
|
{IPv4(6,1,1,0), 24, 5},
|
|
{IPv4(7,1,1,0), 24, 6},
|
|
{IPv4(8,1,1,0), 24, 7},
|
|
};
|
|
|
|
static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
|
|
{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
|
|
{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
|
|
{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
|
|
{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
|
|
{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
|
|
{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
|
|
{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
|
|
{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
|
|
};
|
|
|
|
#define IPV4_L3FWD_NUM_ROUTES \
|
|
(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
|
|
#define IPV6_L3FWD_NUM_ROUTES \
|
|
(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
|
|
|
|
#define IPV4_L3FWD_LPM_MAX_RULES 1024
|
|
#define IPV6_L3FWD_LPM_MAX_RULES 1024
|
|
#define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16)
|
|
|
|
typedef struct rte_lpm lookup_struct_t;
|
|
typedef struct rte_lpm6 lookup6_struct_t;
|
|
static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
|
|
static lookup6_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
|
|
#endif
|
|
|
|
struct lcore_conf {
|
|
uint16_t n_rx_queue;
|
|
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
|
|
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
|
|
struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
|
|
lookup_struct_t * ipv4_lookup_struct;
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
lookup6_struct_t * ipv6_lookup_struct;
|
|
#else
|
|
lookup_struct_t * ipv6_lookup_struct;
|
|
#endif
|
|
} __rte_cache_aligned;
|
|
|
|
static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
|
|
|
|
/* Send burst of packets on an output interface */
|
|
static inline int
|
|
send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
|
|
{
|
|
struct rte_mbuf **m_table;
|
|
int ret;
|
|
uint16_t queueid;
|
|
|
|
queueid = qconf->tx_queue_id[port];
|
|
m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
|
|
|
|
ret = rte_eth_tx_burst(port, queueid, m_table, n);
|
|
if (unlikely(ret < n)) {
|
|
do {
|
|
rte_pktmbuf_free(m_table[ret]);
|
|
} while (++ret < n);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Enqueue a single packet, and send burst if queue is filled */
|
|
static inline int
|
|
send_single_packet(struct rte_mbuf *m, uint8_t port)
|
|
{
|
|
uint32_t lcore_id;
|
|
uint16_t len;
|
|
struct lcore_conf *qconf;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
|
|
qconf = &lcore_conf[lcore_id];
|
|
len = qconf->tx_mbufs[port].len;
|
|
qconf->tx_mbufs[port].m_table[len] = m;
|
|
len++;
|
|
|
|
/* enough pkts to be sent */
|
|
if (unlikely(len == MAX_PKT_BURST)) {
|
|
send_burst(qconf, MAX_PKT_BURST, port);
|
|
len = 0;
|
|
}
|
|
|
|
qconf->tx_mbufs[port].len = len;
|
|
return 0;
|
|
}
|
|
|
|
static inline __attribute__((always_inline)) void
|
|
send_packetsx4(struct lcore_conf *qconf, uint8_t port,
|
|
struct rte_mbuf *m[], uint32_t num)
|
|
{
|
|
uint32_t len, j, n;
|
|
|
|
len = qconf->tx_mbufs[port].len;
|
|
|
|
/*
|
|
* If TX buffer for that queue is empty, and we have enough packets,
|
|
* then send them straightway.
|
|
*/
|
|
if (num >= MAX_TX_BURST && len == 0) {
|
|
n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num);
|
|
if (unlikely(n < num)) {
|
|
do {
|
|
rte_pktmbuf_free(m[n]);
|
|
} while (++n < num);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Put packets into TX buffer for that queue.
|
|
*/
|
|
|
|
n = len + num;
|
|
n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num;
|
|
|
|
j = 0;
|
|
switch (n % FWDSTEP) {
|
|
while (j < n) {
|
|
case 0:
|
|
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
|
j++;
|
|
case 3:
|
|
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
|
j++;
|
|
case 2:
|
|
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
|
j++;
|
|
case 1:
|
|
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
|
j++;
|
|
}
|
|
}
|
|
|
|
len += n;
|
|
|
|
/* enough pkts to be sent */
|
|
if (unlikely(len == MAX_PKT_BURST)) {
|
|
|
|
send_burst(qconf, MAX_PKT_BURST, port);
|
|
|
|
/* copy rest of the packets into the TX buffer. */
|
|
len = num - n;
|
|
j = 0;
|
|
switch (len % FWDSTEP) {
|
|
while (j < len) {
|
|
case 0:
|
|
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
|
j++;
|
|
case 3:
|
|
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
|
j++;
|
|
case 2:
|
|
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
|
j++;
|
|
case 1:
|
|
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
|
j++;
|
|
}
|
|
}
|
|
}
|
|
|
|
qconf->tx_mbufs[port].len = len;
|
|
}
|
|
|
|
#ifdef DO_RFC_1812_CHECKS
|
|
static inline int
|
|
is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
|
|
{
|
|
/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
|
|
/*
|
|
* 1. The packet length reported by the Link Layer must be large
|
|
* enough to hold the minimum length legal IP datagram (20 bytes).
|
|
*/
|
|
if (link_len < sizeof(struct ipv4_hdr))
|
|
return -1;
|
|
|
|
/* 2. The IP checksum must be correct. */
|
|
/* this is checked in H/W */
|
|
|
|
/*
|
|
* 3. The IP version number must be 4. If the version number is not 4
|
|
* then the packet may be another version of IP, such as IPng or
|
|
* ST-II.
|
|
*/
|
|
if (((pkt->version_ihl) >> 4) != 4)
|
|
return -3;
|
|
/*
|
|
* 4. The IP header length field must be large enough to hold the
|
|
* minimum length legal IP datagram (20 bytes = 5 words).
|
|
*/
|
|
if ((pkt->version_ihl & 0xf) < 5)
|
|
return -4;
|
|
|
|
/*
|
|
* 5. The IP total length field must be large enough to hold the IP
|
|
* datagram header, whose length is specified in the IP header length
|
|
* field.
|
|
*/
|
|
if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
|
|
return -5;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
|
|
static __m128i mask0;
|
|
static __m128i mask1;
|
|
static __m128i mask2;
|
|
static inline uint8_t
|
|
get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
|
|
{
|
|
int ret = 0;
|
|
union ipv4_5tuple_host key;
|
|
|
|
ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
|
|
__m128i data = _mm_loadu_si128((__m128i*)(ipv4_hdr));
|
|
/* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */
|
|
key.xmm = _mm_and_si128(data, mask0);
|
|
/* Find destination port */
|
|
ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
|
|
return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
|
|
}
|
|
|
|
static inline uint8_t
|
|
get_ipv6_dst_port(void *ipv6_hdr, uint8_t portid, lookup_struct_t * ipv6_l3fwd_lookup_struct)
|
|
{
|
|
int ret = 0;
|
|
union ipv6_5tuple_host key;
|
|
|
|
ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
|
|
__m128i data0 = _mm_loadu_si128((__m128i*)(ipv6_hdr));
|
|
__m128i data1 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i)));
|
|
__m128i data2 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i)+sizeof(__m128i)));
|
|
/* Get part of 5 tuple: src IP address lower 96 bits and protocol */
|
|
key.xmm[0] = _mm_and_si128(data0, mask1);
|
|
/* Get part of 5 tuple: dst IP address lower 96 bits and src IP address higher 32 bits */
|
|
key.xmm[1] = data1;
|
|
/* Get part of 5 tuple: dst port and src port and dst IP address higher 32 bits */
|
|
key.xmm[2] = _mm_and_si128(data2, mask2);
|
|
|
|
/* Find destination port */
|
|
ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
|
|
return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
|
|
}
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
|
|
static inline uint8_t
|
|
get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
|
|
{
|
|
uint8_t next_hop;
|
|
|
|
return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
|
|
rte_be_to_cpu_32(((struct ipv4_hdr *)ipv4_hdr)->dst_addr),
|
|
&next_hop) == 0) ? next_hop : portid);
|
|
}
|
|
|
|
static inline uint8_t
|
|
get_ipv6_dst_port(void *ipv6_hdr, uint8_t portid, lookup6_struct_t * ipv6_l3fwd_lookup_struct)
|
|
{
|
|
uint8_t next_hop;
|
|
return (uint8_t) ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct,
|
|
((struct ipv6_hdr*)ipv6_hdr)->dst_addr, &next_hop) == 0)?
|
|
next_hop : portid);
|
|
}
|
|
#endif
|
|
|
|
static inline void l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid,
|
|
struct lcore_conf *qconf) __attribute__((unused));
|
|
|
|
#if ((APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) && \
|
|
(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
|
|
|
|
#define MASK_ALL_PKTS 0xf
|
|
#define EXECLUDE_1ST_PKT 0xe
|
|
#define EXECLUDE_2ND_PKT 0xd
|
|
#define EXECLUDE_3RD_PKT 0xb
|
|
#define EXECLUDE_4TH_PKT 0x7
|
|
|
|
static inline void
|
|
simple_ipv4_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf)
|
|
{
|
|
struct ether_hdr *eth_hdr[4];
|
|
struct ipv4_hdr *ipv4_hdr[4];
|
|
uint8_t dst_port[4];
|
|
int32_t ret[4];
|
|
union ipv4_5tuple_host key[4];
|
|
__m128i data[4];
|
|
|
|
eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
|
|
eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
|
|
eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
|
|
eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
|
|
|
|
/* Handle IPv4 headers.*/
|
|
ipv4_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv4_hdr *,
|
|
sizeof(struct ether_hdr));
|
|
ipv4_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv4_hdr *,
|
|
sizeof(struct ether_hdr));
|
|
ipv4_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv4_hdr *,
|
|
sizeof(struct ether_hdr));
|
|
ipv4_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv4_hdr *,
|
|
sizeof(struct ether_hdr));
|
|
|
|
#ifdef DO_RFC_1812_CHECKS
|
|
/* Check to make sure the packet is valid (RFC1812) */
|
|
uint8_t valid_mask = MASK_ALL_PKTS;
|
|
if (is_valid_ipv4_pkt(ipv4_hdr[0], m[0]->pkt_len) < 0) {
|
|
rte_pktmbuf_free(m[0]);
|
|
valid_mask &= EXECLUDE_1ST_PKT;
|
|
}
|
|
if (is_valid_ipv4_pkt(ipv4_hdr[1], m[1]->pkt_len) < 0) {
|
|
rte_pktmbuf_free(m[1]);
|
|
valid_mask &= EXECLUDE_2ND_PKT;
|
|
}
|
|
if (is_valid_ipv4_pkt(ipv4_hdr[2], m[2]->pkt_len) < 0) {
|
|
rte_pktmbuf_free(m[2]);
|
|
valid_mask &= EXECLUDE_3RD_PKT;
|
|
}
|
|
if (is_valid_ipv4_pkt(ipv4_hdr[3], m[3]->pkt_len) < 0) {
|
|
rte_pktmbuf_free(m[3]);
|
|
valid_mask &= EXECLUDE_4TH_PKT;
|
|
}
|
|
if (unlikely(valid_mask != MASK_ALL_PKTS)) {
|
|
if (valid_mask == 0){
|
|
return;
|
|
} else {
|
|
uint8_t i = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
if ((0x1 << i) & valid_mask) {
|
|
l3fwd_simple_forward(m[i], portid, qconf);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
#endif // End of #ifdef DO_RFC_1812_CHECKS
|
|
|
|
data[0] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[0], __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
|
|
data[1] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[1], __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
|
|
data[2] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[2], __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
|
|
data[3] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[3], __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
|
|
|
|
key[0].xmm = _mm_and_si128(data[0], mask0);
|
|
key[1].xmm = _mm_and_si128(data[1], mask0);
|
|
key[2].xmm = _mm_and_si128(data[2], mask0);
|
|
key[3].xmm = _mm_and_si128(data[3], mask0);
|
|
|
|
const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};
|
|
rte_hash_lookup_multi(qconf->ipv4_lookup_struct, &key_array[0], 4, ret);
|
|
dst_port[0] = (uint8_t) ((ret[0] < 0) ? portid : ipv4_l3fwd_out_if[ret[0]]);
|
|
dst_port[1] = (uint8_t) ((ret[1] < 0) ? portid : ipv4_l3fwd_out_if[ret[1]]);
|
|
dst_port[2] = (uint8_t) ((ret[2] < 0) ? portid : ipv4_l3fwd_out_if[ret[2]]);
|
|
dst_port[3] = (uint8_t) ((ret[3] < 0) ? portid : ipv4_l3fwd_out_if[ret[3]]);
|
|
|
|
if (dst_port[0] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[0]) == 0)
|
|
dst_port[0] = portid;
|
|
if (dst_port[1] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[1]) == 0)
|
|
dst_port[1] = portid;
|
|
if (dst_port[2] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[2]) == 0)
|
|
dst_port[2] = portid;
|
|
if (dst_port[3] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[3]) == 0)
|
|
dst_port[3] = portid;
|
|
|
|
#ifdef DO_RFC_1812_CHECKS
|
|
/* Update time to live and header checksum */
|
|
--(ipv4_hdr[0]->time_to_live);
|
|
--(ipv4_hdr[1]->time_to_live);
|
|
--(ipv4_hdr[2]->time_to_live);
|
|
--(ipv4_hdr[3]->time_to_live);
|
|
++(ipv4_hdr[0]->hdr_checksum);
|
|
++(ipv4_hdr[1]->hdr_checksum);
|
|
++(ipv4_hdr[2]->hdr_checksum);
|
|
++(ipv4_hdr[3]->hdr_checksum);
|
|
#endif
|
|
|
|
/* dst addr */
|
|
*(uint64_t *)ð_hdr[0]->d_addr = dest_eth_addr[dst_port[0]];
|
|
*(uint64_t *)ð_hdr[1]->d_addr = dest_eth_addr[dst_port[1]];
|
|
*(uint64_t *)ð_hdr[2]->d_addr = dest_eth_addr[dst_port[2]];
|
|
*(uint64_t *)ð_hdr[3]->d_addr = dest_eth_addr[dst_port[3]];
|
|
|
|
/* src addr */
|
|
ether_addr_copy(&ports_eth_addr[dst_port[0]], ð_hdr[0]->s_addr);
|
|
ether_addr_copy(&ports_eth_addr[dst_port[1]], ð_hdr[1]->s_addr);
|
|
ether_addr_copy(&ports_eth_addr[dst_port[2]], ð_hdr[2]->s_addr);
|
|
ether_addr_copy(&ports_eth_addr[dst_port[3]], ð_hdr[3]->s_addr);
|
|
|
|
send_single_packet(m[0], (uint8_t)dst_port[0]);
|
|
send_single_packet(m[1], (uint8_t)dst_port[1]);
|
|
send_single_packet(m[2], (uint8_t)dst_port[2]);
|
|
send_single_packet(m[3], (uint8_t)dst_port[3]);
|
|
|
|
}
|
|
|
|
static inline void get_ipv6_5tuple(struct rte_mbuf* m0, __m128i mask0, __m128i mask1,
|
|
union ipv6_5tuple_host * key)
|
|
{
|
|
__m128i tmpdata0 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len)));
|
|
__m128i tmpdata1 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i)));
|
|
__m128i tmpdata2 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i) + sizeof(__m128i)));
|
|
key->xmm[0] = _mm_and_si128(tmpdata0, mask0);
|
|
key->xmm[1] = tmpdata1;
|
|
key->xmm[2] = _mm_and_si128(tmpdata2, mask1);
|
|
return;
|
|
}
|
|
|
|
static inline void
|
|
simple_ipv6_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf)
|
|
{
|
|
struct ether_hdr *eth_hdr[4];
|
|
__attribute__((unused)) struct ipv6_hdr *ipv6_hdr[4];
|
|
uint8_t dst_port[4];
|
|
int32_t ret[4];
|
|
union ipv6_5tuple_host key[4];
|
|
|
|
eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
|
|
eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
|
|
eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
|
|
eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
|
|
|
|
/* Handle IPv6 headers.*/
|
|
ipv6_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv6_hdr *,
|
|
sizeof(struct ether_hdr));
|
|
ipv6_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv6_hdr *,
|
|
sizeof(struct ether_hdr));
|
|
ipv6_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv6_hdr *,
|
|
sizeof(struct ether_hdr));
|
|
ipv6_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv6_hdr *,
|
|
sizeof(struct ether_hdr));
|
|
|
|
get_ipv6_5tuple(m[0], mask1, mask2, &key[0]);
|
|
get_ipv6_5tuple(m[1], mask1, mask2, &key[1]);
|
|
get_ipv6_5tuple(m[2], mask1, mask2, &key[2]);
|
|
get_ipv6_5tuple(m[3], mask1, mask2, &key[3]);
|
|
|
|
const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};
|
|
rte_hash_lookup_multi(qconf->ipv6_lookup_struct, &key_array[0], 4, ret);
|
|
dst_port[0] = (uint8_t) ((ret[0] < 0)? portid:ipv6_l3fwd_out_if[ret[0]]);
|
|
dst_port[1] = (uint8_t) ((ret[1] < 0)? portid:ipv6_l3fwd_out_if[ret[1]]);
|
|
dst_port[2] = (uint8_t) ((ret[2] < 0)? portid:ipv6_l3fwd_out_if[ret[2]]);
|
|
dst_port[3] = (uint8_t) ((ret[3] < 0)? portid:ipv6_l3fwd_out_if[ret[3]]);
|
|
|
|
if (dst_port[0] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[0]) == 0)
|
|
dst_port[0] = portid;
|
|
if (dst_port[1] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[1]) == 0)
|
|
dst_port[1] = portid;
|
|
if (dst_port[2] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[2]) == 0)
|
|
dst_port[2] = portid;
|
|
if (dst_port[3] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[3]) == 0)
|
|
dst_port[3] = portid;
|
|
|
|
/* dst addr */
|
|
*(uint64_t *)ð_hdr[0]->d_addr = dest_eth_addr[dst_port[0]];
|
|
*(uint64_t *)ð_hdr[1]->d_addr = dest_eth_addr[dst_port[1]];
|
|
*(uint64_t *)ð_hdr[2]->d_addr = dest_eth_addr[dst_port[2]];
|
|
*(uint64_t *)ð_hdr[3]->d_addr = dest_eth_addr[dst_port[3]];
|
|
|
|
/* src addr */
|
|
ether_addr_copy(&ports_eth_addr[dst_port[0]], ð_hdr[0]->s_addr);
|
|
ether_addr_copy(&ports_eth_addr[dst_port[1]], ð_hdr[1]->s_addr);
|
|
ether_addr_copy(&ports_eth_addr[dst_port[2]], ð_hdr[2]->s_addr);
|
|
ether_addr_copy(&ports_eth_addr[dst_port[3]], ð_hdr[3]->s_addr);
|
|
|
|
send_single_packet(m[0], (uint8_t)dst_port[0]);
|
|
send_single_packet(m[1], (uint8_t)dst_port[1]);
|
|
send_single_packet(m[2], (uint8_t)dst_port[2]);
|
|
send_single_packet(m[3], (uint8_t)dst_port[3]);
|
|
|
|
}
|
|
#endif /* APP_LOOKUP_METHOD */
|
|
|
|
static inline __attribute__((always_inline)) void
|
|
l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qconf)
|
|
{
|
|
struct ether_hdr *eth_hdr;
|
|
struct ipv4_hdr *ipv4_hdr;
|
|
uint8_t dst_port;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
|
|
|
|
if (m->ol_flags & PKT_RX_IPV4_HDR) {
|
|
/* Handle IPv4 headers.*/
|
|
ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
|
|
sizeof(struct ether_hdr));
|
|
|
|
#ifdef DO_RFC_1812_CHECKS
|
|
/* Check to make sure the packet is valid (RFC1812) */
|
|
if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
|
|
rte_pktmbuf_free(m);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
|
|
qconf->ipv4_lookup_struct);
|
|
if (dst_port >= RTE_MAX_ETHPORTS ||
|
|
(enabled_port_mask & 1 << dst_port) == 0)
|
|
dst_port = portid;
|
|
|
|
#ifdef DO_RFC_1812_CHECKS
|
|
/* Update time to live and header checksum */
|
|
--(ipv4_hdr->time_to_live);
|
|
++(ipv4_hdr->hdr_checksum);
|
|
#endif
|
|
/* dst addr */
|
|
*(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port];
|
|
|
|
/* src addr */
|
|
ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr);
|
|
|
|
send_single_packet(m, dst_port);
|
|
|
|
} else {
|
|
/* Handle IPv6 headers.*/
|
|
struct ipv6_hdr *ipv6_hdr;
|
|
|
|
ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *,
|
|
sizeof(struct ether_hdr));
|
|
|
|
dst_port = get_ipv6_dst_port(ipv6_hdr, portid, qconf->ipv6_lookup_struct);
|
|
|
|
if (dst_port >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port) == 0)
|
|
dst_port = portid;
|
|
|
|
/* dst addr */
|
|
*(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port];
|
|
|
|
/* src addr */
|
|
ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr);
|
|
|
|
send_single_packet(m, dst_port);
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef DO_RFC_1812_CHECKS
|
|
|
|
#define IPV4_MIN_VER_IHL 0x45
|
|
#define IPV4_MAX_VER_IHL 0x4f
|
|
#define IPV4_MAX_VER_IHL_DIFF (IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL)
|
|
|
|
/* Minimum value of IPV4 total length (20B) in network byte order. */
|
|
#define IPV4_MIN_LEN_BE (sizeof(struct ipv4_hdr) << 8)
|
|
|
|
/*
|
|
* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2:
|
|
* - The IP version number must be 4.
|
|
* - The IP header length field must be large enough to hold the
|
|
* minimum length legal IP datagram (20 bytes = 5 words).
|
|
* - The IP total length field must be large enough to hold the IP
|
|
* datagram header, whose length is specified in the IP header length
|
|
* field.
|
|
* If we encounter invalid IPV4 packet, then set destination port for it
|
|
* to BAD_PORT value.
|
|
*/
|
|
static inline __attribute__((always_inline)) void
|
|
rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t flags)
|
|
{
|
|
uint8_t ihl;
|
|
|
|
if ((flags & PKT_RX_IPV4_HDR) != 0) {
|
|
|
|
ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL;
|
|
|
|
ipv4_hdr->time_to_live--;
|
|
ipv4_hdr->hdr_checksum++;
|
|
|
|
if (ihl > IPV4_MAX_VER_IHL_DIFF ||
|
|
((uint8_t)ipv4_hdr->total_length == 0 &&
|
|
ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) {
|
|
dp[0] = BAD_PORT;
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
#define rfc1812_process(mb, dp) do { } while (0)
|
|
#endif /* DO_RFC_1812_CHECKS */
|
|
|
|
|
|
#if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
|
|
(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
|
|
|
|
static inline __attribute__((always_inline)) uint16_t
|
|
get_dst_port(const struct lcore_conf *qconf, struct rte_mbuf *pkt,
|
|
uint32_t dst_ipv4, uint8_t portid)
|
|
{
|
|
uint8_t next_hop;
|
|
struct ipv6_hdr *ipv6_hdr;
|
|
struct ether_hdr *eth_hdr;
|
|
|
|
if (pkt->ol_flags & PKT_RX_IPV4_HDR) {
|
|
if (rte_lpm_lookup(qconf->ipv4_lookup_struct, dst_ipv4,
|
|
&next_hop) != 0)
|
|
next_hop = portid;
|
|
} else if (pkt->ol_flags & PKT_RX_IPV6_HDR) {
|
|
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
|
ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
|
|
if (rte_lpm6_lookup(qconf->ipv6_lookup_struct,
|
|
ipv6_hdr->dst_addr, &next_hop) != 0)
|
|
next_hop = portid;
|
|
} else {
|
|
next_hop = portid;
|
|
}
|
|
|
|
return next_hop;
|
|
}
|
|
|
|
static inline void
|
|
process_packet(struct lcore_conf *qconf, struct rte_mbuf *pkt,
|
|
uint16_t *dst_port, uint8_t portid)
|
|
{
|
|
struct ether_hdr *eth_hdr;
|
|
struct ipv4_hdr *ipv4_hdr;
|
|
uint32_t dst_ipv4;
|
|
uint16_t dp;
|
|
__m128i te, ve;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
|
|
|
dst_ipv4 = ipv4_hdr->dst_addr;
|
|
dst_ipv4 = rte_be_to_cpu_32(dst_ipv4);
|
|
dp = get_dst_port(qconf, pkt, dst_ipv4, portid);
|
|
|
|
te = _mm_load_si128((__m128i *)eth_hdr);
|
|
ve = val_eth[dp];
|
|
|
|
dst_port[0] = dp;
|
|
rfc1812_process(ipv4_hdr, dst_port, pkt->ol_flags);
|
|
|
|
te = _mm_blend_epi16(te, ve, MASK_ETH);
|
|
_mm_store_si128((__m128i *)eth_hdr, te);
|
|
}
|
|
|
|
/*
|
|
* Read ol_flags and destination IPV4 addresses from 4 mbufs.
|
|
*/
|
|
static inline void
|
|
processx4_step1(struct rte_mbuf *pkt[FWDSTEP], __m128i *dip, uint32_t *flag)
|
|
{
|
|
struct ipv4_hdr *ipv4_hdr;
|
|
struct ether_hdr *eth_hdr;
|
|
uint32_t x0, x1, x2, x3;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(pkt[0], struct ether_hdr *);
|
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
|
x0 = ipv4_hdr->dst_addr;
|
|
flag[0] = pkt[0]->ol_flags & PKT_RX_IPV4_HDR;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(pkt[1], struct ether_hdr *);
|
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
|
x1 = ipv4_hdr->dst_addr;
|
|
flag[0] &= pkt[1]->ol_flags;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(pkt[2], struct ether_hdr *);
|
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
|
x2 = ipv4_hdr->dst_addr;
|
|
flag[0] &= pkt[2]->ol_flags;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(pkt[3], struct ether_hdr *);
|
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
|
x3 = ipv4_hdr->dst_addr;
|
|
flag[0] &= pkt[3]->ol_flags;
|
|
|
|
dip[0] = _mm_set_epi32(x3, x2, x1, x0);
|
|
}
|
|
|
|
/*
|
|
* Lookup into LPM for destination port.
|
|
* If lookup fails, use incoming port (portid) as destination port.
|
|
*/
|
|
static inline void
|
|
processx4_step2(const struct lcore_conf *qconf, __m128i dip, uint32_t flag,
|
|
uint8_t portid, struct rte_mbuf *pkt[FWDSTEP], uint16_t dprt[FWDSTEP])
|
|
{
|
|
rte_xmm_t dst;
|
|
const __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11,
|
|
4, 5, 6, 7, 0, 1, 2, 3);
|
|
|
|
/* Byte swap 4 IPV4 addresses. */
|
|
dip = _mm_shuffle_epi8(dip, bswap_mask);
|
|
|
|
/* if all 4 packets are IPV4. */
|
|
if (likely(flag != 0)) {
|
|
rte_lpm_lookupx4(qconf->ipv4_lookup_struct, dip, dprt, portid);
|
|
} else {
|
|
dst.x = dip;
|
|
dprt[0] = get_dst_port(qconf, pkt[0], dst.u32[0], portid);
|
|
dprt[1] = get_dst_port(qconf, pkt[1], dst.u32[1], portid);
|
|
dprt[2] = get_dst_port(qconf, pkt[2], dst.u32[2], portid);
|
|
dprt[3] = get_dst_port(qconf, pkt[3], dst.u32[3], portid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update source and destination MAC addresses in the ethernet header.
|
|
* Perform RFC1812 checks and updates for IPV4 packets.
|
|
*/
|
|
static inline void
|
|
processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
|
|
{
|
|
__m128i te[FWDSTEP];
|
|
__m128i ve[FWDSTEP];
|
|
__m128i *p[FWDSTEP];
|
|
|
|
p[0] = rte_pktmbuf_mtod(pkt[0], __m128i *);
|
|
p[1] = rte_pktmbuf_mtod(pkt[1], __m128i *);
|
|
p[2] = rte_pktmbuf_mtod(pkt[2], __m128i *);
|
|
p[3] = rte_pktmbuf_mtod(pkt[3], __m128i *);
|
|
|
|
ve[0] = val_eth[dst_port[0]];
|
|
te[0] = _mm_load_si128(p[0]);
|
|
|
|
ve[1] = val_eth[dst_port[1]];
|
|
te[1] = _mm_load_si128(p[1]);
|
|
|
|
ve[2] = val_eth[dst_port[2]];
|
|
te[2] = _mm_load_si128(p[2]);
|
|
|
|
ve[3] = val_eth[dst_port[3]];
|
|
te[3] = _mm_load_si128(p[3]);
|
|
|
|
/* Update first 12 bytes, keep rest bytes intact. */
|
|
te[0] = _mm_blend_epi16(te[0], ve[0], MASK_ETH);
|
|
te[1] = _mm_blend_epi16(te[1], ve[1], MASK_ETH);
|
|
te[2] = _mm_blend_epi16(te[2], ve[2], MASK_ETH);
|
|
te[3] = _mm_blend_epi16(te[3], ve[3], MASK_ETH);
|
|
|
|
_mm_store_si128(p[0], te[0]);
|
|
_mm_store_si128(p[1], te[1]);
|
|
_mm_store_si128(p[2], te[2]);
|
|
_mm_store_si128(p[3], te[3]);
|
|
|
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1),
|
|
&dst_port[0], pkt[0]->ol_flags);
|
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1),
|
|
&dst_port[1], pkt[1]->ol_flags);
|
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1),
|
|
&dst_port[2], pkt[2]->ol_flags);
|
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1),
|
|
&dst_port[3], pkt[3]->ol_flags);
|
|
}
|
|
|
|
/*
|
|
* We group consecutive packets with the same destionation port into one burst.
|
|
* To avoid extra latency this is done together with some other packet
|
|
* processing, but after we made a final decision about packet's destination.
|
|
* To do this we maintain:
|
|
* pnum - array of number of consecutive packets with the same dest port for
|
|
* each packet in the input burst.
|
|
* lp - pointer to the last updated element in the pnum.
|
|
* dlp - dest port value lp corresponds to.
|
|
*/
|
|
|
|
#define GRPSZ (1 << FWDSTEP)
|
|
#define GRPMSK (GRPSZ - 1)
|
|
|
|
#define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx) do { \
|
|
if (likely((dlp) == (dcp)[(idx)])) { \
|
|
(lp)[0]++; \
|
|
} else { \
|
|
(dlp) = (dcp)[idx]; \
|
|
(lp) = (pn) + (idx); \
|
|
(lp)[0] = 1; \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Group consecutive packets with the same destination port in bursts of 4.
|
|
* Suppose we have array of destionation ports:
|
|
* dst_port[] = {a, b, c, d,, e, ... }
|
|
* dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
|
|
* We doing 4 comparisions at once and the result is 4 bit mask.
|
|
* This mask is used as an index into prebuild array of pnum values.
|
|
*/
|
|
static inline uint16_t *
|
|
port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2)
|
|
{
|
|
static const struct {
|
|
uint64_t pnum; /* prebuild 4 values for pnum[]. */
|
|
int32_t idx; /* index for new last updated elemnet. */
|
|
uint16_t lpv; /* add value to the last updated element. */
|
|
} gptbl[GRPSZ] = {
|
|
{
|
|
/* 0: a != b, b != c, c != d, d != e */
|
|
.pnum = UINT64_C(0x0001000100010001),
|
|
.idx = 4,
|
|
.lpv = 0,
|
|
},
|
|
{
|
|
/* 1: a == b, b != c, c != d, d != e */
|
|
.pnum = UINT64_C(0x0001000100010002),
|
|
.idx = 4,
|
|
.lpv = 1,
|
|
},
|
|
{
|
|
/* 2: a != b, b == c, c != d, d != e */
|
|
.pnum = UINT64_C(0x0001000100020001),
|
|
.idx = 4,
|
|
.lpv = 0,
|
|
},
|
|
{
|
|
/* 3: a == b, b == c, c != d, d != e */
|
|
.pnum = UINT64_C(0x0001000100020003),
|
|
.idx = 4,
|
|
.lpv = 2,
|
|
},
|
|
{
|
|
/* 4: a != b, b != c, c == d, d != e */
|
|
.pnum = UINT64_C(0x0001000200010001),
|
|
.idx = 4,
|
|
.lpv = 0,
|
|
},
|
|
{
|
|
/* 5: a == b, b != c, c == d, d != e */
|
|
.pnum = UINT64_C(0x0001000200010002),
|
|
.idx = 4,
|
|
.lpv = 1,
|
|
},
|
|
{
|
|
/* 6: a != b, b == c, c == d, d != e */
|
|
.pnum = UINT64_C(0x0001000200030001),
|
|
.idx = 4,
|
|
.lpv = 0,
|
|
},
|
|
{
|
|
/* 7: a == b, b == c, c == d, d != e */
|
|
.pnum = UINT64_C(0x0001000200030004),
|
|
.idx = 4,
|
|
.lpv = 3,
|
|
},
|
|
{
|
|
/* 8: a != b, b != c, c != d, d == e */
|
|
.pnum = UINT64_C(0x0002000100010001),
|
|
.idx = 3,
|
|
.lpv = 0,
|
|
},
|
|
{
|
|
/* 9: a == b, b != c, c != d, d == e */
|
|
.pnum = UINT64_C(0x0002000100010002),
|
|
.idx = 3,
|
|
.lpv = 1,
|
|
},
|
|
{
|
|
/* 0xa: a != b, b == c, c != d, d == e */
|
|
.pnum = UINT64_C(0x0002000100020001),
|
|
.idx = 3,
|
|
.lpv = 0,
|
|
},
|
|
{
|
|
/* 0xb: a == b, b == c, c != d, d == e */
|
|
.pnum = UINT64_C(0x0002000100020003),
|
|
.idx = 3,
|
|
.lpv = 2,
|
|
},
|
|
{
|
|
/* 0xc: a != b, b != c, c == d, d == e */
|
|
.pnum = UINT64_C(0x0002000300010001),
|
|
.idx = 2,
|
|
.lpv = 0,
|
|
},
|
|
{
|
|
/* 0xd: a == b, b != c, c == d, d == e */
|
|
.pnum = UINT64_C(0x0002000300010002),
|
|
.idx = 2,
|
|
.lpv = 1,
|
|
},
|
|
{
|
|
/* 0xe: a != b, b == c, c == d, d == e */
|
|
.pnum = UINT64_C(0x0002000300040001),
|
|
.idx = 1,
|
|
.lpv = 0,
|
|
},
|
|
{
|
|
/* 0xf: a == b, b == c, c == d, d == e */
|
|
.pnum = UINT64_C(0x0002000300040005),
|
|
.idx = 0,
|
|
.lpv = 4,
|
|
},
|
|
};
|
|
|
|
union {
|
|
uint16_t u16[FWDSTEP + 1];
|
|
uint64_t u64;
|
|
} *pnum = (void *)pn;
|
|
|
|
int32_t v;
|
|
|
|
dp1 = _mm_cmpeq_epi16(dp1, dp2);
|
|
dp1 = _mm_unpacklo_epi16(dp1, dp1);
|
|
v = _mm_movemask_ps((__m128)dp1);
|
|
|
|
/* update last port counter. */
|
|
lp[0] += gptbl[v].lpv;
|
|
|
|
/* if dest port value has changed. */
|
|
if (v != GRPMSK) {
|
|
lp = pnum->u16 + gptbl[v].idx;
|
|
lp[0] = 1;
|
|
pnum->u64 = gptbl[v].pnum;
|
|
}
|
|
|
|
return lp;
|
|
}
|
|
|
|
#endif /* APP_LOOKUP_METHOD */
|
|
|
|
/* main processing loop */
|
|
static int
|
|
main_loop(__attribute__((unused)) void *dummy)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
unsigned lcore_id;
|
|
uint64_t prev_tsc, diff_tsc, cur_tsc;
|
|
int i, j, nb_rx;
|
|
uint8_t portid, queueid;
|
|
struct lcore_conf *qconf;
|
|
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
|
|
US_PER_S * BURST_TX_DRAIN_US;
|
|
|
|
#if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
|
|
(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
|
|
int32_t k;
|
|
uint16_t dlp;
|
|
uint16_t *lp;
|
|
uint16_t dst_port[MAX_PKT_BURST];
|
|
__m128i dip[MAX_PKT_BURST / FWDSTEP];
|
|
uint32_t flag[MAX_PKT_BURST / FWDSTEP];
|
|
uint16_t pnum[MAX_PKT_BURST + 1];
|
|
#endif
|
|
|
|
prev_tsc = 0;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
qconf = &lcore_conf[lcore_id];
|
|
|
|
if (qconf->n_rx_queue == 0) {
|
|
RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
|
|
return 0;
|
|
}
|
|
|
|
RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
|
|
|
|
for (i = 0; i < qconf->n_rx_queue; i++) {
|
|
|
|
portid = qconf->rx_queue_list[i].port_id;
|
|
queueid = qconf->rx_queue_list[i].queue_id;
|
|
RTE_LOG(INFO, L3FWD, " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n", lcore_id,
|
|
portid, queueid);
|
|
}
|
|
|
|
while (1) {
|
|
|
|
cur_tsc = rte_rdtsc();
|
|
|
|
/*
|
|
* TX burst queue drain
|
|
*/
|
|
diff_tsc = cur_tsc - prev_tsc;
|
|
if (unlikely(diff_tsc > drain_tsc)) {
|
|
|
|
/*
|
|
* This could be optimized (use queueid instead of
|
|
* portid), but it is not called so often
|
|
*/
|
|
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
|
|
if (qconf->tx_mbufs[portid].len == 0)
|
|
continue;
|
|
send_burst(qconf,
|
|
qconf->tx_mbufs[portid].len,
|
|
portid);
|
|
qconf->tx_mbufs[portid].len = 0;
|
|
}
|
|
|
|
prev_tsc = cur_tsc;
|
|
}
|
|
|
|
/*
|
|
* Read packet from RX queues
|
|
*/
|
|
for (i = 0; i < qconf->n_rx_queue; ++i) {
|
|
portid = qconf->rx_queue_list[i].port_id;
|
|
queueid = qconf->rx_queue_list[i].queue_id;
|
|
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
|
|
MAX_PKT_BURST);
|
|
if (nb_rx == 0)
|
|
continue;
|
|
|
|
#if (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
{
|
|
/*
|
|
* Send nb_rx - nb_rx%4 packets
|
|
* in groups of 4.
|
|
*/
|
|
int32_t n = RTE_ALIGN_FLOOR(nb_rx, 4);
|
|
for (j = 0; j < n ; j+=4) {
|
|
uint32_t ol_flag = pkts_burst[j]->ol_flags
|
|
& pkts_burst[j+1]->ol_flags
|
|
& pkts_burst[j+2]->ol_flags
|
|
& pkts_burst[j+3]->ol_flags;
|
|
if (ol_flag & PKT_RX_IPV4_HDR ) {
|
|
simple_ipv4_fwd_4pkts(&pkts_burst[j],
|
|
portid, qconf);
|
|
} else if (ol_flag & PKT_RX_IPV6_HDR) {
|
|
simple_ipv6_fwd_4pkts(&pkts_burst[j],
|
|
portid, qconf);
|
|
} else {
|
|
l3fwd_simple_forward(pkts_burst[j],
|
|
portid, qconf);
|
|
l3fwd_simple_forward(pkts_burst[j+1],
|
|
portid, qconf);
|
|
l3fwd_simple_forward(pkts_burst[j+2],
|
|
portid, qconf);
|
|
l3fwd_simple_forward(pkts_burst[j+3],
|
|
portid, qconf);
|
|
}
|
|
}
|
|
for (; j < nb_rx ; j++) {
|
|
l3fwd_simple_forward(pkts_burst[j],
|
|
portid, qconf);
|
|
}
|
|
}
|
|
#elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
|
|
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
|
for (j = 0; j != k; j += FWDSTEP) {
|
|
processx4_step1(&pkts_burst[j],
|
|
&dip[j / FWDSTEP],
|
|
&flag[j / FWDSTEP]);
|
|
}
|
|
|
|
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
|
for (j = 0; j != k; j += FWDSTEP) {
|
|
processx4_step2(qconf, dip[j / FWDSTEP],
|
|
flag[j / FWDSTEP], portid,
|
|
&pkts_burst[j], &dst_port[j]);
|
|
}
|
|
|
|
/*
|
|
* Finish packet processing and group consecutive
|
|
* packets with the same destination port.
|
|
*/
|
|
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
|
if (k != 0) {
|
|
__m128i dp1, dp2;
|
|
|
|
lp = pnum;
|
|
lp[0] = 1;
|
|
|
|
processx4_step3(pkts_burst, dst_port);
|
|
|
|
/* dp1: <d[0], d[1], d[2], d[3], ... > */
|
|
dp1 = _mm_loadu_si128((__m128i *)dst_port);
|
|
|
|
for (j = FWDSTEP; j != k; j += FWDSTEP) {
|
|
processx4_step3(&pkts_burst[j],
|
|
&dst_port[j]);
|
|
|
|
/*
|
|
* dp2:
|
|
* <d[j-3], d[j-2], d[j-1], d[j], ... >
|
|
*/
|
|
dp2 = _mm_loadu_si128((__m128i *)
|
|
&dst_port[j - FWDSTEP + 1]);
|
|
lp = port_groupx4(&pnum[j - FWDSTEP],
|
|
lp, dp1, dp2);
|
|
|
|
/*
|
|
* dp1:
|
|
* <d[j], d[j+1], d[j+2], d[j+3], ... >
|
|
*/
|
|
dp1 = _mm_srli_si128(dp2,
|
|
(FWDSTEP - 1) *
|
|
sizeof(dst_port[0]));
|
|
}
|
|
|
|
/*
|
|
* dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
|
|
*/
|
|
dp2 = _mm_shufflelo_epi16(dp1, 0xf9);
|
|
lp = port_groupx4(&pnum[j - FWDSTEP], lp,
|
|
dp1, dp2);
|
|
|
|
/*
|
|
* remove values added by the last repeated
|
|
* dst port.
|
|
*/
|
|
lp[0]--;
|
|
dlp = dst_port[j - 1];
|
|
} else {
|
|
/* set dlp and lp to the never used values. */
|
|
dlp = BAD_PORT - 1;
|
|
lp = pnum + MAX_PKT_BURST;
|
|
}
|
|
|
|
/* Process up to last 3 packets one by one. */
|
|
switch (nb_rx % FWDSTEP) {
|
|
case 3:
|
|
process_packet(qconf, pkts_burst[j],
|
|
dst_port + j, portid);
|
|
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
|
j++;
|
|
case 2:
|
|
process_packet(qconf, pkts_burst[j],
|
|
dst_port + j, portid);
|
|
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
|
j++;
|
|
case 1:
|
|
process_packet(qconf, pkts_burst[j],
|
|
dst_port + j, portid);
|
|
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
|
j++;
|
|
}
|
|
|
|
/*
|
|
* Send packets out, through destination port.
|
|
* Consecuteve pacekts with the same destination port
|
|
* are already grouped together.
|
|
* If destination port for the packet equals BAD_PORT,
|
|
* then free the packet without sending it out.
|
|
*/
|
|
for (j = 0; j < nb_rx; j += k) {
|
|
|
|
int32_t m;
|
|
uint16_t pn;
|
|
|
|
pn = dst_port[j];
|
|
k = pnum[j];
|
|
|
|
if (likely(pn != BAD_PORT)) {
|
|
send_packetsx4(qconf, pn,
|
|
pkts_burst + j, k);
|
|
} else {
|
|
for (m = j; m != j + k; m++)
|
|
rte_pktmbuf_free(pkts_burst[m]);
|
|
}
|
|
}
|
|
|
|
#endif /* APP_LOOKUP_METHOD */
|
|
#else /* ENABLE_MULTI_BUFFER_OPTIMIZE == 0 */
|
|
|
|
/* Prefetch first packets */
|
|
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(
|
|
pkts_burst[j], void *));
|
|
}
|
|
|
|
/* Prefetch and forward already prefetched packets */
|
|
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
|
|
j + PREFETCH_OFFSET], void *));
|
|
l3fwd_simple_forward(pkts_burst[j], portid,
|
|
qconf);
|
|
}
|
|
|
|
/* Forward remaining prefetched packets */
|
|
for (; j < nb_rx; j++) {
|
|
l3fwd_simple_forward(pkts_burst[j], portid,
|
|
qconf);
|
|
}
|
|
#endif /* ENABLE_MULTI_BUFFER_OPTIMIZE */
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
check_lcore_params(void)
|
|
{
|
|
uint8_t queue, lcore;
|
|
uint16_t i;
|
|
int socketid;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
queue = lcore_params[i].queue_id;
|
|
if (queue >= MAX_RX_QUEUE_PER_PORT) {
|
|
printf("invalid queue number: %hhu\n", queue);
|
|
return -1;
|
|
}
|
|
lcore = lcore_params[i].lcore_id;
|
|
if (!rte_lcore_is_enabled(lcore)) {
|
|
printf("error: lcore %hhu is not enabled in lcore mask\n", lcore);
|
|
return -1;
|
|
}
|
|
if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
|
|
(numa_on == 0)) {
|
|
printf("warning: lcore %hhu is on socket %d with numa off \n",
|
|
lcore, socketid);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
check_port_config(const unsigned nb_ports)
|
|
{
|
|
unsigned portid;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
portid = lcore_params[i].port_id;
|
|
if ((enabled_port_mask & (1 << portid)) == 0) {
|
|
printf("port %u is not enabled in port mask\n", portid);
|
|
return -1;
|
|
}
|
|
if (portid >= nb_ports) {
|
|
printf("port %u is not present on the board\n", portid);
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t
|
|
get_port_n_rx_queues(const uint8_t port)
|
|
{
|
|
int queue = -1;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue)
|
|
queue = lcore_params[i].queue_id;
|
|
}
|
|
return (uint8_t)(++queue);
|
|
}
|
|
|
|
static int
|
|
init_lcore_rx_queues(void)
|
|
{
|
|
uint16_t i, nb_rx_queue;
|
|
uint8_t lcore;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
lcore = lcore_params[i].lcore_id;
|
|
nb_rx_queue = lcore_conf[lcore].n_rx_queue;
|
|
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
|
|
printf("error: too many queues (%u) for lcore: %u\n",
|
|
(unsigned)nb_rx_queue + 1, (unsigned)lcore);
|
|
return -1;
|
|
} else {
|
|
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
|
|
lcore_params[i].port_id;
|
|
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
|
|
lcore_params[i].queue_id;
|
|
lcore_conf[lcore].n_rx_queue++;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* display usage */
|
|
static void
|
|
print_usage(const char *prgname)
|
|
{
|
|
printf ("%s [EAL options] -- -p PORTMASK -P"
|
|
" [--config (port,queue,lcore)[,(port,queue,lcore]]"
|
|
" [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
|
|
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
|
|
" -P : enable promiscuous mode\n"
|
|
" --config (port,queue,lcore): rx queues configuration\n"
|
|
" --eth-dest=X,MM:MM:MM:MM:MM:MM: optional, ethernet destination for port X\n"
|
|
" --no-numa: optional, disable numa awareness\n"
|
|
" --ipv6: optional, specify it if running ipv6 packets\n"
|
|
" --enable-jumbo: enable jumbo frame"
|
|
" which max packet len is PKTLEN in decimal (64-9600)\n"
|
|
" --hash-entry-num: specify the hash entry number in hexadecimal to be setup\n",
|
|
prgname);
|
|
}
|
|
|
|
static int parse_max_pkt_len(const char *pktlen)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long len;
|
|
|
|
/* parse decimal string */
|
|
len = strtoul(pktlen, &end, 10);
|
|
if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
|
|
return -1;
|
|
|
|
if (len == 0)
|
|
return -1;
|
|
|
|
return len;
|
|
}
|
|
|
|
static int
|
|
parse_portmask(const char *portmask)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long pm;
|
|
|
|
/* parse hexadecimal string */
|
|
pm = strtoul(portmask, &end, 16);
|
|
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
|
|
return -1;
|
|
|
|
if (pm == 0)
|
|
return -1;
|
|
|
|
return pm;
|
|
}
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
static int
|
|
parse_hash_entry_number(const char *hash_entry_num)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long hash_en;
|
|
/* parse hexadecimal string */
|
|
hash_en = strtoul(hash_entry_num, &end, 16);
|
|
if ((hash_entry_num[0] == '\0') || (end == NULL) || (*end != '\0'))
|
|
return -1;
|
|
|
|
if (hash_en == 0)
|
|
return -1;
|
|
|
|
return hash_en;
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
parse_config(const char *q_arg)
|
|
{
|
|
char s[256];
|
|
const char *p, *p0 = q_arg;
|
|
char *end;
|
|
enum fieldnames {
|
|
FLD_PORT = 0,
|
|
FLD_QUEUE,
|
|
FLD_LCORE,
|
|
_NUM_FLD
|
|
};
|
|
unsigned long int_fld[_NUM_FLD];
|
|
char *str_fld[_NUM_FLD];
|
|
int i;
|
|
unsigned size;
|
|
|
|
nb_lcore_params = 0;
|
|
|
|
while ((p = strchr(p0,'(')) != NULL) {
|
|
++p;
|
|
if((p0 = strchr(p,')')) == NULL)
|
|
return -1;
|
|
|
|
size = p0 - p;
|
|
if(size >= sizeof(s))
|
|
return -1;
|
|
|
|
snprintf(s, sizeof(s), "%.*s", size, p);
|
|
if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
|
|
return -1;
|
|
for (i = 0; i < _NUM_FLD; i++){
|
|
errno = 0;
|
|
int_fld[i] = strtoul(str_fld[i], &end, 0);
|
|
if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
|
|
return -1;
|
|
}
|
|
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
|
|
printf("exceeded max number of lcore params: %hu\n",
|
|
nb_lcore_params);
|
|
return -1;
|
|
}
|
|
lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT];
|
|
lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE];
|
|
lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE];
|
|
++nb_lcore_params;
|
|
}
|
|
lcore_params = lcore_params_array;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
parse_eth_dest(const char *optarg)
|
|
{
|
|
uint8_t portid;
|
|
char *port_end;
|
|
uint8_t c, *dest, peer_addr[6];
|
|
|
|
errno = 0;
|
|
portid = strtoul(optarg, &port_end, 10);
|
|
if (errno != 0 || port_end == optarg || *port_end++ != ',')
|
|
rte_exit(EXIT_FAILURE,
|
|
"Invalid eth-dest: %s", optarg);
|
|
if (portid >= RTE_MAX_ETHPORTS)
|
|
rte_exit(EXIT_FAILURE,
|
|
"eth-dest: port %d >= RTE_MAX_ETHPORTS(%d)\n",
|
|
portid, RTE_MAX_ETHPORTS);
|
|
|
|
if (cmdline_parse_etheraddr(NULL, port_end,
|
|
&peer_addr, sizeof(peer_addr)) < 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Invalid ethernet address: %s\n",
|
|
port_end);
|
|
dest = (uint8_t *)&dest_eth_addr[portid];
|
|
for (c = 0; c < 6; c++)
|
|
dest[c] = peer_addr[c];
|
|
*(uint64_t *)(val_eth + portid) = dest_eth_addr[portid];
|
|
}
|
|
|
|
#define CMD_LINE_OPT_CONFIG "config"
|
|
#define CMD_LINE_OPT_ETH_DEST "eth-dest"
|
|
#define CMD_LINE_OPT_NO_NUMA "no-numa"
|
|
#define CMD_LINE_OPT_IPV6 "ipv6"
|
|
#define CMD_LINE_OPT_ENABLE_JUMBO "enable-jumbo"
|
|
#define CMD_LINE_OPT_HASH_ENTRY_NUM "hash-entry-num"
|
|
|
|
/* Parse the argument given in the command line of the application */
|
|
static int
|
|
parse_args(int argc, char **argv)
|
|
{
|
|
int opt, ret;
|
|
char **argvopt;
|
|
int option_index;
|
|
char *prgname = argv[0];
|
|
static struct option lgopts[] = {
|
|
{CMD_LINE_OPT_CONFIG, 1, 0, 0},
|
|
{CMD_LINE_OPT_ETH_DEST, 1, 0, 0},
|
|
{CMD_LINE_OPT_NO_NUMA, 0, 0, 0},
|
|
{CMD_LINE_OPT_IPV6, 0, 0, 0},
|
|
{CMD_LINE_OPT_ENABLE_JUMBO, 0, 0, 0},
|
|
{CMD_LINE_OPT_HASH_ENTRY_NUM, 1, 0, 0},
|
|
{NULL, 0, 0, 0}
|
|
};
|
|
|
|
argvopt = argv;
|
|
|
|
while ((opt = getopt_long(argc, argvopt, "p:P",
|
|
lgopts, &option_index)) != EOF) {
|
|
|
|
switch (opt) {
|
|
/* portmask */
|
|
case 'p':
|
|
enabled_port_mask = parse_portmask(optarg);
|
|
if (enabled_port_mask == 0) {
|
|
printf("invalid portmask\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
break;
|
|
case 'P':
|
|
printf("Promiscuous mode selected\n");
|
|
promiscuous_on = 1;
|
|
break;
|
|
|
|
/* long options */
|
|
case 0:
|
|
if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_CONFIG,
|
|
sizeof (CMD_LINE_OPT_CONFIG))) {
|
|
ret = parse_config(optarg);
|
|
if (ret) {
|
|
printf("invalid config\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ETH_DEST,
|
|
sizeof(CMD_LINE_OPT_CONFIG))) {
|
|
parse_eth_dest(optarg);
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_NUMA,
|
|
sizeof(CMD_LINE_OPT_NO_NUMA))) {
|
|
printf("numa is disabled \n");
|
|
numa_on = 0;
|
|
}
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_IPV6,
|
|
sizeof(CMD_LINE_OPT_IPV6))) {
|
|
printf("ipv6 is specified \n");
|
|
ipv6 = 1;
|
|
}
|
|
#endif
|
|
|
|
if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ENABLE_JUMBO,
|
|
sizeof (CMD_LINE_OPT_ENABLE_JUMBO))) {
|
|
struct option lenopts = {"max-pkt-len", required_argument, 0, 0};
|
|
|
|
printf("jumbo frame is enabled - disabling simple TX path\n");
|
|
port_conf.rxmode.jumbo_frame = 1;
|
|
|
|
/* if no max-pkt-len set, use the default value ETHER_MAX_LEN */
|
|
if (0 == getopt_long(argc, argvopt, "", &lenopts, &option_index)) {
|
|
ret = parse_max_pkt_len(optarg);
|
|
if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)){
|
|
printf("invalid packet length\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
port_conf.rxmode.max_rx_pkt_len = ret;
|
|
}
|
|
printf("set jumbo frame max packet length to %u\n",
|
|
(unsigned int)port_conf.rxmode.max_rx_pkt_len);
|
|
}
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_HASH_ENTRY_NUM,
|
|
sizeof(CMD_LINE_OPT_HASH_ENTRY_NUM))) {
|
|
ret = parse_hash_entry_number(optarg);
|
|
if ((ret > 0) && (ret <= L3FWD_HASH_ENTRIES)) {
|
|
hash_entry_number = ret;
|
|
} else {
|
|
printf("invalid hash entry number\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (optind >= 0)
|
|
argv[optind-1] = prgname;
|
|
|
|
ret = optind-1;
|
|
optind = 0; /* reset getopt lib */
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
print_ethaddr(const char *name, const struct ether_addr *eth_addr)
|
|
{
|
|
char buf[ETHER_ADDR_FMT_SIZE];
|
|
ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
|
|
printf("%s%s", name, buf);
|
|
}
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
|
|
static void convert_ipv4_5tuple(struct ipv4_5tuple* key1,
|
|
union ipv4_5tuple_host* key2)
|
|
{
|
|
key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
|
|
key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
|
|
key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
|
|
key2->port_src = rte_cpu_to_be_16(key1->port_src);
|
|
key2->proto = key1->proto;
|
|
key2->pad0 = 0;
|
|
key2->pad1 = 0;
|
|
return;
|
|
}
|
|
|
|
static void convert_ipv6_5tuple(struct ipv6_5tuple* key1,
|
|
union ipv6_5tuple_host* key2)
|
|
{
|
|
uint32_t i;
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
key2->ip_dst[i] = key1->ip_dst[i];
|
|
key2->ip_src[i] = key1->ip_src[i];
|
|
}
|
|
key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
|
|
key2->port_src = rte_cpu_to_be_16(key1->port_src);
|
|
key2->proto = key1->proto;
|
|
key2->pad0 = 0;
|
|
key2->pad1 = 0;
|
|
key2->reserve = 0;
|
|
return;
|
|
}
|
|
|
|
#define BYTE_VALUE_MAX 256
|
|
#define ALL_32_BITS 0xffffffff
|
|
#define BIT_8_TO_15 0x0000ff00
|
|
static inline void
|
|
populate_ipv4_few_flow_into_table(const struct rte_hash* h)
|
|
{
|
|
uint32_t i;
|
|
int32_t ret;
|
|
uint32_t array_len = sizeof(ipv4_l3fwd_route_array)/sizeof(ipv4_l3fwd_route_array[0]);
|
|
|
|
mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
|
|
for (i = 0; i < array_len; i++) {
|
|
struct ipv4_l3fwd_route entry;
|
|
union ipv4_5tuple_host newkey;
|
|
entry = ipv4_l3fwd_route_array[i];
|
|
convert_ipv4_5tuple(&entry.key, &newkey);
|
|
ret = rte_hash_add_key (h,(void *) &newkey);
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
|
|
" to the l3fwd hash.\n", i);
|
|
}
|
|
ipv4_l3fwd_out_if[ret] = entry.if_out;
|
|
}
|
|
printf("Hash: Adding 0x%" PRIx32 " keys\n", array_len);
|
|
}
|
|
|
|
#define BIT_16_TO_23 0x00ff0000
|
|
static inline void
|
|
populate_ipv6_few_flow_into_table(const struct rte_hash* h)
|
|
{
|
|
uint32_t i;
|
|
int32_t ret;
|
|
uint32_t array_len = sizeof(ipv6_l3fwd_route_array)/sizeof(ipv6_l3fwd_route_array[0]);
|
|
|
|
mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
|
|
mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
|
|
for (i = 0; i < array_len; i++) {
|
|
struct ipv6_l3fwd_route entry;
|
|
union ipv6_5tuple_host newkey;
|
|
entry = ipv6_l3fwd_route_array[i];
|
|
convert_ipv6_5tuple(&entry.key, &newkey);
|
|
ret = rte_hash_add_key (h, (void *) &newkey);
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
|
|
" to the l3fwd hash.\n", i);
|
|
}
|
|
ipv6_l3fwd_out_if[ret] = entry.if_out;
|
|
}
|
|
printf("Hash: Adding 0x%" PRIx32 "keys\n", array_len);
|
|
}
|
|
|
|
#define NUMBER_PORT_USED 4
|
|
static inline void
|
|
populate_ipv4_many_flow_into_table(const struct rte_hash* h,
|
|
unsigned int nr_flow)
|
|
{
|
|
unsigned i;
|
|
mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
|
|
for (i = 0; i < nr_flow; i++) {
|
|
struct ipv4_l3fwd_route entry;
|
|
union ipv4_5tuple_host newkey;
|
|
uint8_t a = (uint8_t) ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
|
|
uint8_t b = (uint8_t) (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
|
|
uint8_t c = (uint8_t) ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
|
|
/* Create the ipv4 exact match flow */
|
|
memset(&entry, 0, sizeof(entry));
|
|
switch (i & (NUMBER_PORT_USED -1)) {
|
|
case 0:
|
|
entry = ipv4_l3fwd_route_array[0];
|
|
entry.key.ip_dst = IPv4(101,c,b,a);
|
|
break;
|
|
case 1:
|
|
entry = ipv4_l3fwd_route_array[1];
|
|
entry.key.ip_dst = IPv4(201,c,b,a);
|
|
break;
|
|
case 2:
|
|
entry = ipv4_l3fwd_route_array[2];
|
|
entry.key.ip_dst = IPv4(111,c,b,a);
|
|
break;
|
|
case 3:
|
|
entry = ipv4_l3fwd_route_array[3];
|
|
entry.key.ip_dst = IPv4(211,c,b,a);
|
|
break;
|
|
};
|
|
convert_ipv4_5tuple(&entry.key, &newkey);
|
|
int32_t ret = rte_hash_add_key(h,(void *) &newkey);
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
|
|
}
|
|
ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
|
|
|
|
}
|
|
printf("Hash: Adding 0x%x keys\n", nr_flow);
|
|
}
|
|
|
|
static inline void
|
|
populate_ipv6_many_flow_into_table(const struct rte_hash* h,
|
|
unsigned int nr_flow)
|
|
{
|
|
unsigned i;
|
|
mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
|
|
mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
|
|
for (i = 0; i < nr_flow; i++) {
|
|
struct ipv6_l3fwd_route entry;
|
|
union ipv6_5tuple_host newkey;
|
|
uint8_t a = (uint8_t) ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
|
|
uint8_t b = (uint8_t) (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
|
|
uint8_t c = (uint8_t) ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
|
|
/* Create the ipv6 exact match flow */
|
|
memset(&entry, 0, sizeof(entry));
|
|
switch (i & (NUMBER_PORT_USED - 1)) {
|
|
case 0: entry = ipv6_l3fwd_route_array[0]; break;
|
|
case 1: entry = ipv6_l3fwd_route_array[1]; break;
|
|
case 2: entry = ipv6_l3fwd_route_array[2]; break;
|
|
case 3: entry = ipv6_l3fwd_route_array[3]; break;
|
|
};
|
|
entry.key.ip_dst[13] = c;
|
|
entry.key.ip_dst[14] = b;
|
|
entry.key.ip_dst[15] = a;
|
|
convert_ipv6_5tuple(&entry.key, &newkey);
|
|
int32_t ret = rte_hash_add_key(h,(void *) &newkey);
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
|
|
}
|
|
ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
|
|
|
|
}
|
|
printf("Hash: Adding 0x%x keys\n", nr_flow);
|
|
}
|
|
|
|
static void
|
|
setup_hash(int socketid)
|
|
{
|
|
struct rte_hash_parameters ipv4_l3fwd_hash_params = {
|
|
.name = NULL,
|
|
.entries = L3FWD_HASH_ENTRIES,
|
|
.key_len = sizeof(union ipv4_5tuple_host),
|
|
.hash_func = ipv4_hash_crc,
|
|
.hash_func_init_val = 0,
|
|
};
|
|
|
|
struct rte_hash_parameters ipv6_l3fwd_hash_params = {
|
|
.name = NULL,
|
|
.entries = L3FWD_HASH_ENTRIES,
|
|
.key_len = sizeof(union ipv6_5tuple_host),
|
|
.hash_func = ipv6_hash_crc,
|
|
.hash_func_init_val = 0,
|
|
};
|
|
|
|
char s[64];
|
|
|
|
/* create ipv4 hash */
|
|
snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
|
|
ipv4_l3fwd_hash_params.name = s;
|
|
ipv4_l3fwd_hash_params.socket_id = socketid;
|
|
ipv4_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv4_l3fwd_hash_params);
|
|
if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
|
|
"socket %d\n", socketid);
|
|
|
|
/* create ipv6 hash */
|
|
snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
|
|
ipv6_l3fwd_hash_params.name = s;
|
|
ipv6_l3fwd_hash_params.socket_id = socketid;
|
|
ipv6_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv6_l3fwd_hash_params);
|
|
if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
|
|
"socket %d\n", socketid);
|
|
|
|
if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
|
|
/* For testing hash matching with a large number of flows we
|
|
* generate millions of IP 5-tuples with an incremented dst
|
|
* address to initialize the hash table. */
|
|
if (ipv6 == 0) {
|
|
/* populate the ipv4 hash */
|
|
populate_ipv4_many_flow_into_table(
|
|
ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);
|
|
} else {
|
|
/* populate the ipv6 hash */
|
|
populate_ipv6_many_flow_into_table(
|
|
ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);
|
|
}
|
|
} else {
|
|
/* Use data in ipv4/ipv6 l3fwd lookup table directly to initialize the hash table */
|
|
if (ipv6 == 0) {
|
|
/* populate the ipv4 hash */
|
|
populate_ipv4_few_flow_into_table(ipv4_l3fwd_lookup_struct[socketid]);
|
|
} else {
|
|
/* populate the ipv6 hash */
|
|
populate_ipv6_few_flow_into_table(ipv6_l3fwd_lookup_struct[socketid]);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
static void
|
|
setup_lpm(int socketid)
|
|
{
|
|
struct rte_lpm6_config config;
|
|
unsigned i;
|
|
int ret;
|
|
char s[64];
|
|
|
|
/* create the LPM table */
|
|
snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
|
|
ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,
|
|
IPV4_L3FWD_LPM_MAX_RULES, 0);
|
|
if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
|
|
" on socket %d\n", socketid);
|
|
|
|
/* populate the LPM table */
|
|
for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
|
|
|
|
/* skip unused ports */
|
|
if ((1 << ipv4_l3fwd_route_array[i].if_out &
|
|
enabled_port_mask) == 0)
|
|
continue;
|
|
|
|
ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
|
|
ipv4_l3fwd_route_array[i].ip,
|
|
ipv4_l3fwd_route_array[i].depth,
|
|
ipv4_l3fwd_route_array[i].if_out);
|
|
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
|
|
"l3fwd LPM table on socket %d\n",
|
|
i, socketid);
|
|
}
|
|
|
|
printf("LPM: Adding route 0x%08x / %d (%d)\n",
|
|
(unsigned)ipv4_l3fwd_route_array[i].ip,
|
|
ipv4_l3fwd_route_array[i].depth,
|
|
ipv4_l3fwd_route_array[i].if_out);
|
|
}
|
|
|
|
/* create the LPM6 table */
|
|
snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid);
|
|
|
|
config.max_rules = IPV6_L3FWD_LPM_MAX_RULES;
|
|
config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S;
|
|
config.flags = 0;
|
|
ipv6_l3fwd_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
|
|
&config);
|
|
if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
|
|
" on socket %d\n", socketid);
|
|
|
|
/* populate the LPM table */
|
|
for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
|
|
|
|
/* skip unused ports */
|
|
if ((1 << ipv6_l3fwd_route_array[i].if_out &
|
|
enabled_port_mask) == 0)
|
|
continue;
|
|
|
|
ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid],
|
|
ipv6_l3fwd_route_array[i].ip,
|
|
ipv6_l3fwd_route_array[i].depth,
|
|
ipv6_l3fwd_route_array[i].if_out);
|
|
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
|
|
"l3fwd LPM table on socket %d\n",
|
|
i, socketid);
|
|
}
|
|
|
|
printf("LPM: Adding route %s / %d (%d)\n",
|
|
"IPV6",
|
|
ipv6_l3fwd_route_array[i].depth,
|
|
ipv6_l3fwd_route_array[i].if_out);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
init_mem(unsigned nb_mbuf)
|
|
{
|
|
struct lcore_conf *qconf;
|
|
int socketid;
|
|
unsigned lcore_id;
|
|
char s[64];
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
|
|
if (numa_on)
|
|
socketid = rte_lcore_to_socket_id(lcore_id);
|
|
else
|
|
socketid = 0;
|
|
|
|
if (socketid >= NB_SOCKETS) {
|
|
rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is out of range %d\n",
|
|
socketid, lcore_id, NB_SOCKETS);
|
|
}
|
|
if (pktmbuf_pool[socketid] == NULL) {
|
|
snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
|
|
pktmbuf_pool[socketid] =
|
|
rte_pktmbuf_pool_create(s, nb_mbuf,
|
|
MEMPOOL_CACHE_SIZE, 0,
|
|
RTE_MBUF_DEFAULT_BUF_SIZE, socketid);
|
|
if (pktmbuf_pool[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Cannot init mbuf pool on socket %d\n", socketid);
|
|
else
|
|
printf("Allocated mbuf pool on socket %d\n", socketid);
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
setup_lpm(socketid);
|
|
#else
|
|
setup_hash(socketid);
|
|
#endif
|
|
}
|
|
qconf = &lcore_conf[lcore_id];
|
|
qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
|
|
qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Check the link status of all ports in up to 9s, and print them finally */
|
|
static void
|
|
check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
|
|
{
|
|
#define CHECK_INTERVAL 100 /* 100ms */
|
|
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
|
|
uint8_t portid, count, all_ports_up, print_flag = 0;
|
|
struct rte_eth_link link;
|
|
|
|
printf("\nChecking link status");
|
|
fflush(stdout);
|
|
for (count = 0; count <= MAX_CHECK_TIME; count++) {
|
|
all_ports_up = 1;
|
|
for (portid = 0; portid < port_num; portid++) {
|
|
if ((port_mask & (1 << portid)) == 0)
|
|
continue;
|
|
memset(&link, 0, sizeof(link));
|
|
rte_eth_link_get_nowait(portid, &link);
|
|
/* print link status if flag set */
|
|
if (print_flag == 1) {
|
|
if (link.link_status)
|
|
printf("Port %d Link Up - speed %u "
|
|
"Mbps - %s\n", (uint8_t)portid,
|
|
(unsigned)link.link_speed,
|
|
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
|
|
("full-duplex") : ("half-duplex\n"));
|
|
else
|
|
printf("Port %d Link Down\n",
|
|
(uint8_t)portid);
|
|
continue;
|
|
}
|
|
/* clear all_ports_up flag if any link down */
|
|
if (link.link_status == 0) {
|
|
all_ports_up = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* after finally printing all link status, get out */
|
|
if (print_flag == 1)
|
|
break;
|
|
|
|
if (all_ports_up == 0) {
|
|
printf(".");
|
|
fflush(stdout);
|
|
rte_delay_ms(CHECK_INTERVAL);
|
|
}
|
|
|
|
/* set the print_flag if all ports up or timeout */
|
|
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
|
|
print_flag = 1;
|
|
printf("done\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
struct lcore_conf *qconf;
|
|
struct rte_eth_dev_info dev_info;
|
|
struct rte_eth_txconf *txconf;
|
|
int ret;
|
|
unsigned nb_ports;
|
|
uint16_t queueid;
|
|
unsigned lcore_id;
|
|
uint32_t n_tx_queue, nb_lcores;
|
|
uint8_t portid, nb_rx_queue, queue, socketid;
|
|
|
|
/* init EAL */
|
|
ret = rte_eal_init(argc, argv);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
|
|
argc -= ret;
|
|
argv += ret;
|
|
|
|
/* pre-init dst MACs for all ports to 02:00:00:00:00:xx */
|
|
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
|
|
dest_eth_addr[portid] = ETHER_LOCAL_ADMIN_ADDR + ((uint64_t)portid << 40);
|
|
*(uint64_t *)(val_eth + portid) = dest_eth_addr[portid];
|
|
}
|
|
|
|
/* parse application arguments (after the EAL ones) */
|
|
ret = parse_args(argc, argv);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
|
|
|
|
if (check_lcore_params() < 0)
|
|
rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
|
|
|
|
ret = init_lcore_rx_queues();
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
|
|
|
|
nb_ports = rte_eth_dev_count();
|
|
if (nb_ports > RTE_MAX_ETHPORTS)
|
|
nb_ports = RTE_MAX_ETHPORTS;
|
|
|
|
if (check_port_config(nb_ports) < 0)
|
|
rte_exit(EXIT_FAILURE, "check_port_config failed\n");
|
|
|
|
nb_lcores = rte_lcore_count();
|
|
|
|
/* initialize all ports */
|
|
for (portid = 0; portid < nb_ports; portid++) {
|
|
/* skip ports that are not enabled */
|
|
if ((enabled_port_mask & (1 << portid)) == 0) {
|
|
printf("\nSkipping disabled port %d\n", portid);
|
|
continue;
|
|
}
|
|
|
|
/* init port */
|
|
printf("Initializing port %d ... ", portid );
|
|
fflush(stdout);
|
|
|
|
nb_rx_queue = get_port_n_rx_queues(portid);
|
|
n_tx_queue = nb_lcores;
|
|
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
|
|
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
|
|
printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
|
|
nb_rx_queue, (unsigned)n_tx_queue );
|
|
ret = rte_eth_dev_configure(portid, nb_rx_queue,
|
|
(uint16_t)n_tx_queue, &port_conf);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
|
|
ret, portid);
|
|
|
|
rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
|
|
print_ethaddr(" Address:", &ports_eth_addr[portid]);
|
|
printf(", ");
|
|
print_ethaddr("Destination:",
|
|
(const struct ether_addr *)&dest_eth_addr[portid]);
|
|
printf(", ");
|
|
|
|
/*
|
|
* prepare src MACs for each port.
|
|
*/
|
|
ether_addr_copy(&ports_eth_addr[portid],
|
|
(struct ether_addr *)(val_eth + portid) + 1);
|
|
|
|
/* init memory */
|
|
ret = init_mem(NB_MBUF);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "init_mem failed\n");
|
|
|
|
/* init one TX queue per couple (lcore,port) */
|
|
queueid = 0;
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
|
|
if (numa_on)
|
|
socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
|
|
else
|
|
socketid = 0;
|
|
|
|
printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
|
|
fflush(stdout);
|
|
|
|
rte_eth_dev_info_get(portid, &dev_info);
|
|
txconf = &dev_info.default_txconf;
|
|
if (port_conf.rxmode.jumbo_frame)
|
|
txconf->txq_flags = 0;
|
|
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
|
|
socketid, txconf);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
|
|
"port=%d\n", ret, portid);
|
|
|
|
qconf = &lcore_conf[lcore_id];
|
|
qconf->tx_queue_id[portid] = queueid;
|
|
queueid++;
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
qconf = &lcore_conf[lcore_id];
|
|
printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
|
|
fflush(stdout);
|
|
/* init RX queues */
|
|
for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
|
|
portid = qconf->rx_queue_list[queue].port_id;
|
|
queueid = qconf->rx_queue_list[queue].queue_id;
|
|
|
|
if (numa_on)
|
|
socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
|
|
else
|
|
socketid = 0;
|
|
|
|
printf("rxq=%d,%d,%d ", portid, queueid, socketid);
|
|
fflush(stdout);
|
|
|
|
ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
|
|
socketid,
|
|
NULL,
|
|
pktmbuf_pool[socketid]);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d,"
|
|
"port=%d\n", ret, portid);
|
|
}
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
/* start ports */
|
|
for (portid = 0; portid < nb_ports; portid++) {
|
|
if ((enabled_port_mask & (1 << portid)) == 0) {
|
|
continue;
|
|
}
|
|
/* Start device */
|
|
ret = rte_eth_dev_start(portid);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
|
|
ret, portid);
|
|
|
|
/*
|
|
* If enabled, put device in promiscuous mode.
|
|
* This allows IO forwarding mode to forward packets
|
|
* to itself through 2 cross-connected ports of the
|
|
* target machine.
|
|
*/
|
|
if (promiscuous_on)
|
|
rte_eth_promiscuous_enable(portid);
|
|
}
|
|
|
|
check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
|
|
|
|
/* launch per-lcore init on every lcore */
|
|
rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
|
|
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
|
|
if (rte_eal_wait_lcore(lcore_id) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|