numam-dpdk/examples/ipv4_multicast/main.c
Xuan Ding 8d54b1ec4a ethdev: remove Rx header split port offload
As announced in the deprecation note, remove the Rx offload flag
'RTE_ETH_RX_OFFLOAD_HEADER_SPLIT' and 'split_hdr_size' field from
the structure 'rte_eth_rxmode'. Meanwhile, the place where the examples
and apps initialize the 'split_hdr_size' field, and where the drivers
check if the 'split_hdr_size' value is 0 are also removed.

User can still use `RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT` for per-queue packet
split offload, which is configured by 'rte_eth_rxseg_split'.

Signed-off-by: Xuan Ding <xuan.ding@intel.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
2022-10-04 11:20:04 +02:00

832 lines
22 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_fbk_hash.h>
#include <rte_ip.h>
#define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1
#define MAX_PORTS 16
#define MCAST_CLONE_PORTS 2
#define MCAST_CLONE_SEGS 2
#define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
#define NB_PKT_MBUF 8192
#define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM)
#define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS)
#define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2)
/* allow max jumbo frame 9.5 KB */
#define JUMBO_FRAME_MAX_SIZE 0x2600
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET 3
/*
* Construct Ethernet multicast address from IPv4 multicast address.
* Citing RFC 1112, section 6.4:
* "An IP host group address is mapped to an Ethernet multicast address
* by placing the low-order 23-bits of the IP address into the low-order
* 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)."
*/
/* Construct Ethernet multicast address from IPv4 multicast Address. 8< */
#define ETHER_ADDR_FOR_IPV4_MCAST(x) \
(rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)
/* >8 End of Construction of multicast address from IPv4 multicast address. */
/*
* Configurable number of RX/TX ring descriptors
*/
#define RX_DESC_DEFAULT 1024
#define TX_DESC_DEFAULT 1024
static uint16_t nb_rxd = RX_DESC_DEFAULT;
static uint16_t nb_txd = TX_DESC_DEFAULT;
/* ethernet addresses of ports */
static struct rte_ether_addr ports_eth_addr[MAX_PORTS];
/* mask of enabled ports */
static uint32_t enabled_port_mask = 0;
static uint16_t nb_ports;
static int rx_queue_per_lcore = 1;
struct mbuf_table {
uint16_t len;
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 16
struct lcore_queue_conf {
uint64_t tx_tsc;
uint16_t n_rx_queue;
uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t tx_queue_id[MAX_PORTS];
struct mbuf_table tx_mbufs[MAX_PORTS];
} __rte_cache_aligned;
static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
static struct rte_eth_conf port_conf = {
.rxmode = {
.mtu = JUMBO_FRAME_MAX_SIZE - RTE_ETHER_HDR_LEN -
RTE_ETHER_CRC_LEN,
},
.txmode = {
.mq_mode = RTE_ETH_MQ_TX_NONE,
.offloads = RTE_ETH_TX_OFFLOAD_MULTI_SEGS,
},
};
static struct rte_mempool *packet_pool, *header_pool, *clone_pool;
/* Multicast */
static struct rte_fbk_hash_params mcast_hash_params = {
.name = "MCAST_HASH",
.entries = 1024,
.entries_per_bucket = 4,
.socket_id = 0,
.hash_func = NULL,
.init_val = 0,
};
struct rte_fbk_hash_table *mcast_hash = NULL;
struct mcast_group_params {
uint32_t ip;
uint16_t port_mask;
};
static struct mcast_group_params mcast_group_table[] = {
{RTE_IPV4(224,0,0,101), 0x1},
{RTE_IPV4(224,0,0,102), 0x2},
{RTE_IPV4(224,0,0,103), 0x3},
{RTE_IPV4(224,0,0,104), 0x4},
{RTE_IPV4(224,0,0,105), 0x5},
{RTE_IPV4(224,0,0,106), 0x6},
{RTE_IPV4(224,0,0,107), 0x7},
{RTE_IPV4(224,0,0,108), 0x8},
{RTE_IPV4(224,0,0,109), 0x9},
{RTE_IPV4(224,0,0,110), 0xA},
{RTE_IPV4(224,0,0,111), 0xB},
{RTE_IPV4(224,0,0,112), 0xC},
{RTE_IPV4(224,0,0,113), 0xD},
{RTE_IPV4(224,0,0,114), 0xE},
{RTE_IPV4(224,0,0,115), 0xF},
};
/* Send burst of packets on an output interface */
static void
send_burst(struct lcore_queue_conf *qconf, uint16_t port)
{
struct rte_mbuf **m_table;
uint16_t n, queueid;
int ret;
queueid = qconf->tx_queue_id[port];
m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
n = qconf->tx_mbufs[port].len;
ret = rte_eth_tx_burst(port, queueid, m_table, n);
while (unlikely (ret < n)) {
rte_pktmbuf_free(m_table[ret]);
ret++;
}
qconf->tx_mbufs[port].len = 0;
}
/* Get number of bits set. 8< */
static inline uint32_t
bitcnt(uint32_t v)
{
uint32_t n;
for (n = 0; v != 0; v &= v - 1, n++)
;
return n;
}
/* >8 End of getting number of bits set. */
/**
* Create the output multicast packet based on the given input packet.
* There are two approaches for creating outgoing packet, though both
* are based on data zero-copy idea, they differ in few details:
* First one creates a clone of the input packet, e.g - walk though all
* segments of the input packet, and for each of them create a new packet
* mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone()
* for more details). Then new mbuf is allocated for the packet header
* and is prepended to the 'clone' mbuf.
* Second approach doesn't make a clone, it just increment refcnt for all
* input packet segments. Then it allocates new mbuf for the packet header
* and prepends it to the input packet.
* Basically first approach reuses only input packet's data, but creates
* it's own copy of packet's metadata. Second approach reuses both input's
* packet data and metadata.
* The advantage of first approach - is that each outgoing packet has it's
* own copy of metadata, so we can safely modify data pointer of the
* input packet. That allows us to skip creation if the output packet for
* the last destination port, but instead modify input packet's header inplace,
* e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times.
* The advantage of second approach - less work for each outgoing packet,
* e.g: we skip "clone" operation completely. Though it comes with a price -
* input packet's metadata has to be intact. So for N destination ports we
* need to invoke mcast_out_pkt N times.
* So for small number of outgoing ports (and segments in the input packet)
* first approach will be faster.
* As number of outgoing ports (and/or input segments) will grow,
* second way will become more preferable.
*
* @param pkt
* Input packet mbuf.
* @param use_clone
* Control which of the two approaches described above should be used:
* - 0 - use second approach:
* Don't "clone" input packet.
* Prepend new header directly to the input packet
* - 1 - use first approach:
* Make a "clone" of input packet first.
* Prepend new header to the clone of the input packet
* @return
* - The pointer to the new outgoing packet.
* - NULL if operation failed.
*/
/* mcast_out_pkt 8< */
static inline struct rte_mbuf *
mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
{
struct rte_mbuf *hdr;
/* Create new mbuf for the header. */
if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
return NULL;
/* If requested, then make a new clone packet. */
if (use_clone != 0 &&
unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
rte_pktmbuf_free(hdr);
return NULL;
}
/* prepend new header */
hdr->next = pkt;
/* update header's fields */
hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len);
hdr->nb_segs = pkt->nb_segs + 1;
__rte_mbuf_sanity_check(hdr, 1);
return hdr;
}
/* >8 End of mcast_out_kt. */
/*
* Write new Ethernet header to the outgoing packet,
* and put it into the outgoing queue for the given port.
*/
/* Write new Ethernet header to outgoing packets. 8< */
static inline void
mcast_send_pkt(struct rte_mbuf *pkt, struct rte_ether_addr *dest_addr,
struct lcore_queue_conf *qconf, uint16_t port)
{
struct rte_ether_hdr *ethdr;
uint16_t len;
/* Construct Ethernet header. */
ethdr = (struct rte_ether_hdr *)
rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr));
RTE_ASSERT(ethdr != NULL);
rte_ether_addr_copy(dest_addr, &ethdr->dst_addr);
rte_ether_addr_copy(&ports_eth_addr[port], &ethdr->src_addr);
ethdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);
/* Put new packet into the output queue */
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = pkt;
qconf->tx_mbufs[port].len = ++len;
/* Transmit packets */
if (unlikely(MAX_PKT_BURST == len))
send_burst(qconf, port);
}
/* >8 End of writing new Ethernet headers. */
/* Multicast forward of the input packet */
static inline void
mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf)
{
struct rte_mbuf *mc;
struct rte_ipv4_hdr *iphdr;
uint32_t dest_addr, port_mask, port_num, use_clone;
int32_t hash;
uint16_t port;
union {
uint64_t as_int;
struct rte_ether_addr as_addr;
} dst_eth_addr;
/* Remove the Ethernet header from the input packet. 8< */
iphdr = (struct rte_ipv4_hdr *)
rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr));
RTE_ASSERT(iphdr != NULL);
dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);
/* >8 End of removing the Ethernet header from the input packet. */
/*
* Check that it is a valid multicast address and
* we have some active ports assigned to it.
*/
/* Check valid multicast address. 8< */
if (!RTE_IS_IPV4_MCAST(dest_addr) ||
(hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
(port_mask = hash & enabled_port_mask) == 0) {
rte_pktmbuf_free(m);
return;
}
/* >8 End of valid multicast address check. */
/* Calculate number of destination ports. */
port_num = bitcnt(port_mask);
/* Should we use rte_pktmbuf_clone() or not. 8< */
use_clone = (port_num <= MCAST_CLONE_PORTS &&
m->nb_segs <= MCAST_CLONE_SEGS);
/* >8 End of using rte_pktmbuf_clone(). */
/* Mark all packet's segments as referenced port_num times */
if (use_clone == 0)
rte_pktmbuf_refcnt_update(m, (uint16_t)port_num);
/* Construct destination ethernet address. 8< */
dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);
/* >8 End of constructing destination ethernet address. */
/* Packets dispatched to destination ports. 8< */
for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
/* Prepare output packet and send it out. */
if ((port_mask & 1) != 0) {
if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
mcast_send_pkt(mc, &dst_eth_addr.as_addr,
qconf, port);
else if (use_clone == 0)
rte_pktmbuf_free(m);
}
}
/* >8 End of packets dispatched to destination ports. */
/*
* If we making clone packets, then, for the last destination port,
* we can overwrite input packet's metadata.
*/
if (use_clone != 0)
mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port);
else
rte_pktmbuf_free(m);
}
/* Send burst of outgoing packet, if timeout expires. */
static inline void
send_timeout_burst(struct lcore_queue_conf *qconf)
{
uint64_t cur_tsc;
uint16_t portid;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
cur_tsc = rte_rdtsc();
if (likely (cur_tsc < qconf->tx_tsc + drain_tsc))
return;
for (portid = 0; portid < MAX_PORTS; portid++) {
if (qconf->tx_mbufs[portid].len != 0)
send_burst(qconf, portid);
}
qconf->tx_tsc = cur_tsc;
}
/* main processing loop */
static int
main_loop(__rte_unused void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
int i, j, nb_rx;
uint16_t portid;
struct lcore_queue_conf *qconf;
lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n",
lcore_id);
return 0;
}
RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n",
lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i];
RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n",
lcore_id, portid);
}
while (1) {
/*
* Read packet from RX queues
*/
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i];
nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
MAX_PKT_BURST);
/* Prefetch first packets */
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
rte_prefetch0(rte_pktmbuf_mtod(
pkts_burst[j], void *));
}
/* Prefetch and forward already prefetched packets */
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
j + PREFETCH_OFFSET], void *));
mcast_forward(pkts_burst[j], qconf);
}
/* Forward remaining prefetched packets */
for (; j < nb_rx; j++) {
mcast_forward(pkts_burst[j], qconf);
}
}
/* Send out packets from TX queues */
send_timeout_burst(qconf);
}
}
/* display usage */
static void
print_usage(const char *prgname)
{
printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -q NQ: number of queue (=ports) per lcore (default is 1)\n",
prgname);
}
static uint32_t
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return 0;
return (uint32_t)pm;
}
static int
parse_nqueue(const char *q_arg)
{
char *end = NULL;
unsigned long n;
/* parse numerical string */
errno = 0;
n = strtoul(q_arg, &end, 0);
if (errno != 0 || end == NULL || *end != '\0' ||
n == 0 || n >= MAX_RX_QUEUE_PER_LCORE)
return -1;
return n;
}
/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{NULL, 0, 0, 0}
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:q:",
lgopts, &option_index)) != EOF) {
switch (opt) {
/* portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
/* nqueue */
case 'q':
rx_queue_per_lcore = parse_nqueue(optarg);
if (rx_queue_per_lcore < 0) {
printf("invalid queue number\n");
print_usage(prgname);
return -1;
}
break;
default:
print_usage(prgname);
return -1;
}
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 1; /* reset getopt lib */
return ret;
}
static void
print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
/* Hash object is created and loaded. 8< */
static int
init_mcast_hash(void)
{
uint32_t i;
mcast_hash_params.socket_id = rte_socket_id();
mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
if (mcast_hash == NULL){
return -1;
}
for (i = 0; i < RTE_DIM(mcast_group_table); i++) {
if (rte_fbk_hash_add_key(mcast_hash,
mcast_group_table[i].ip,
mcast_group_table[i].port_mask) < 0) {
return -1;
}
}
return 0;
}
/* >8 End of hash object is created and loaded. */
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
int ret;
char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
RTE_ETH_FOREACH_DEV(portid) {
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get_nowait(portid, &link);
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
portid, rte_strerror(-ret));
continue;
}
/* print link status if flag set */
if (print_flag == 1) {
rte_eth_link_to_str(link_status_text,
sizeof(link_status_text),
&link);
printf("Port %d %s\n", portid,
link_status_text);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == RTE_ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("done\n");
}
}
}
int
main(int argc, char **argv)
{
struct lcore_queue_conf *qconf;
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf *txconf;
int ret;
uint16_t queueid;
unsigned lcore_id = 0, rx_lcore_id = 0;
uint32_t n_tx_queue, nb_lcores;
uint16_t portid;
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
argc -= ret;
argv += ret;
/* parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n");
/* Create the mbuf pools. 8< */
packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
0, PKT_MBUF_DATA_SIZE, rte_socket_id());
if (packet_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n");
header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
0, HDR_MBUF_DATA_SIZE, rte_socket_id());
if (header_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n");
clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
0, 0, rte_socket_id());
if (clone_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n");
/* >8 End of create mbuf pools. */
nb_ports = rte_eth_dev_count_avail();
if (nb_ports == 0)
rte_exit(EXIT_FAILURE, "No physical ports!\n");
if (nb_ports > MAX_PORTS)
nb_ports = MAX_PORTS;
nb_lcores = rte_lcore_count();
/* initialize all ports */
RTE_ETH_FOREACH_DEV(portid) {
struct rte_eth_rxconf rxq_conf;
struct rte_eth_conf local_port_conf = port_conf;
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("Skipping disabled port %d\n", portid);
continue;
}
qconf = &lcore_queue_conf[rx_lcore_id];
/* limit the frame size to the maximum supported by NIC */
ret = rte_eth_dev_info_get(portid, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
local_port_conf.rxmode.mtu = RTE_MIN(
dev_info.max_mtu,
local_port_conf.rxmode.mtu);
/* get the lcore_id for this port */
while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
rx_lcore_id ++;
qconf = &lcore_queue_conf[rx_lcore_id];
if (rx_lcore_id >= RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE, "Not enough cores\n");
}
qconf->rx_queue_list[qconf->n_rx_queue] = portid;
qconf->n_rx_queue++;
/* init port */
printf("Initializing port %d on lcore %u... ", portid,
rx_lcore_id);
fflush(stdout);
n_tx_queue = nb_lcores;
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
&local_port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
ret, portid);
ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
&nb_txd);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot adjust number of descriptors: err=%d, port=%d\n",
ret, portid);
ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot get MAC address: err=%d, port=%d\n",
ret, portid);
print_ethaddr(" Address:", &ports_eth_addr[portid]);
printf(", ");
/* init one RX queue */
queueid = 0;
printf("rxq=%hu ", queueid);
fflush(stdout);
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = local_port_conf.rxmode.offloads;
ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
rte_eth_dev_socket_id(portid),
&rxq_conf,
packet_pool);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n",
ret, portid);
/* init one TX queue per couple (lcore,port) */
queueid = 0;
RTE_LCORE_FOREACH(lcore_id) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
printf("txq=%u,%hu ", lcore_id, queueid);
fflush(stdout);
txconf = &dev_info.default_txconf;
txconf->offloads = local_port_conf.txmode.offloads;
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
rte_lcore_to_socket_id(lcore_id), txconf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
qconf = &lcore_queue_conf[lcore_id];
qconf->tx_queue_id[portid] = queueid;
queueid++;
}
ret = rte_eth_allmulticast_enable(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_allmulticast_enable: err=%d, port=%d\n",
ret, portid);
/* Start device */
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
ret, portid);
printf("done:\n");
}
check_all_ports_link_status(enabled_port_mask);
/* initialize the multicast hash */
int retval = init_mcast_hash();
if (retval != 0)
rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n");
/* launch per-lcore init on every lcore */
rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
RTE_LCORE_FOREACH_WORKER(lcore_id) {
if (rte_eal_wait_lcore(lcore_id) < 0)
return -1;
}
/* clean up the EAL */
rte_eal_cleanup();
return 0;
}