2695db95a1
This commit adds cycle-count mode to the compression perf tool. The new mode enhances the compression performance tool to allow cycle-count measurement of both hardware and softwate PMDs. Signed-off-by: Artur Trybula <arturx.trybula@intel.com> Acked-by: Fiona Trahe <fiona.trahe@intel.com>
570 lines
15 KiB
C
570 lines
15 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2019 Intel Corporation
|
|
*/
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_log.h>
|
|
#include <rte_compressdev.h>
|
|
|
|
#include "comp_perf.h"
|
|
#include "comp_perf_options.h"
|
|
#include "comp_perf_test_throughput.h"
|
|
#include "comp_perf_test_cyclecount.h"
|
|
#include "comp_perf_test_common.h"
|
|
#include "comp_perf_test_verify.h"
|
|
|
|
|
|
#define DIV_CEIL(a, b) ((a) / (b) + ((a) % (b) != 0))
|
|
|
|
struct cperf_buffer_info {
|
|
uint16_t total_segments;
|
|
uint16_t segment_sz;
|
|
uint16_t last_segment_sz;
|
|
uint32_t total_buffs; /*number of buffers = number of ops*/
|
|
uint16_t segments_per_buff;
|
|
uint16_t segments_per_last_buff;
|
|
size_t input_data_sz;
|
|
};
|
|
|
|
static struct cperf_buffer_info buffer_info;
|
|
|
|
int
|
|
param_range_check(uint16_t size, const struct rte_param_log2_range *range)
|
|
{
|
|
unsigned int next_size;
|
|
|
|
/* Check lower/upper bounds */
|
|
if (size < range->min)
|
|
return -1;
|
|
|
|
if (size > range->max)
|
|
return -1;
|
|
|
|
/* If range is actually only one value, size is correct */
|
|
if (range->increment == 0)
|
|
return 0;
|
|
|
|
/* Check if value is one of the supported sizes */
|
|
for (next_size = range->min; next_size <= range->max;
|
|
next_size += range->increment)
|
|
if (size == next_size)
|
|
return 0;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static uint32_t
|
|
find_buf_size(uint32_t input_size)
|
|
{
|
|
uint32_t i;
|
|
|
|
/* From performance point of view the buffer size should be a
|
|
* power of 2 but also should be enough to store incompressible data
|
|
*/
|
|
|
|
/* We're looking for nearest power of 2 buffer size, which is greater
|
|
* than input_size
|
|
*/
|
|
uint32_t size =
|
|
!input_size ? MIN_COMPRESSED_BUF_SIZE : (input_size << 1);
|
|
|
|
for (i = UINT16_MAX + 1; !(i & size); i >>= 1)
|
|
;
|
|
|
|
return i > ((UINT16_MAX + 1) >> 1)
|
|
? (uint32_t)((float)input_size * EXPANSE_RATIO)
|
|
: i;
|
|
}
|
|
|
|
void
|
|
comp_perf_free_memory(struct comp_test_data *test_data,
|
|
struct cperf_mem_resources *mem)
|
|
{
|
|
uint32_t i;
|
|
|
|
if (mem->decomp_bufs != NULL)
|
|
for (i = 0; i < mem->total_bufs; i++)
|
|
rte_pktmbuf_free(mem->decomp_bufs[i]);
|
|
|
|
if (mem->comp_bufs != NULL)
|
|
for (i = 0; i < mem->total_bufs; i++)
|
|
rte_pktmbuf_free(mem->comp_bufs[i]);
|
|
|
|
rte_free(mem->decomp_bufs);
|
|
rte_free(mem->comp_bufs);
|
|
rte_free(mem->decompressed_data);
|
|
rte_free(mem->compressed_data);
|
|
rte_mempool_free(mem->op_pool);
|
|
rte_mempool_free(mem->decomp_buf_pool);
|
|
rte_mempool_free(mem->comp_buf_pool);
|
|
|
|
/* external mbuf support */
|
|
if (mem->decomp_memzones != NULL) {
|
|
for (i = 0; i < test_data->total_segs; i++)
|
|
rte_memzone_free(mem->decomp_memzones[i]);
|
|
rte_free(mem->decomp_memzones);
|
|
}
|
|
if (mem->comp_memzones != NULL) {
|
|
for (i = 0; i < test_data->total_segs; i++)
|
|
rte_memzone_free(mem->comp_memzones[i]);
|
|
rte_free(mem->comp_memzones);
|
|
}
|
|
rte_free(mem->decomp_buf_infos);
|
|
rte_free(mem->comp_buf_infos);
|
|
}
|
|
|
|
static void
|
|
comp_perf_extbuf_free_cb(void *addr __rte_unused, void *opaque __rte_unused)
|
|
{
|
|
}
|
|
|
|
static const struct rte_memzone *
|
|
comp_perf_make_memzone(const char *name, struct cperf_mem_resources *mem,
|
|
unsigned int number, size_t size)
|
|
{
|
|
unsigned int socket_id = rte_socket_id();
|
|
char mz_name[RTE_MEMZONE_NAMESIZE];
|
|
const struct rte_memzone *memzone;
|
|
|
|
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "%s_s%u_d%u_q%u_%d", name,
|
|
socket_id, mem->dev_id, mem->qp_id, number);
|
|
memzone = rte_memzone_lookup(mz_name);
|
|
if (memzone != NULL && memzone->len != size) {
|
|
rte_memzone_free(memzone);
|
|
memzone = NULL;
|
|
}
|
|
if (memzone == NULL) {
|
|
memzone = rte_memzone_reserve_aligned(mz_name, size, socket_id,
|
|
RTE_MEMZONE_IOVA_CONTIG, RTE_CACHE_LINE_SIZE);
|
|
if (memzone == NULL)
|
|
RTE_LOG(ERR, USER1, "Can't allocate memory zone %s\n",
|
|
mz_name);
|
|
}
|
|
return memzone;
|
|
}
|
|
|
|
static int
|
|
comp_perf_allocate_external_mbufs(struct comp_test_data *test_data,
|
|
struct cperf_mem_resources *mem)
|
|
{
|
|
uint32_t i;
|
|
|
|
mem->comp_memzones = rte_zmalloc_socket(NULL,
|
|
test_data->total_segs * sizeof(struct rte_memzone *),
|
|
0, rte_socket_id());
|
|
|
|
if (mem->comp_memzones == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Memory to hold the compression memzones could not be allocated\n");
|
|
return -1;
|
|
}
|
|
|
|
mem->decomp_memzones = rte_zmalloc_socket(NULL,
|
|
test_data->total_segs * sizeof(struct rte_memzone *),
|
|
0, rte_socket_id());
|
|
|
|
if (mem->decomp_memzones == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Memory to hold the decompression memzones could not be allocated\n");
|
|
return -1;
|
|
}
|
|
|
|
mem->comp_buf_infos = rte_zmalloc_socket(NULL,
|
|
test_data->total_segs * sizeof(struct rte_mbuf_ext_shared_info),
|
|
0, rte_socket_id());
|
|
|
|
if (mem->comp_buf_infos == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Memory to hold the compression buf infos could not be allocated\n");
|
|
return -1;
|
|
}
|
|
|
|
mem->decomp_buf_infos = rte_zmalloc_socket(NULL,
|
|
test_data->total_segs * sizeof(struct rte_mbuf_ext_shared_info),
|
|
0, rte_socket_id());
|
|
|
|
if (mem->decomp_buf_infos == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Memory to hold the decompression buf infos could not be allocated\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < test_data->total_segs; i++) {
|
|
mem->comp_memzones[i] = comp_perf_make_memzone("comp", mem,
|
|
i, test_data->out_seg_sz);
|
|
if (mem->comp_memzones[i] == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Memory to hold the compression memzone could not be allocated\n");
|
|
return -1;
|
|
}
|
|
|
|
mem->decomp_memzones[i] = comp_perf_make_memzone("decomp", mem,
|
|
i, test_data->seg_sz);
|
|
if (mem->decomp_memzones[i] == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Memory to hold the decompression memzone could not be allocated\n");
|
|
return -1;
|
|
}
|
|
|
|
mem->comp_buf_infos[i].free_cb =
|
|
comp_perf_extbuf_free_cb;
|
|
mem->comp_buf_infos[i].fcb_opaque = NULL;
|
|
rte_mbuf_ext_refcnt_set(&mem->comp_buf_infos[i], 1);
|
|
|
|
mem->decomp_buf_infos[i].free_cb =
|
|
comp_perf_extbuf_free_cb;
|
|
mem->decomp_buf_infos[i].fcb_opaque = NULL;
|
|
rte_mbuf_ext_refcnt_set(&mem->decomp_buf_infos[i], 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
comp_perf_allocate_memory(struct comp_test_data *test_data,
|
|
struct cperf_mem_resources *mem)
|
|
{
|
|
uint16_t comp_mbuf_size;
|
|
uint16_t decomp_mbuf_size;
|
|
|
|
test_data->out_seg_sz = find_buf_size(test_data->seg_sz);
|
|
|
|
/* Number of segments for input and output
|
|
* (compression and decompression)
|
|
*/
|
|
test_data->total_segs = DIV_CEIL(test_data->input_data_sz,
|
|
test_data->seg_sz);
|
|
|
|
if (test_data->use_external_mbufs != 0) {
|
|
if (comp_perf_allocate_external_mbufs(test_data, mem) < 0)
|
|
return -1;
|
|
comp_mbuf_size = 0;
|
|
decomp_mbuf_size = 0;
|
|
} else {
|
|
comp_mbuf_size = test_data->out_seg_sz + RTE_PKTMBUF_HEADROOM;
|
|
decomp_mbuf_size = test_data->seg_sz + RTE_PKTMBUF_HEADROOM;
|
|
}
|
|
|
|
char pool_name[32] = "";
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "comp_buf_pool_%u_qp_%u",
|
|
mem->dev_id, mem->qp_id);
|
|
mem->comp_buf_pool = rte_pktmbuf_pool_create(pool_name,
|
|
test_data->total_segs,
|
|
0, 0,
|
|
comp_mbuf_size,
|
|
rte_socket_id());
|
|
if (mem->comp_buf_pool == NULL) {
|
|
RTE_LOG(ERR, USER1, "Mbuf mempool could not be created\n");
|
|
return -1;
|
|
}
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "decomp_buf_pool_%u_qp_%u",
|
|
mem->dev_id, mem->qp_id);
|
|
mem->decomp_buf_pool = rte_pktmbuf_pool_create(pool_name,
|
|
test_data->total_segs,
|
|
0, 0,
|
|
decomp_mbuf_size,
|
|
rte_socket_id());
|
|
if (mem->decomp_buf_pool == NULL) {
|
|
RTE_LOG(ERR, USER1, "Mbuf mempool could not be created\n");
|
|
return -1;
|
|
}
|
|
|
|
mem->total_bufs = DIV_CEIL(test_data->total_segs,
|
|
test_data->max_sgl_segs);
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "op_pool_%u_qp_%u",
|
|
mem->dev_id, mem->qp_id);
|
|
|
|
/* one mempool for both src and dst mbufs */
|
|
mem->op_pool = rte_comp_op_pool_create(pool_name,
|
|
mem->total_bufs * 2,
|
|
0, 0, rte_socket_id());
|
|
if (mem->op_pool == NULL) {
|
|
RTE_LOG(ERR, USER1, "Comp op mempool could not be created\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Compressed data might be a bit larger than input data,
|
|
* if data cannot be compressed
|
|
*/
|
|
mem->compressed_data = rte_zmalloc_socket(NULL,
|
|
RTE_MAX(
|
|
(size_t) test_data->out_seg_sz *
|
|
test_data->total_segs,
|
|
(size_t) MIN_COMPRESSED_BUF_SIZE),
|
|
0,
|
|
rte_socket_id());
|
|
if (mem->compressed_data == NULL) {
|
|
RTE_LOG(ERR, USER1, "Memory to hold the data from the input "
|
|
"file could not be allocated\n");
|
|
return -1;
|
|
}
|
|
|
|
mem->decompressed_data = rte_zmalloc_socket(NULL,
|
|
test_data->input_data_sz, 0,
|
|
rte_socket_id());
|
|
if (mem->decompressed_data == NULL) {
|
|
RTE_LOG(ERR, USER1, "Memory to hold the data from the input "
|
|
"file could not be allocated\n");
|
|
return -1;
|
|
}
|
|
|
|
mem->comp_bufs = rte_zmalloc_socket(NULL,
|
|
mem->total_bufs * sizeof(struct rte_mbuf *),
|
|
0, rte_socket_id());
|
|
if (mem->comp_bufs == NULL) {
|
|
RTE_LOG(ERR, USER1, "Memory to hold the compression mbufs"
|
|
" could not be allocated\n");
|
|
return -1;
|
|
}
|
|
|
|
mem->decomp_bufs = rte_zmalloc_socket(NULL,
|
|
mem->total_bufs * sizeof(struct rte_mbuf *),
|
|
0, rte_socket_id());
|
|
if (mem->decomp_bufs == NULL) {
|
|
RTE_LOG(ERR, USER1, "Memory to hold the decompression mbufs"
|
|
" could not be allocated\n");
|
|
return -1;
|
|
}
|
|
|
|
buffer_info.total_segments = test_data->total_segs;
|
|
buffer_info.segment_sz = test_data->seg_sz;
|
|
buffer_info.total_buffs = mem->total_bufs;
|
|
buffer_info.segments_per_buff = test_data->max_sgl_segs;
|
|
buffer_info.input_data_sz = test_data->input_data_sz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
prepare_bufs(struct comp_test_data *test_data, struct cperf_mem_resources *mem)
|
|
{
|
|
uint32_t remaining_data = test_data->input_data_sz;
|
|
uint8_t *input_data_ptr = test_data->input_data;
|
|
size_t data_sz = 0;
|
|
uint8_t *data_addr;
|
|
uint32_t i, j;
|
|
uint16_t segs_per_mbuf = 0;
|
|
uint32_t cmz = 0;
|
|
uint32_t dmz = 0;
|
|
|
|
for (i = 0; i < mem->total_bufs; i++) {
|
|
/* Allocate data in input mbuf and copy data from input file */
|
|
mem->decomp_bufs[i] =
|
|
rte_pktmbuf_alloc(mem->decomp_buf_pool);
|
|
if (mem->decomp_bufs[i] == NULL) {
|
|
RTE_LOG(ERR, USER1, "Could not allocate mbuf\n");
|
|
return -1;
|
|
}
|
|
|
|
data_sz = RTE_MIN(remaining_data, test_data->seg_sz);
|
|
|
|
if (test_data->use_external_mbufs != 0) {
|
|
rte_pktmbuf_attach_extbuf(mem->decomp_bufs[i],
|
|
mem->decomp_memzones[dmz]->addr,
|
|
mem->decomp_memzones[dmz]->iova,
|
|
test_data->seg_sz,
|
|
&mem->decomp_buf_infos[dmz]);
|
|
dmz++;
|
|
}
|
|
|
|
data_addr = (uint8_t *) rte_pktmbuf_append(
|
|
mem->decomp_bufs[i], data_sz);
|
|
if (data_addr == NULL) {
|
|
RTE_LOG(ERR, USER1, "Could not append data\n");
|
|
return -1;
|
|
}
|
|
rte_memcpy(data_addr, input_data_ptr, data_sz);
|
|
|
|
input_data_ptr += data_sz;
|
|
remaining_data -= data_sz;
|
|
|
|
/* Already one segment in the mbuf */
|
|
segs_per_mbuf = 1;
|
|
|
|
/* Chain mbufs if needed for input mbufs */
|
|
while (segs_per_mbuf < test_data->max_sgl_segs
|
|
&& remaining_data > 0) {
|
|
struct rte_mbuf *next_seg =
|
|
rte_pktmbuf_alloc(mem->decomp_buf_pool);
|
|
|
|
if (next_seg == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Could not allocate mbuf\n");
|
|
return -1;
|
|
}
|
|
|
|
data_sz = RTE_MIN(remaining_data, test_data->seg_sz);
|
|
|
|
if (test_data->use_external_mbufs != 0) {
|
|
rte_pktmbuf_attach_extbuf(
|
|
next_seg,
|
|
mem->decomp_memzones[dmz]->addr,
|
|
mem->decomp_memzones[dmz]->iova,
|
|
test_data->seg_sz,
|
|
&mem->decomp_buf_infos[dmz]);
|
|
dmz++;
|
|
}
|
|
|
|
data_addr = (uint8_t *)rte_pktmbuf_append(next_seg,
|
|
data_sz);
|
|
|
|
if (data_addr == NULL) {
|
|
RTE_LOG(ERR, USER1, "Could not append data\n");
|
|
return -1;
|
|
}
|
|
|
|
rte_memcpy(data_addr, input_data_ptr, data_sz);
|
|
input_data_ptr += data_sz;
|
|
remaining_data -= data_sz;
|
|
|
|
if (rte_pktmbuf_chain(mem->decomp_bufs[i],
|
|
next_seg) < 0) {
|
|
RTE_LOG(ERR, USER1, "Could not chain mbufs\n");
|
|
return -1;
|
|
}
|
|
segs_per_mbuf++;
|
|
}
|
|
|
|
/* Allocate data in output mbuf */
|
|
mem->comp_bufs[i] =
|
|
rte_pktmbuf_alloc(mem->comp_buf_pool);
|
|
if (mem->comp_bufs[i] == NULL) {
|
|
RTE_LOG(ERR, USER1, "Could not allocate mbuf\n");
|
|
return -1;
|
|
}
|
|
|
|
if (test_data->use_external_mbufs != 0) {
|
|
rte_pktmbuf_attach_extbuf(mem->comp_bufs[i],
|
|
mem->comp_memzones[cmz]->addr,
|
|
mem->comp_memzones[cmz]->iova,
|
|
test_data->out_seg_sz,
|
|
&mem->comp_buf_infos[cmz]);
|
|
cmz++;
|
|
}
|
|
|
|
data_addr = (uint8_t *) rte_pktmbuf_append(
|
|
mem->comp_bufs[i],
|
|
test_data->out_seg_sz);
|
|
if (data_addr == NULL) {
|
|
RTE_LOG(ERR, USER1, "Could not append data\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Chain mbufs if needed for output mbufs */
|
|
for (j = 1; j < segs_per_mbuf; j++) {
|
|
struct rte_mbuf *next_seg =
|
|
rte_pktmbuf_alloc(mem->comp_buf_pool);
|
|
|
|
if (next_seg == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Could not allocate mbuf\n");
|
|
return -1;
|
|
}
|
|
|
|
if (test_data->use_external_mbufs != 0) {
|
|
rte_pktmbuf_attach_extbuf(
|
|
next_seg,
|
|
mem->comp_memzones[cmz]->addr,
|
|
mem->comp_memzones[cmz]->iova,
|
|
test_data->out_seg_sz,
|
|
&mem->comp_buf_infos[cmz]);
|
|
cmz++;
|
|
}
|
|
|
|
data_addr = (uint8_t *)rte_pktmbuf_append(next_seg,
|
|
test_data->out_seg_sz);
|
|
if (data_addr == NULL) {
|
|
RTE_LOG(ERR, USER1, "Could not append data\n");
|
|
return -1;
|
|
}
|
|
|
|
if (rte_pktmbuf_chain(mem->comp_bufs[i],
|
|
next_seg) < 0) {
|
|
RTE_LOG(ERR, USER1, "Could not chain mbufs\n");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
buffer_info.segments_per_last_buff = segs_per_mbuf;
|
|
buffer_info.last_segment_sz = data_sz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
print_test_dynamics(const struct comp_test_data *test_data)
|
|
{
|
|
uint32_t opt_total_segs = DIV_CEIL(buffer_info.input_data_sz,
|
|
MAX_SEG_SIZE);
|
|
|
|
if (buffer_info.total_buffs > 1) {
|
|
if (test_data->test == CPERF_TEST_TYPE_THROUGHPUT) {
|
|
printf("\nWarning: for the current input parameters, number"
|
|
" of ops is higher than one, which may result"
|
|
" in sub-optimal performance.\n");
|
|
printf("To improve the performance (for the current"
|
|
" input data) following parameters are"
|
|
" suggested:\n");
|
|
printf(" * Segment size: %d\n",
|
|
MAX_SEG_SIZE);
|
|
printf(" * Number of segments: %u\n",
|
|
opt_total_segs);
|
|
}
|
|
} else if (buffer_info.total_buffs == 1) {
|
|
printf("\nInfo: there is only one op with %u segments -"
|
|
" the compression ratio is the best.\n",
|
|
buffer_info.segments_per_last_buff);
|
|
if (buffer_info.segment_sz < MAX_SEG_SIZE)
|
|
printf("To reduce compression time, please use"
|
|
" bigger segment size: %d.\n",
|
|
MAX_SEG_SIZE);
|
|
else if (buffer_info.segment_sz == MAX_SEG_SIZE)
|
|
printf("Segment size is optimal for the best"
|
|
" performance.\n");
|
|
} else
|
|
printf("Warning: something wrong happened!!\n");
|
|
|
|
printf("\nFor the current input parameters (segment size = %u,"
|
|
" maximum segments per SGL = %u):\n",
|
|
buffer_info.segment_sz,
|
|
buffer_info.segments_per_buff);
|
|
printf(" * Total number of buffers: %d\n",
|
|
buffer_info.total_segments);
|
|
printf(" * %u buffer(s) %u bytes long, last buffer %u"
|
|
" byte(s) long\n",
|
|
buffer_info.total_segments - 1,
|
|
buffer_info.segment_sz,
|
|
buffer_info.last_segment_sz);
|
|
printf(" * Number of ops: %u\n", buffer_info.total_buffs);
|
|
printf(" * Total memory allocation: %u\n",
|
|
(buffer_info.total_segments - 1) * buffer_info.segment_sz
|
|
+ buffer_info.last_segment_sz);
|
|
if (buffer_info.total_buffs > 1)
|
|
printf(" * %u ops: %u segment(s) in each,"
|
|
" segment size %u\n",
|
|
buffer_info.total_buffs - 1,
|
|
buffer_info.segments_per_buff,
|
|
buffer_info.segment_sz);
|
|
if (buffer_info.segments_per_last_buff > 1) {
|
|
printf(" * 1 op %u segments:\n",
|
|
buffer_info.segments_per_last_buff);
|
|
printf(" o %u segment size %u\n",
|
|
buffer_info.segments_per_last_buff - 1,
|
|
buffer_info.segment_sz);
|
|
printf(" o last segment size %u\n",
|
|
buffer_info.last_segment_sz);
|
|
} else if (buffer_info.segments_per_last_buff == 1) {
|
|
printf(" * 1 op (the last one): %u segment %u"
|
|
" byte(s) long\n\n",
|
|
buffer_info.segments_per_last_buff,
|
|
buffer_info.last_segment_sz);
|
|
}
|
|
printf("\n");
|
|
}
|