numam-dpdk/app/test-compress-perf/comp_perf_test_common.c
Artur Trybula 2695db95a1 test/compress: add cycle-count mode to perf tool
This commit adds cycle-count mode to the compression perf tool.
The new mode enhances the compression performance tool to allow
cycle-count measurement of both hardware and softwate PMDs.

Signed-off-by: Artur Trybula <arturx.trybula@intel.com>
Acked-by: Fiona Trahe <fiona.trahe@intel.com>
2020-02-05 15:20:51 +01:00

570 lines
15 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_log.h>
#include <rte_compressdev.h>
#include "comp_perf.h"
#include "comp_perf_options.h"
#include "comp_perf_test_throughput.h"
#include "comp_perf_test_cyclecount.h"
#include "comp_perf_test_common.h"
#include "comp_perf_test_verify.h"
#define DIV_CEIL(a, b) ((a) / (b) + ((a) % (b) != 0))
struct cperf_buffer_info {
uint16_t total_segments;
uint16_t segment_sz;
uint16_t last_segment_sz;
uint32_t total_buffs; /*number of buffers = number of ops*/
uint16_t segments_per_buff;
uint16_t segments_per_last_buff;
size_t input_data_sz;
};
static struct cperf_buffer_info buffer_info;
int
param_range_check(uint16_t size, const struct rte_param_log2_range *range)
{
unsigned int next_size;
/* Check lower/upper bounds */
if (size < range->min)
return -1;
if (size > range->max)
return -1;
/* If range is actually only one value, size is correct */
if (range->increment == 0)
return 0;
/* Check if value is one of the supported sizes */
for (next_size = range->min; next_size <= range->max;
next_size += range->increment)
if (size == next_size)
return 0;
return -1;
}
static uint32_t
find_buf_size(uint32_t input_size)
{
uint32_t i;
/* From performance point of view the buffer size should be a
* power of 2 but also should be enough to store incompressible data
*/
/* We're looking for nearest power of 2 buffer size, which is greater
* than input_size
*/
uint32_t size =
!input_size ? MIN_COMPRESSED_BUF_SIZE : (input_size << 1);
for (i = UINT16_MAX + 1; !(i & size); i >>= 1)
;
return i > ((UINT16_MAX + 1) >> 1)
? (uint32_t)((float)input_size * EXPANSE_RATIO)
: i;
}
void
comp_perf_free_memory(struct comp_test_data *test_data,
struct cperf_mem_resources *mem)
{
uint32_t i;
if (mem->decomp_bufs != NULL)
for (i = 0; i < mem->total_bufs; i++)
rte_pktmbuf_free(mem->decomp_bufs[i]);
if (mem->comp_bufs != NULL)
for (i = 0; i < mem->total_bufs; i++)
rte_pktmbuf_free(mem->comp_bufs[i]);
rte_free(mem->decomp_bufs);
rte_free(mem->comp_bufs);
rte_free(mem->decompressed_data);
rte_free(mem->compressed_data);
rte_mempool_free(mem->op_pool);
rte_mempool_free(mem->decomp_buf_pool);
rte_mempool_free(mem->comp_buf_pool);
/* external mbuf support */
if (mem->decomp_memzones != NULL) {
for (i = 0; i < test_data->total_segs; i++)
rte_memzone_free(mem->decomp_memzones[i]);
rte_free(mem->decomp_memzones);
}
if (mem->comp_memzones != NULL) {
for (i = 0; i < test_data->total_segs; i++)
rte_memzone_free(mem->comp_memzones[i]);
rte_free(mem->comp_memzones);
}
rte_free(mem->decomp_buf_infos);
rte_free(mem->comp_buf_infos);
}
static void
comp_perf_extbuf_free_cb(void *addr __rte_unused, void *opaque __rte_unused)
{
}
static const struct rte_memzone *
comp_perf_make_memzone(const char *name, struct cperf_mem_resources *mem,
unsigned int number, size_t size)
{
unsigned int socket_id = rte_socket_id();
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *memzone;
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "%s_s%u_d%u_q%u_%d", name,
socket_id, mem->dev_id, mem->qp_id, number);
memzone = rte_memzone_lookup(mz_name);
if (memzone != NULL && memzone->len != size) {
rte_memzone_free(memzone);
memzone = NULL;
}
if (memzone == NULL) {
memzone = rte_memzone_reserve_aligned(mz_name, size, socket_id,
RTE_MEMZONE_IOVA_CONTIG, RTE_CACHE_LINE_SIZE);
if (memzone == NULL)
RTE_LOG(ERR, USER1, "Can't allocate memory zone %s\n",
mz_name);
}
return memzone;
}
static int
comp_perf_allocate_external_mbufs(struct comp_test_data *test_data,
struct cperf_mem_resources *mem)
{
uint32_t i;
mem->comp_memzones = rte_zmalloc_socket(NULL,
test_data->total_segs * sizeof(struct rte_memzone *),
0, rte_socket_id());
if (mem->comp_memzones == NULL) {
RTE_LOG(ERR, USER1,
"Memory to hold the compression memzones could not be allocated\n");
return -1;
}
mem->decomp_memzones = rte_zmalloc_socket(NULL,
test_data->total_segs * sizeof(struct rte_memzone *),
0, rte_socket_id());
if (mem->decomp_memzones == NULL) {
RTE_LOG(ERR, USER1,
"Memory to hold the decompression memzones could not be allocated\n");
return -1;
}
mem->comp_buf_infos = rte_zmalloc_socket(NULL,
test_data->total_segs * sizeof(struct rte_mbuf_ext_shared_info),
0, rte_socket_id());
if (mem->comp_buf_infos == NULL) {
RTE_LOG(ERR, USER1,
"Memory to hold the compression buf infos could not be allocated\n");
return -1;
}
mem->decomp_buf_infos = rte_zmalloc_socket(NULL,
test_data->total_segs * sizeof(struct rte_mbuf_ext_shared_info),
0, rte_socket_id());
if (mem->decomp_buf_infos == NULL) {
RTE_LOG(ERR, USER1,
"Memory to hold the decompression buf infos could not be allocated\n");
return -1;
}
for (i = 0; i < test_data->total_segs; i++) {
mem->comp_memzones[i] = comp_perf_make_memzone("comp", mem,
i, test_data->out_seg_sz);
if (mem->comp_memzones[i] == NULL) {
RTE_LOG(ERR, USER1,
"Memory to hold the compression memzone could not be allocated\n");
return -1;
}
mem->decomp_memzones[i] = comp_perf_make_memzone("decomp", mem,
i, test_data->seg_sz);
if (mem->decomp_memzones[i] == NULL) {
RTE_LOG(ERR, USER1,
"Memory to hold the decompression memzone could not be allocated\n");
return -1;
}
mem->comp_buf_infos[i].free_cb =
comp_perf_extbuf_free_cb;
mem->comp_buf_infos[i].fcb_opaque = NULL;
rte_mbuf_ext_refcnt_set(&mem->comp_buf_infos[i], 1);
mem->decomp_buf_infos[i].free_cb =
comp_perf_extbuf_free_cb;
mem->decomp_buf_infos[i].fcb_opaque = NULL;
rte_mbuf_ext_refcnt_set(&mem->decomp_buf_infos[i], 1);
}
return 0;
}
int
comp_perf_allocate_memory(struct comp_test_data *test_data,
struct cperf_mem_resources *mem)
{
uint16_t comp_mbuf_size;
uint16_t decomp_mbuf_size;
test_data->out_seg_sz = find_buf_size(test_data->seg_sz);
/* Number of segments for input and output
* (compression and decompression)
*/
test_data->total_segs = DIV_CEIL(test_data->input_data_sz,
test_data->seg_sz);
if (test_data->use_external_mbufs != 0) {
if (comp_perf_allocate_external_mbufs(test_data, mem) < 0)
return -1;
comp_mbuf_size = 0;
decomp_mbuf_size = 0;
} else {
comp_mbuf_size = test_data->out_seg_sz + RTE_PKTMBUF_HEADROOM;
decomp_mbuf_size = test_data->seg_sz + RTE_PKTMBUF_HEADROOM;
}
char pool_name[32] = "";
snprintf(pool_name, sizeof(pool_name), "comp_buf_pool_%u_qp_%u",
mem->dev_id, mem->qp_id);
mem->comp_buf_pool = rte_pktmbuf_pool_create(pool_name,
test_data->total_segs,
0, 0,
comp_mbuf_size,
rte_socket_id());
if (mem->comp_buf_pool == NULL) {
RTE_LOG(ERR, USER1, "Mbuf mempool could not be created\n");
return -1;
}
snprintf(pool_name, sizeof(pool_name), "decomp_buf_pool_%u_qp_%u",
mem->dev_id, mem->qp_id);
mem->decomp_buf_pool = rte_pktmbuf_pool_create(pool_name,
test_data->total_segs,
0, 0,
decomp_mbuf_size,
rte_socket_id());
if (mem->decomp_buf_pool == NULL) {
RTE_LOG(ERR, USER1, "Mbuf mempool could not be created\n");
return -1;
}
mem->total_bufs = DIV_CEIL(test_data->total_segs,
test_data->max_sgl_segs);
snprintf(pool_name, sizeof(pool_name), "op_pool_%u_qp_%u",
mem->dev_id, mem->qp_id);
/* one mempool for both src and dst mbufs */
mem->op_pool = rte_comp_op_pool_create(pool_name,
mem->total_bufs * 2,
0, 0, rte_socket_id());
if (mem->op_pool == NULL) {
RTE_LOG(ERR, USER1, "Comp op mempool could not be created\n");
return -1;
}
/*
* Compressed data might be a bit larger than input data,
* if data cannot be compressed
*/
mem->compressed_data = rte_zmalloc_socket(NULL,
RTE_MAX(
(size_t) test_data->out_seg_sz *
test_data->total_segs,
(size_t) MIN_COMPRESSED_BUF_SIZE),
0,
rte_socket_id());
if (mem->compressed_data == NULL) {
RTE_LOG(ERR, USER1, "Memory to hold the data from the input "
"file could not be allocated\n");
return -1;
}
mem->decompressed_data = rte_zmalloc_socket(NULL,
test_data->input_data_sz, 0,
rte_socket_id());
if (mem->decompressed_data == NULL) {
RTE_LOG(ERR, USER1, "Memory to hold the data from the input "
"file could not be allocated\n");
return -1;
}
mem->comp_bufs = rte_zmalloc_socket(NULL,
mem->total_bufs * sizeof(struct rte_mbuf *),
0, rte_socket_id());
if (mem->comp_bufs == NULL) {
RTE_LOG(ERR, USER1, "Memory to hold the compression mbufs"
" could not be allocated\n");
return -1;
}
mem->decomp_bufs = rte_zmalloc_socket(NULL,
mem->total_bufs * sizeof(struct rte_mbuf *),
0, rte_socket_id());
if (mem->decomp_bufs == NULL) {
RTE_LOG(ERR, USER1, "Memory to hold the decompression mbufs"
" could not be allocated\n");
return -1;
}
buffer_info.total_segments = test_data->total_segs;
buffer_info.segment_sz = test_data->seg_sz;
buffer_info.total_buffs = mem->total_bufs;
buffer_info.segments_per_buff = test_data->max_sgl_segs;
buffer_info.input_data_sz = test_data->input_data_sz;
return 0;
}
int
prepare_bufs(struct comp_test_data *test_data, struct cperf_mem_resources *mem)
{
uint32_t remaining_data = test_data->input_data_sz;
uint8_t *input_data_ptr = test_data->input_data;
size_t data_sz = 0;
uint8_t *data_addr;
uint32_t i, j;
uint16_t segs_per_mbuf = 0;
uint32_t cmz = 0;
uint32_t dmz = 0;
for (i = 0; i < mem->total_bufs; i++) {
/* Allocate data in input mbuf and copy data from input file */
mem->decomp_bufs[i] =
rte_pktmbuf_alloc(mem->decomp_buf_pool);
if (mem->decomp_bufs[i] == NULL) {
RTE_LOG(ERR, USER1, "Could not allocate mbuf\n");
return -1;
}
data_sz = RTE_MIN(remaining_data, test_data->seg_sz);
if (test_data->use_external_mbufs != 0) {
rte_pktmbuf_attach_extbuf(mem->decomp_bufs[i],
mem->decomp_memzones[dmz]->addr,
mem->decomp_memzones[dmz]->iova,
test_data->seg_sz,
&mem->decomp_buf_infos[dmz]);
dmz++;
}
data_addr = (uint8_t *) rte_pktmbuf_append(
mem->decomp_bufs[i], data_sz);
if (data_addr == NULL) {
RTE_LOG(ERR, USER1, "Could not append data\n");
return -1;
}
rte_memcpy(data_addr, input_data_ptr, data_sz);
input_data_ptr += data_sz;
remaining_data -= data_sz;
/* Already one segment in the mbuf */
segs_per_mbuf = 1;
/* Chain mbufs if needed for input mbufs */
while (segs_per_mbuf < test_data->max_sgl_segs
&& remaining_data > 0) {
struct rte_mbuf *next_seg =
rte_pktmbuf_alloc(mem->decomp_buf_pool);
if (next_seg == NULL) {
RTE_LOG(ERR, USER1,
"Could not allocate mbuf\n");
return -1;
}
data_sz = RTE_MIN(remaining_data, test_data->seg_sz);
if (test_data->use_external_mbufs != 0) {
rte_pktmbuf_attach_extbuf(
next_seg,
mem->decomp_memzones[dmz]->addr,
mem->decomp_memzones[dmz]->iova,
test_data->seg_sz,
&mem->decomp_buf_infos[dmz]);
dmz++;
}
data_addr = (uint8_t *)rte_pktmbuf_append(next_seg,
data_sz);
if (data_addr == NULL) {
RTE_LOG(ERR, USER1, "Could not append data\n");
return -1;
}
rte_memcpy(data_addr, input_data_ptr, data_sz);
input_data_ptr += data_sz;
remaining_data -= data_sz;
if (rte_pktmbuf_chain(mem->decomp_bufs[i],
next_seg) < 0) {
RTE_LOG(ERR, USER1, "Could not chain mbufs\n");
return -1;
}
segs_per_mbuf++;
}
/* Allocate data in output mbuf */
mem->comp_bufs[i] =
rte_pktmbuf_alloc(mem->comp_buf_pool);
if (mem->comp_bufs[i] == NULL) {
RTE_LOG(ERR, USER1, "Could not allocate mbuf\n");
return -1;
}
if (test_data->use_external_mbufs != 0) {
rte_pktmbuf_attach_extbuf(mem->comp_bufs[i],
mem->comp_memzones[cmz]->addr,
mem->comp_memzones[cmz]->iova,
test_data->out_seg_sz,
&mem->comp_buf_infos[cmz]);
cmz++;
}
data_addr = (uint8_t *) rte_pktmbuf_append(
mem->comp_bufs[i],
test_data->out_seg_sz);
if (data_addr == NULL) {
RTE_LOG(ERR, USER1, "Could not append data\n");
return -1;
}
/* Chain mbufs if needed for output mbufs */
for (j = 1; j < segs_per_mbuf; j++) {
struct rte_mbuf *next_seg =
rte_pktmbuf_alloc(mem->comp_buf_pool);
if (next_seg == NULL) {
RTE_LOG(ERR, USER1,
"Could not allocate mbuf\n");
return -1;
}
if (test_data->use_external_mbufs != 0) {
rte_pktmbuf_attach_extbuf(
next_seg,
mem->comp_memzones[cmz]->addr,
mem->comp_memzones[cmz]->iova,
test_data->out_seg_sz,
&mem->comp_buf_infos[cmz]);
cmz++;
}
data_addr = (uint8_t *)rte_pktmbuf_append(next_seg,
test_data->out_seg_sz);
if (data_addr == NULL) {
RTE_LOG(ERR, USER1, "Could not append data\n");
return -1;
}
if (rte_pktmbuf_chain(mem->comp_bufs[i],
next_seg) < 0) {
RTE_LOG(ERR, USER1, "Could not chain mbufs\n");
return -1;
}
}
}
buffer_info.segments_per_last_buff = segs_per_mbuf;
buffer_info.last_segment_sz = data_sz;
return 0;
}
void
print_test_dynamics(const struct comp_test_data *test_data)
{
uint32_t opt_total_segs = DIV_CEIL(buffer_info.input_data_sz,
MAX_SEG_SIZE);
if (buffer_info.total_buffs > 1) {
if (test_data->test == CPERF_TEST_TYPE_THROUGHPUT) {
printf("\nWarning: for the current input parameters, number"
" of ops is higher than one, which may result"
" in sub-optimal performance.\n");
printf("To improve the performance (for the current"
" input data) following parameters are"
" suggested:\n");
printf(" * Segment size: %d\n",
MAX_SEG_SIZE);
printf(" * Number of segments: %u\n",
opt_total_segs);
}
} else if (buffer_info.total_buffs == 1) {
printf("\nInfo: there is only one op with %u segments -"
" the compression ratio is the best.\n",
buffer_info.segments_per_last_buff);
if (buffer_info.segment_sz < MAX_SEG_SIZE)
printf("To reduce compression time, please use"
" bigger segment size: %d.\n",
MAX_SEG_SIZE);
else if (buffer_info.segment_sz == MAX_SEG_SIZE)
printf("Segment size is optimal for the best"
" performance.\n");
} else
printf("Warning: something wrong happened!!\n");
printf("\nFor the current input parameters (segment size = %u,"
" maximum segments per SGL = %u):\n",
buffer_info.segment_sz,
buffer_info.segments_per_buff);
printf(" * Total number of buffers: %d\n",
buffer_info.total_segments);
printf(" * %u buffer(s) %u bytes long, last buffer %u"
" byte(s) long\n",
buffer_info.total_segments - 1,
buffer_info.segment_sz,
buffer_info.last_segment_sz);
printf(" * Number of ops: %u\n", buffer_info.total_buffs);
printf(" * Total memory allocation: %u\n",
(buffer_info.total_segments - 1) * buffer_info.segment_sz
+ buffer_info.last_segment_sz);
if (buffer_info.total_buffs > 1)
printf(" * %u ops: %u segment(s) in each,"
" segment size %u\n",
buffer_info.total_buffs - 1,
buffer_info.segments_per_buff,
buffer_info.segment_sz);
if (buffer_info.segments_per_last_buff > 1) {
printf(" * 1 op %u segments:\n",
buffer_info.segments_per_last_buff);
printf(" o %u segment size %u\n",
buffer_info.segments_per_last_buff - 1,
buffer_info.segment_sz);
printf(" o last segment size %u\n",
buffer_info.last_segment_sz);
} else if (buffer_info.segments_per_last_buff == 1) {
printf(" * 1 op (the last one): %u segment %u"
" byte(s) long\n\n",
buffer_info.segments_per_last_buff,
buffer_info.last_segment_sz);
}
printf("\n");
}