numam-dpdk/app/test-crypto-perf/cperf_test_common.c
Kiran Kumar K ba588ce3f9 test/crypto-perf: test asymmetric crypto throughput
Added support for asymmetric crypto perf throughput test.
Only modex is supported for now.

One new optype has been added.
	--optype modex

./dpdk-test-crypto-perf -c 0x3 -- --devtype crypto_cn9k --optype modex
 --ptest throughput

Signed-off-by: Kiran Kumar K <kirankumark@marvell.com>
Acked-by: Akhil Goyal <gakhil@marvell.com>
2021-09-28 08:43:57 +02:00

249 lines
6.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <rte_malloc.h>
#include <rte_mbuf_pool_ops.h>
#include "cperf_test_common.h"
struct obj_params {
uint32_t src_buf_offset;
uint32_t dst_buf_offset;
uint16_t segment_sz;
uint16_t headroom_sz;
uint16_t data_len;
uint16_t segments_nb;
};
static void
fill_single_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp,
void *obj, uint32_t mbuf_offset, uint16_t segment_sz,
uint16_t headroom, uint16_t data_len)
{
uint32_t mbuf_hdr_size = sizeof(struct rte_mbuf);
/* start of buffer is after mbuf structure and priv data */
m->priv_size = 0;
m->buf_addr = (char *)m + mbuf_hdr_size;
m->buf_iova = rte_mempool_virt2iova(obj) +
mbuf_offset + mbuf_hdr_size;
m->buf_len = segment_sz;
m->data_len = data_len;
m->pkt_len = data_len;
/* Use headroom specified for the buffer */
m->data_off = headroom;
/* init some constant fields */
m->pool = mp;
m->nb_segs = 1;
m->port = 0xff;
rte_mbuf_refcnt_set(m, 1);
m->next = NULL;
}
static void
fill_multi_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp,
void *obj, uint32_t mbuf_offset, uint16_t segment_sz,
uint16_t headroom, uint16_t data_len, uint16_t segments_nb)
{
uint16_t mbuf_hdr_size = sizeof(struct rte_mbuf);
uint16_t remaining_segments = segments_nb;
struct rte_mbuf *next_mbuf;
rte_iova_t next_seg_phys_addr = rte_mempool_virt2iova(obj) +
mbuf_offset + mbuf_hdr_size;
do {
/* start of buffer is after mbuf structure and priv data */
m->priv_size = 0;
m->buf_addr = (char *)m + mbuf_hdr_size;
m->buf_iova = next_seg_phys_addr;
next_seg_phys_addr += mbuf_hdr_size + segment_sz;
m->buf_len = segment_sz;
m->data_len = data_len;
/* Use headroom specified for the buffer */
m->data_off = headroom;
/* init some constant fields */
m->pool = mp;
m->nb_segs = segments_nb;
m->port = 0xff;
rte_mbuf_refcnt_set(m, 1);
next_mbuf = (struct rte_mbuf *) ((uint8_t *) m +
mbuf_hdr_size + segment_sz);
m->next = next_mbuf;
m = next_mbuf;
remaining_segments--;
} while (remaining_segments > 0);
m->next = NULL;
}
static void
mempool_obj_init(struct rte_mempool *mp,
void *opaque_arg,
void *obj,
__rte_unused unsigned int i)
{
struct obj_params *params = opaque_arg;
struct rte_crypto_op *op = obj;
struct rte_mbuf *m = (struct rte_mbuf *) ((uint8_t *) obj +
params->src_buf_offset);
/* Set crypto operation */
op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
op->sess_type = RTE_CRYPTO_OP_WITH_SESSION;
op->phys_addr = rte_mem_virt2iova(obj);
op->mempool = mp;
/* Set source buffer */
op->sym->m_src = m;
if (params->segments_nb == 1)
fill_single_seg_mbuf(m, mp, obj, params->src_buf_offset,
params->segment_sz, params->headroom_sz,
params->data_len);
else
fill_multi_seg_mbuf(m, mp, obj, params->src_buf_offset,
params->segment_sz, params->headroom_sz,
params->data_len, params->segments_nb);
/* Set destination buffer */
if (params->dst_buf_offset) {
m = (struct rte_mbuf *) ((uint8_t *) obj +
params->dst_buf_offset);
fill_single_seg_mbuf(m, mp, obj, params->dst_buf_offset,
params->segment_sz, params->headroom_sz,
params->data_len);
op->sym->m_dst = m;
} else
op->sym->m_dst = NULL;
}
int
cperf_alloc_common_memory(const struct cperf_options *options,
const struct cperf_test_vector *test_vector,
uint8_t dev_id, uint16_t qp_id,
size_t extra_op_priv_size,
uint32_t *src_buf_offset,
uint32_t *dst_buf_offset,
struct rte_mempool **pool)
{
const char *mp_ops_name;
char pool_name[32] = "";
int ret;
/* Calculate the object size */
uint16_t crypto_op_size = sizeof(struct rte_crypto_op) +
sizeof(struct rte_crypto_sym_op);
uint16_t crypto_op_private_size;
if (options->op_type == CPERF_ASYM_MODEX) {
snprintf(pool_name, RTE_MEMPOOL_NAMESIZE, "perf_asym_op_pool%u",
rte_socket_id());
*pool = rte_crypto_op_pool_create(
pool_name, RTE_CRYPTO_OP_TYPE_ASYMMETRIC,
options->pool_sz, 0, 0, rte_socket_id());
if (*pool == NULL) {
RTE_LOG(ERR, USER1,
"Cannot allocate mempool for device %u\n",
dev_id);
return -1;
}
return 0;
}
/*
* If doing AES-CCM, IV field needs to be 16 bytes long,
* and AAD field needs to be long enough to have 18 bytes,
* plus the length of the AAD, and all rounded to a
* multiple of 16 bytes.
*/
if (options->aead_algo == RTE_CRYPTO_AEAD_AES_CCM) {
crypto_op_private_size = extra_op_priv_size +
test_vector->cipher_iv.length +
test_vector->auth_iv.length +
RTE_ALIGN_CEIL(test_vector->aead_iv.length, 16) +
RTE_ALIGN_CEIL(options->aead_aad_sz + 18, 16);
} else {
crypto_op_private_size = extra_op_priv_size +
test_vector->cipher_iv.length +
test_vector->auth_iv.length +
test_vector->aead_iv.length +
options->aead_aad_sz;
}
uint16_t crypto_op_total_size = crypto_op_size +
crypto_op_private_size;
uint16_t crypto_op_total_size_padded =
RTE_CACHE_LINE_ROUNDUP(crypto_op_total_size);
uint32_t mbuf_size = sizeof(struct rte_mbuf) + options->segment_sz;
uint32_t max_size = options->max_buffer_size + options->digest_sz;
uint16_t segments_nb = (max_size % options->segment_sz) ?
(max_size / options->segment_sz) + 1 :
max_size / options->segment_sz;
uint32_t obj_size = crypto_op_total_size_padded +
(mbuf_size * segments_nb);
snprintf(pool_name, sizeof(pool_name), "pool_cdev_%u_qp_%u",
dev_id, qp_id);
*src_buf_offset = crypto_op_total_size_padded;
struct obj_params params = {
.segment_sz = options->segment_sz,
.headroom_sz = options->headroom_sz,
/* Data len = segment size - (headroom + tailroom) */
.data_len = options->segment_sz -
options->headroom_sz -
options->tailroom_sz,
.segments_nb = segments_nb,
.src_buf_offset = crypto_op_total_size_padded,
.dst_buf_offset = 0
};
if (options->out_of_place) {
*dst_buf_offset = *src_buf_offset +
(mbuf_size * segments_nb);
params.dst_buf_offset = *dst_buf_offset;
/* Destination buffer will be one segment only */
obj_size += max_size + sizeof(struct rte_mbuf);
}
*pool = rte_mempool_create_empty(pool_name,
options->pool_sz, obj_size, 512, 0,
rte_socket_id(), 0);
if (*pool == NULL) {
RTE_LOG(ERR, USER1,
"Cannot allocate mempool for device %u\n",
dev_id);
return -1;
}
mp_ops_name = rte_mbuf_best_mempool_ops();
ret = rte_mempool_set_ops_byname(*pool,
mp_ops_name, NULL);
if (ret != 0) {
RTE_LOG(ERR, USER1,
"Error setting mempool handler for device %u\n",
dev_id);
return -1;
}
ret = rte_mempool_populate_default(*pool);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Error populating mempool for device %u\n",
dev_id);
return -1;
}
rte_mempool_obj_iter(*pool, mempool_obj_init, (void *)&params);
return 0;
}