numam-dpdk/drivers/net/e1000/em_ethdev.c
Bruce Richardson 5566a3e358 drivers: use SPDX tag for Intel copyright files
Replace the BSD license header with the SPDX tag for files
with only an Intel copyright on them.

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2018-01-04 22:41:39 +01:00

1849 lines
52 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <rte_common.h>
#include <rte_interrupts.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ethdev_pci.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_atomic.h>
#include <rte_malloc.h>
#include <rte_dev.h>
#include "e1000_logs.h"
#include "base/e1000_api.h"
#include "e1000_ethdev.h"
#define EM_EIAC 0x000DC
#define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y))
static int eth_em_configure(struct rte_eth_dev *dev);
static int eth_em_start(struct rte_eth_dev *dev);
static void eth_em_stop(struct rte_eth_dev *dev);
static void eth_em_close(struct rte_eth_dev *dev);
static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
static int eth_em_link_update(struct rte_eth_dev *dev,
int wait_to_complete);
static int eth_em_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *rte_stats);
static void eth_em_stats_reset(struct rte_eth_dev *dev);
static void eth_em_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf);
static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf);
static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
static int eth_em_interrupt_action(struct rte_eth_dev *dev,
struct rte_intr_handle *handle);
static void eth_em_interrupt_handler(void *param);
static int em_hw_init(struct e1000_hw *hw);
static int em_hardware_init(struct e1000_hw *hw);
static void em_hw_control_acquire(struct e1000_hw *hw);
static void em_hw_control_release(struct e1000_hw *hw);
static void em_init_manageability(struct e1000_hw *hw);
static void em_release_manageability(struct e1000_hw *hw);
static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id, int on);
static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
/*
static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id, int on);
*/
static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
static void em_lsc_intr_disable(struct e1000_hw *hw);
static void em_rxq_intr_enable(struct e1000_hw *hw);
static void em_rxq_intr_disable(struct e1000_hw *hw);
static int eth_em_led_on(struct rte_eth_dev *dev);
static int eth_em_led_off(struct rte_eth_dev *dev);
static int em_get_rx_buffer_size(struct e1000_hw *hw);
static int eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
uint32_t index, uint32_t pool);
static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
struct ether_addr *mc_addr_set,
uint32_t nb_mc_addr);
#define EM_FC_PAUSE_TIME 0x0680
#define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
#define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
/*
* The set of PCI devices this driver supports
*/
static const struct rte_pci_id pci_id_em_map[] = {
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
{ .vendor_id = 0, /* sentinel */ },
};
static const struct eth_dev_ops eth_em_ops = {
.dev_configure = eth_em_configure,
.dev_start = eth_em_start,
.dev_stop = eth_em_stop,
.dev_close = eth_em_close,
.promiscuous_enable = eth_em_promiscuous_enable,
.promiscuous_disable = eth_em_promiscuous_disable,
.allmulticast_enable = eth_em_allmulticast_enable,
.allmulticast_disable = eth_em_allmulticast_disable,
.link_update = eth_em_link_update,
.stats_get = eth_em_stats_get,
.stats_reset = eth_em_stats_reset,
.dev_infos_get = eth_em_infos_get,
.mtu_set = eth_em_mtu_set,
.vlan_filter_set = eth_em_vlan_filter_set,
.vlan_offload_set = eth_em_vlan_offload_set,
.rx_queue_setup = eth_em_rx_queue_setup,
.rx_queue_release = eth_em_rx_queue_release,
.rx_queue_count = eth_em_rx_queue_count,
.rx_descriptor_done = eth_em_rx_descriptor_done,
.rx_descriptor_status = eth_em_rx_descriptor_status,
.tx_descriptor_status = eth_em_tx_descriptor_status,
.tx_queue_setup = eth_em_tx_queue_setup,
.tx_queue_release = eth_em_tx_queue_release,
.rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
.rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
.dev_led_on = eth_em_led_on,
.dev_led_off = eth_em_led_off,
.flow_ctrl_get = eth_em_flow_ctrl_get,
.flow_ctrl_set = eth_em_flow_ctrl_set,
.mac_addr_add = eth_em_rar_set,
.mac_addr_remove = eth_em_rar_clear,
.set_mc_addr_list = eth_em_set_mc_addr_list,
.rxq_info_get = em_rxq_info_get,
.txq_info_get = em_txq_info_get,
};
/**
* Atomically reads the link status information from global
* structure rte_eth_dev.
*
* @param dev
* - Pointer to the structure rte_eth_dev to read from.
* - Pointer to the buffer to be saved with the link status.
*
* @return
* - On success, zero.
* - On failure, negative value.
*/
static inline int
rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = link;
struct rte_eth_link *src = &(dev->data->dev_link);
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
/**
* Atomically writes the link status information into global
* structure rte_eth_dev.
*
* @param dev
* - Pointer to the structure rte_eth_dev to read from.
* - Pointer to the buffer to be saved with the link status.
*
* @return
* - On success, zero.
* - On failure, negative value.
*/
static inline int
rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = &(dev->data->dev_link);
struct rte_eth_link *src = link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
/**
* eth_em_dev_is_ich8 - Check for ICH8 device
* @hw: pointer to the HW structure
*
* return TRUE for ICH8, otherwise FALSE
**/
static bool
eth_em_dev_is_ich8(struct e1000_hw *hw)
{
DEBUGFUNC("eth_em_dev_is_ich8");
switch (hw->device_id) {
case E1000_DEV_ID_PCH_LPT_I217_LM:
case E1000_DEV_ID_PCH_LPT_I217_V:
case E1000_DEV_ID_PCH_LPTLP_I218_LM:
case E1000_DEV_ID_PCH_LPTLP_I218_V:
case E1000_DEV_ID_PCH_I218_V2:
case E1000_DEV_ID_PCH_I218_LM2:
case E1000_DEV_ID_PCH_I218_V3:
case E1000_DEV_ID_PCH_I218_LM3:
case E1000_DEV_ID_PCH_SPT_I219_LM:
case E1000_DEV_ID_PCH_SPT_I219_V:
case E1000_DEV_ID_PCH_SPT_I219_LM2:
case E1000_DEV_ID_PCH_SPT_I219_V2:
case E1000_DEV_ID_PCH_LBG_I219_LM3:
case E1000_DEV_ID_PCH_SPT_I219_LM4:
case E1000_DEV_ID_PCH_SPT_I219_V4:
case E1000_DEV_ID_PCH_SPT_I219_LM5:
case E1000_DEV_ID_PCH_SPT_I219_V5:
case E1000_DEV_ID_PCH_CNP_I219_LM6:
case E1000_DEV_ID_PCH_CNP_I219_V6:
case E1000_DEV_ID_PCH_CNP_I219_LM7:
case E1000_DEV_ID_PCH_CNP_I219_V7:
return 1;
default:
return 0;
}
}
static int
eth_em_dev_init(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct e1000_vfta * shadow_vfta =
E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
eth_dev->dev_ops = &eth_em_ops;
eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
/* for secondary processes, we don't initialise any further as primary
* has already done this work. Only check we don't need a different
* RX function */
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
if (eth_dev->data->scattered_rx)
eth_dev->rx_pkt_burst =
(eth_rx_burst_t)&eth_em_recv_scattered_pkts;
return 0;
}
rte_eth_copy_pci_info(eth_dev, pci_dev);
hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
hw->device_id = pci_dev->id.device_id;
adapter->stopped = 0;
/* For ICH8 support we'll need to map the flash memory BAR */
if (eth_em_dev_is_ich8(hw))
hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
em_hw_init(hw) != 0) {
PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
"failed to init HW",
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id);
return -ENODEV;
}
/* Allocate memory for storing MAC addresses */
eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
hw->mac.rar_entry_count, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
"store MAC addresses",
ETHER_ADDR_LEN * hw->mac.rar_entry_count);
return -ENOMEM;
}
/* Copy the permanent MAC address */
ether_addr_copy((struct ether_addr *) hw->mac.addr,
eth_dev->data->mac_addrs);
/* initialize the vfta */
memset(shadow_vfta, 0, sizeof(*shadow_vfta));
PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id);
rte_intr_callback_register(intr_handle,
eth_em_interrupt_handler, eth_dev);
return 0;
}
static int
eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
if (adapter->stopped == 0)
eth_em_close(eth_dev);
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
/* disable uio intr before callback unregister */
rte_intr_disable(intr_handle);
rte_intr_callback_unregister(intr_handle,
eth_em_interrupt_handler, eth_dev);
return 0;
}
static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct e1000_adapter), eth_em_dev_init);
}
static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
}
static struct rte_pci_driver rte_em_pmd = {
.id_table = pci_id_em_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
RTE_PCI_DRV_IOVA_AS_VA,
.probe = eth_em_pci_probe,
.remove = eth_em_pci_remove,
};
static int
em_hw_init(struct e1000_hw *hw)
{
int diag;
diag = hw->mac.ops.init_params(hw);
if (diag != 0) {
PMD_INIT_LOG(ERR, "MAC Initialization Error");
return diag;
}
diag = hw->nvm.ops.init_params(hw);
if (diag != 0) {
PMD_INIT_LOG(ERR, "NVM Initialization Error");
return diag;
}
diag = hw->phy.ops.init_params(hw);
if (diag != 0) {
PMD_INIT_LOG(ERR, "PHY Initialization Error");
return diag;
}
(void) e1000_get_bus_info(hw);
hw->mac.autoneg = 1;
hw->phy.autoneg_wait_to_complete = 0;
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
e1000_init_script_state_82541(hw, TRUE);
e1000_set_tbi_compatibility_82543(hw, TRUE);
/* Copper options */
if (hw->phy.media_type == e1000_media_type_copper) {
hw->phy.mdix = 0; /* AUTO_ALL_MODES */
hw->phy.disable_polarity_correction = 0;
hw->phy.ms_type = e1000_ms_hw_default;
}
/*
* Start from a known state, this is important in reading the nvm
* and mac from that.
*/
e1000_reset_hw(hw);
/* Make sure we have a good EEPROM before we read from it */
if (e1000_validate_nvm_checksum(hw) < 0) {
/*
* Some PCI-E parts fail the first check due to
* the link being in sleep state, call it again,
* if it fails a second time its a real issue.
*/
diag = e1000_validate_nvm_checksum(hw);
if (diag < 0) {
PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
goto error;
}
}
/* Read the permanent MAC address out of the EEPROM */
diag = e1000_read_mac_addr(hw);
if (diag != 0) {
PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
goto error;
}
/* Now initialize the hardware */
diag = em_hardware_init(hw);
if (diag != 0) {
PMD_INIT_LOG(ERR, "Hardware initialization failed");
goto error;
}
hw->mac.get_link_status = 1;
/* Indicate SOL/IDER usage */
diag = e1000_check_reset_block(hw);
if (diag < 0) {
PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
"SOL/IDER session");
}
return 0;
error:
em_hw_control_release(hw);
return diag;
}
static int
eth_em_configure(struct rte_eth_dev *dev)
{
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
PMD_INIT_FUNC_TRACE();
return 0;
}
static void
em_set_pba(struct e1000_hw *hw)
{
uint32_t pba;
/*
* Packet Buffer Allocation (PBA)
* Writing PBA sets the receive portion of the buffer
* the remainder is used for the transmit buffer.
* Devices before the 82547 had a Packet Buffer of 64K.
* After the 82547 the buffer was reduced to 40K.
*/
switch (hw->mac.type) {
case e1000_82547:
case e1000_82547_rev_2:
/* 82547: Total Packet Buffer is 40K */
pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
break;
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
break;
case e1000_82573: /* 82573: Total Packet Buffer is 32K */
pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
break;
case e1000_82574:
case e1000_82583:
pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
break;
case e1000_ich8lan:
pba = E1000_PBA_8K;
break;
case e1000_ich9lan:
case e1000_ich10lan:
pba = E1000_PBA_10K;
break;
case e1000_pchlan:
case e1000_pch2lan:
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
pba = E1000_PBA_26K;
break;
default:
pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
}
E1000_WRITE_REG(hw, E1000_PBA, pba);
}
static int
eth_em_start(struct rte_eth_dev *dev)
{
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(dev->data->dev_private);
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
int ret, mask;
uint32_t intr_vector = 0;
uint32_t *speeds;
int num_speeds;
bool autoneg;
PMD_INIT_FUNC_TRACE();
eth_em_stop(dev);
e1000_power_up_phy(hw);
/* Set default PBA value */
em_set_pba(hw);
/* Put the address into the Receive Address Array */
e1000_rar_set(hw, hw->mac.addr, 0);
/*
* With the 82571 adapter, RAR[0] may be overwritten
* when the other port is reset, we make a duplicate
* in RAR[14] for that eventuality, this assures
* the interface continues to function.
*/
if (hw->mac.type == e1000_82571) {
e1000_set_laa_state_82571(hw, TRUE);
e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
}
/* Initialize the hardware */
if (em_hardware_init(hw)) {
PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
return -EIO;
}
E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
/* Configure for OS presence */
em_init_manageability(hw);
if (dev->data->dev_conf.intr_conf.rxq != 0) {
intr_vector = dev->data->nb_rx_queues;
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -1;
}
if (rte_intr_dp_is_en(intr_handle)) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (intr_handle->intr_vec == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
" intr_vec", dev->data->nb_rx_queues);
return -ENOMEM;
}
/* enable rx interrupt */
em_rxq_intr_enable(hw);
}
eth_em_tx_init(dev);
ret = eth_em_rx_init(dev);
if (ret) {
PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
em_dev_clear_queues(dev);
return ret;
}
e1000_clear_hw_cntrs_base_generic(hw);
mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
ETH_VLAN_EXTEND_MASK;
ret = eth_em_vlan_offload_set(dev, mask);
if (ret) {
PMD_INIT_LOG(ERR, "Unable to update vlan offload");
em_dev_clear_queues(dev);
return ret;
}
/* Set Interrupt Throttling Rate to maximum allowed value. */
E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
/* Setup link speed and duplex */
speeds = &dev->data->dev_conf.link_speeds;
if (*speeds == ETH_LINK_SPEED_AUTONEG) {
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
hw->mac.autoneg = 1;
} else {
num_speeds = 0;
autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
/* Reset */
hw->phy.autoneg_advertised = 0;
if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
num_speeds = -1;
goto error_invalid_config;
}
if (*speeds & ETH_LINK_SPEED_10M_HD) {
hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_10M) {
hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_100M_HD) {
hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_100M) {
hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
num_speeds++;
}
if (*speeds & ETH_LINK_SPEED_1G) {
hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
num_speeds++;
}
if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
goto error_invalid_config;
/* Set/reset the mac.autoneg based on the link speed,
* fixed or not
*/
if (!autoneg) {
hw->mac.autoneg = 0;
hw->mac.forced_speed_duplex =
hw->phy.autoneg_advertised;
} else {
hw->mac.autoneg = 1;
}
}
e1000_setup_link(hw);
if (rte_intr_allow_others(intr_handle)) {
/* check if lsc interrupt is enabled */
if (dev->data->dev_conf.intr_conf.lsc != 0) {
ret = eth_em_interrupt_setup(dev);
if (ret) {
PMD_INIT_LOG(ERR, "Unable to setup interrupts");
em_dev_clear_queues(dev);
return ret;
}
}
} else {
rte_intr_callback_unregister(intr_handle,
eth_em_interrupt_handler,
(void *)dev);
if (dev->data->dev_conf.intr_conf.lsc != 0)
PMD_INIT_LOG(INFO, "lsc won't enable because of"
" no intr multiplexn");
}
/* check if rxq interrupt is enabled */
if (dev->data->dev_conf.intr_conf.rxq != 0)
eth_em_rxq_interrupt_setup(dev);
rte_intr_enable(intr_handle);
adapter->stopped = 0;
PMD_INIT_LOG(DEBUG, "<<");
return 0;
error_invalid_config:
PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
dev->data->dev_conf.link_speeds, dev->data->port_id);
em_dev_clear_queues(dev);
return -EINVAL;
}
/*********************************************************************
*
* This routine disables all traffic on the adapter by issuing a
* global reset on the MAC.
*
**********************************************************************/
static void
eth_em_stop(struct rte_eth_dev *dev)
{
struct rte_eth_link link;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
em_rxq_intr_disable(hw);
em_lsc_intr_disable(hw);
e1000_reset_hw(hw);
if (hw->mac.type >= e1000_82544)
E1000_WRITE_REG(hw, E1000_WUC, 0);
/* Power down the phy. Needed to make the link go down */
e1000_power_down_phy(hw);
em_dev_clear_queues(dev);
/* clear the recorded link status */
memset(&link, 0, sizeof(link));
rte_em_dev_atomic_write_link_status(dev, &link);
if (!rte_intr_allow_others(intr_handle))
/* resume to the default handler */
rte_intr_callback_register(intr_handle,
eth_em_interrupt_handler,
(void *)dev);
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec != NULL) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
}
static void
eth_em_close(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(dev->data->dev_private);
eth_em_stop(dev);
adapter->stopped = 1;
em_dev_free_queues(dev);
e1000_phy_hw_reset(hw);
em_release_manageability(hw);
em_hw_control_release(hw);
}
static int
em_get_rx_buffer_size(struct e1000_hw *hw)
{
uint32_t rx_buf_size;
rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
return rx_buf_size;
}
/*********************************************************************
*
* Initialize the hardware
*
**********************************************************************/
static int
em_hardware_init(struct e1000_hw *hw)
{
uint32_t rx_buf_size;
int diag;
/* Issue a global reset */
e1000_reset_hw(hw);
/* Let the firmware know the OS is in control */
em_hw_control_acquire(hw);
/*
* These parameters control the automatic generation (Tx) and
* response (Rx) to Ethernet PAUSE frames.
* - High water mark should allow for at least two standard size (1518)
* frames to be received after sending an XOFF.
* - Low water mark works best when it is very near the high water mark.
* This allows the receiver to restart by sending XON when it has
* drained a bit. Here we use an arbitrary value of 1500 which will
* restart after one full frame is pulled from the buffer. There
* could be several smaller frames in the buffer and if so they will
* not trigger the XON until their total number reduces the buffer
* by 1500.
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
*/
rx_buf_size = em_get_rx_buffer_size(hw);
hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
hw->fc.low_water = hw->fc.high_water - 1500;
if (hw->mac.type == e1000_80003es2lan)
hw->fc.pause_time = UINT16_MAX;
else
hw->fc.pause_time = EM_FC_PAUSE_TIME;
hw->fc.send_xon = 1;
/* Set Flow control, use the tunable location if sane */
if (em_fc_setting <= e1000_fc_full)
hw->fc.requested_mode = em_fc_setting;
else
hw->fc.requested_mode = e1000_fc_none;
/* Workaround: no TX flow ctrl for PCH */
if (hw->mac.type == e1000_pchlan)
hw->fc.requested_mode = e1000_fc_rx_pause;
/* Override - settings for PCH2LAN, ya its magic :) */
if (hw->mac.type == e1000_pch2lan) {
hw->fc.high_water = 0x5C20;
hw->fc.low_water = 0x5048;
hw->fc.pause_time = 0x0650;
hw->fc.refresh_time = 0x0400;
} else if (hw->mac.type == e1000_pch_lpt ||
hw->mac.type == e1000_pch_spt ||
hw->mac.type == e1000_pch_cnp) {
hw->fc.requested_mode = e1000_fc_full;
}
diag = e1000_init_hw(hw);
if (diag < 0)
return diag;
e1000_check_for_link(hw);
return 0;
}
/* This function is based on em_update_stats_counters() in e1000/if_em.c */
static int
eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_hw_stats *stats =
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
int pause_frames;
if(hw->phy.media_type == e1000_media_type_copper ||
(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
stats->sec += E1000_READ_REG(hw, E1000_SEC);
}
stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
stats->mpc += E1000_READ_REG(hw, E1000_MPC);
stats->scc += E1000_READ_REG(hw, E1000_SCC);
stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
stats->mcc += E1000_READ_REG(hw, E1000_MCC);
stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
stats->colc += E1000_READ_REG(hw, E1000_COLC);
stats->dc += E1000_READ_REG(hw, E1000_DC);
stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
/*
* For watchdog management we need to know if we have been
* paused during the last interval, so capture that here.
*/
pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
stats->xoffrxc += pause_frames;
stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
/*
* For the 64-bit byte counters the low dword must be read first.
* Both registers clear on the read of the high dword.
*/
stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
stats->ruc += E1000_READ_REG(hw, E1000_RUC);
stats->rfc += E1000_READ_REG(hw, E1000_RFC);
stats->roc += E1000_READ_REG(hw, E1000_ROC);
stats->rjc += E1000_READ_REG(hw, E1000_RJC);
stats->tor += E1000_READ_REG(hw, E1000_TORH);
stats->tot += E1000_READ_REG(hw, E1000_TOTH);
stats->tpr += E1000_READ_REG(hw, E1000_TPR);
stats->tpt += E1000_READ_REG(hw, E1000_TPT);
stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
/* Interrupt Counts */
if (hw->mac.type >= e1000_82571) {
stats->iac += E1000_READ_REG(hw, E1000_IAC);
stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
}
if (hw->mac.type >= e1000_82543) {
stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
}
if (rte_stats == NULL)
return -EINVAL;
/* Rx Errors */
rte_stats->imissed = stats->mpc;
rte_stats->ierrors = stats->crcerrs +
stats->rlec + stats->ruc + stats->roc +
stats->rxerrc + stats->algnerrc + stats->cexterr;
/* Tx Errors */
rte_stats->oerrors = stats->ecol + stats->latecol;
rte_stats->ipackets = stats->gprc;
rte_stats->opackets = stats->gptc;
rte_stats->ibytes = stats->gorc;
rte_stats->obytes = stats->gotc;
return 0;
}
static void
eth_em_stats_reset(struct rte_eth_dev *dev)
{
struct e1000_hw_stats *hw_stats =
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
/* HW registers are cleared on read */
eth_em_stats_get(dev, NULL);
/* Reset software totals */
memset(hw_stats, 0, sizeof(*hw_stats));
}
static int
eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
em_rxq_intr_enable(hw);
rte_intr_enable(intr_handle);
return 0;
}
static int
eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
em_rxq_intr_disable(hw);
return 0;
}
static uint32_t
em_get_max_pktlen(const struct e1000_hw *hw)
{
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
case e1000_ich9lan:
case e1000_ich10lan:
case e1000_pch2lan:
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_82574:
case e1000_80003es2lan: /* 9K Jumbo Frame size */
case e1000_82583:
return 0x2412;
case e1000_pchlan:
return 0x1000;
/* Adapters that do not support jumbo frames */
case e1000_ich8lan:
return ETHER_MAX_LEN;
default:
return MAX_JUMBO_FRAME_SIZE;
}
}
static void
eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
dev_info->max_mac_addrs = hw->mac.rar_entry_count;
dev_info->rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM;
dev_info->tx_offload_capa =
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM;
/*
* Starting with 631xESB hw supports 2 TX/RX queues per port.
* Unfortunatelly, all these nics have just one TX context.
* So we have few choises for TX:
* - Use just one TX queue.
* - Allow cksum offload only for one TX queue.
* - Don't allow TX cksum offload at all.
* For now, option #1 was chosen.
* To use second RX queue we have to use extended RX descriptor
* (Multiple Receive Queues are mutually exclusive with UDP
* fragmentation and are not supported when a legacy receive
* descriptor format is used).
* Which means separate RX routinies - as legacy nics (82540, 82545)
* don't support extended RXD.
* To avoid it we support just one RX queue for now (no RSS).
*/
dev_info->max_rx_queues = 1;
dev_info->max_tx_queues = 1;
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = E1000_MAX_RING_DESC,
.nb_min = E1000_MIN_RING_DESC,
.nb_align = EM_RXD_ALIGN,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = E1000_MAX_RING_DESC,
.nb_min = E1000_MIN_RING_DESC,
.nb_align = EM_TXD_ALIGN,
.nb_seg_max = EM_TX_MAX_SEG,
.nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
};
dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
ETH_LINK_SPEED_1G;
}
/* return 0 means link status changed, -1 means not changed */
static int
eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_link link, old;
int link_check, count;
link_check = 0;
hw->mac.get_link_status = 1;
/* possible wait-to-complete in up to 9 seconds */
for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
/* Read the real link status */
switch (hw->phy.media_type) {
case e1000_media_type_copper:
/* Do the work to read phy */
e1000_check_for_link(hw);
link_check = !hw->mac.get_link_status;
break;
case e1000_media_type_fiber:
e1000_check_for_link(hw);
link_check = (E1000_READ_REG(hw, E1000_STATUS) &
E1000_STATUS_LU);
break;
case e1000_media_type_internal_serdes:
e1000_check_for_link(hw);
link_check = hw->mac.serdes_has_link;
break;
default:
break;
}
if (link_check || wait_to_complete == 0)
break;
rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
}
memset(&link, 0, sizeof(link));
rte_em_dev_atomic_read_link_status(dev, &link);
old = link;
/* Now we check if a transition has happened */
if (link_check && (link.link_status == ETH_LINK_DOWN)) {
uint16_t duplex, speed;
hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
link.link_duplex = (duplex == FULL_DUPLEX) ?
ETH_LINK_FULL_DUPLEX :
ETH_LINK_HALF_DUPLEX;
link.link_speed = speed;
link.link_status = ETH_LINK_UP;
link.link_autoneg = !(dev->data->dev_conf.link_speeds &
ETH_LINK_SPEED_FIXED);
} else if (!link_check && (link.link_status == ETH_LINK_UP)) {
link.link_speed = 0;
link.link_duplex = ETH_LINK_HALF_DUPLEX;
link.link_status = ETH_LINK_DOWN;
link.link_autoneg = ETH_LINK_SPEED_FIXED;
}
rte_em_dev_atomic_write_link_status(dev, &link);
/* not changed */
if (old.link_status == link.link_status)
return -1;
/* changed */
return 0;
}
/*
* em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means
* that the driver is loaded. For AMT version type f/w
* this means that the network i/f is open.
*/
static void
em_hw_control_acquire(struct e1000_hw *hw)
{
uint32_t ctrl_ext, swsm;
/* Let firmware know the driver has taken over */
if (hw->mac.type == e1000_82573) {
swsm = E1000_READ_REG(hw, E1000_SWSM);
E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
} else {
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
}
/*
* em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded. For AMT versions of the
* f/w this means that the network i/f is closed.
*/
static void
em_hw_control_release(struct e1000_hw *hw)
{
uint32_t ctrl_ext, swsm;
/* Let firmware taken over control of h/w */
if (hw->mac.type == e1000_82573) {
swsm = E1000_READ_REG(hw, E1000_SWSM);
E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
} else {
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}
}
/*
* Bit of a misnomer, what this really means is
* to enable OS management of the system... aka
* to disable special hardware management features.
*/
static void
em_init_manageability(struct e1000_hw *hw)
{
if (e1000_enable_mng_pass_thru(hw)) {
uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
/* disable hardware interception of ARP */
manc &= ~(E1000_MANC_ARP_EN);
/* enable receiving management packets to the host */
manc |= E1000_MANC_EN_MNG2HOST;
manc2h |= 1 << 5; /* Mng Port 623 */
manc2h |= 1 << 6; /* Mng Port 664 */
E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
E1000_WRITE_REG(hw, E1000_MANC, manc);
}
}
/*
* Give control back to hardware management
* controller if there is one.
*/
static void
em_release_manageability(struct e1000_hw *hw)
{
uint32_t manc;
if (e1000_enable_mng_pass_thru(hw)) {
manc = E1000_READ_REG(hw, E1000_MANC);
/* re-enable hardware interception of ARP */
manc |= E1000_MANC_ARP_EN;
manc &= ~E1000_MANC_EN_MNG2HOST;
E1000_WRITE_REG(hw, E1000_MANC, manc);
}
}
static void
eth_em_promiscuous_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static void
eth_em_promiscuous_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
if (dev->data->all_multicast == 1)
rctl |= E1000_RCTL_MPE;
else
rctl &= (~E1000_RCTL_MPE);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static void
eth_em_allmulticast_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= E1000_RCTL_MPE;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static void
eth_em_allmulticast_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
if (dev->data->promiscuous == 1)
return; /* must remain in all_multicast mode */
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= (~E1000_RCTL_MPE);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static int
eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vfta * shadow_vfta =
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
uint32_t vfta;
uint32_t vid_idx;
uint32_t vid_bit;
vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
E1000_VFTA_ENTRY_MASK);
vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
if (on)
vfta |= vid_bit;
else
vfta &= ~vid_bit;
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
/* update local VFTA copy */
shadow_vfta->vfta[vid_idx] = vfta;
return 0;
}
static void
em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* Filter Table Disable */
reg = E1000_READ_REG(hw, E1000_RCTL);
reg &= ~E1000_RCTL_CFIEN;
reg &= ~E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, reg);
}
static void
em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vfta * shadow_vfta =
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
uint32_t reg;
int i;
/* Filter Table Enable, CFI not used for packet acceptance */
reg = E1000_READ_REG(hw, E1000_RCTL);
reg &= ~E1000_RCTL_CFIEN;
reg |= E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, reg);
/* restore vfta from local copy */
for (i = 0; i < IGB_VFTA_SIZE; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
}
static void
em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* VLAN Mode Disable */
reg = E1000_READ_REG(hw, E1000_CTRL);
reg &= ~E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, reg);
}
static void
em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* VLAN Mode Enable */
reg = E1000_READ_REG(hw, E1000_CTRL);
reg |= E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, reg);
}
static int
eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
if(mask & ETH_VLAN_STRIP_MASK){
if (dev->data->dev_conf.rxmode.hw_vlan_strip)
em_vlan_hw_strip_enable(dev);
else
em_vlan_hw_strip_disable(dev);
}
if(mask & ETH_VLAN_FILTER_MASK){
if (dev->data->dev_conf.rxmode.hw_vlan_filter)
em_vlan_hw_filter_enable(dev);
else
em_vlan_hw_filter_disable(dev);
}
return 0;
}
/*
* It enables the interrupt mask and then enable the interrupt.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
eth_em_interrupt_setup(struct rte_eth_dev *dev)
{
uint32_t regval;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* clear interrupt */
E1000_READ_REG(hw, E1000_ICR);
regval = E1000_READ_REG(hw, E1000_IMS);
E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
return 0;
}
/*
* It clears the interrupt causes and enables the interrupt.
* It will be called once only during nic initialized.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
E1000_READ_REG(hw, E1000_ICR);
em_rxq_intr_enable(hw);
return 0;
}
/*
* It enable receive packet interrupt.
* @param hw
* Pointer to struct e1000_hw
*
* @return
*/
static void
em_rxq_intr_enable(struct e1000_hw *hw)
{
E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
E1000_WRITE_FLUSH(hw);
}
/*
* It disabled lsc interrupt.
* @param hw
* Pointer to struct e1000_hw
*
* @return
*/
static void
em_lsc_intr_disable(struct e1000_hw *hw)
{
E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
E1000_WRITE_FLUSH(hw);
}
/*
* It disabled receive packet interrupt.
* @param hw
* Pointer to struct e1000_hw
*
* @return
*/
static void
em_rxq_intr_disable(struct e1000_hw *hw)
{
E1000_READ_REG(hw, E1000_ICR);
E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
E1000_WRITE_FLUSH(hw);
}
/*
* It reads ICR and gets interrupt causes, check it and set a bit flag
* to update link status.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
eth_em_interrupt_get_status(struct rte_eth_dev *dev)
{
uint32_t icr;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
/* read-on-clear nic registers here */
icr = E1000_READ_REG(hw, E1000_ICR);
if (icr & E1000_ICR_LSC) {
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
}
return 0;
}
/*
* It executes link_update after knowing an interrupt is prsent.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
eth_em_interrupt_action(struct rte_eth_dev *dev,
struct rte_intr_handle *intr_handle)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
uint32_t tctl, rctl;
struct rte_eth_link link;
int ret;
if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
return -1;
intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
rte_intr_enable(intr_handle);
/* set get_link_status to check register later */
hw->mac.get_link_status = 1;
ret = eth_em_link_update(dev, 0);
/* check if link has changed */
if (ret < 0)
return 0;
memset(&link, 0, sizeof(link));
rte_em_dev_atomic_read_link_status(dev, &link);
if (link.link_status) {
PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
dev->data->port_id, link.link_speed,
link.link_duplex == ETH_LINK_FULL_DUPLEX ?
"full-duplex" : "half-duplex");
} else {
PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
}
PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
pci_dev->addr.domain, pci_dev->addr.bus,
pci_dev->addr.devid, pci_dev->addr.function);
tctl = E1000_READ_REG(hw, E1000_TCTL);
rctl = E1000_READ_REG(hw, E1000_RCTL);
if (link.link_status) {
/* enable Tx/Rx */
tctl |= E1000_TCTL_EN;
rctl |= E1000_RCTL_EN;
} else {
/* disable Tx/Rx */
tctl &= ~E1000_TCTL_EN;
rctl &= ~E1000_RCTL_EN;
}
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
E1000_WRITE_FLUSH(hw);
return 0;
}
/**
* Interrupt handler which shall be registered at first.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
eth_em_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
eth_em_interrupt_get_status(dev);
eth_em_interrupt_action(dev, dev->intr_handle);
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL, NULL);
}
static int
eth_em_led_on(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
}
static int
eth_em_led_off(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
}
static int
eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct e1000_hw *hw;
uint32_t ctrl;
int tx_pause;
int rx_pause;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
fc_conf->pause_time = hw->fc.pause_time;
fc_conf->high_water = hw->fc.high_water;
fc_conf->low_water = hw->fc.low_water;
fc_conf->send_xon = hw->fc.send_xon;
fc_conf->autoneg = hw->mac.autoneg;
/*
* Return rx_pause and tx_pause status according to actual setting of
* the TFCE and RFCE bits in the CTRL register.
*/
ctrl = E1000_READ_REG(hw, E1000_CTRL);
if (ctrl & E1000_CTRL_TFCE)
tx_pause = 1;
else
tx_pause = 0;
if (ctrl & E1000_CTRL_RFCE)
rx_pause = 1;
else
rx_pause = 0;
if (rx_pause && tx_pause)
fc_conf->mode = RTE_FC_FULL;
else if (rx_pause)
fc_conf->mode = RTE_FC_RX_PAUSE;
else if (tx_pause)
fc_conf->mode = RTE_FC_TX_PAUSE;
else
fc_conf->mode = RTE_FC_NONE;
return 0;
}
static int
eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct e1000_hw *hw;
int err;
enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
e1000_fc_none,
e1000_fc_rx_pause,
e1000_fc_tx_pause,
e1000_fc_full
};
uint32_t rx_buf_size;
uint32_t max_high_water;
uint32_t rctl;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (fc_conf->autoneg != hw->mac.autoneg)
return -ENOTSUP;
rx_buf_size = em_get_rx_buffer_size(hw);
PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
/* At least reserve one Ethernet frame for watermark */
max_high_water = rx_buf_size - ETHER_MAX_LEN;
if ((fc_conf->high_water > max_high_water) ||
(fc_conf->high_water < fc_conf->low_water)) {
PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
return -EINVAL;
}
hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
hw->fc.pause_time = fc_conf->pause_time;
hw->fc.high_water = fc_conf->high_water;
hw->fc.low_water = fc_conf->low_water;
hw->fc.send_xon = fc_conf->send_xon;
err = e1000_setup_link_generic(hw);
if (err == E1000_SUCCESS) {
/* check if we want to forward MAC frames - driver doesn't have native
* capability to do that, so we'll write the registers ourselves */
rctl = E1000_READ_REG(hw, E1000_RCTL);
/* set or clear MFLCN.PMCF bit depending on configuration */
if (fc_conf->mac_ctrl_frame_fwd != 0)
rctl |= E1000_RCTL_PMCF;
else
rctl &= ~E1000_RCTL_PMCF;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
E1000_WRITE_FLUSH(hw);
return 0;
}
PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
return -EIO;
}
static int
eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
uint32_t index, __rte_unused uint32_t pool)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return e1000_rar_set(hw, mac_addr->addr_bytes, index);
}
static void
eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
{
uint8_t addr[ETHER_ADDR_LEN];
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
memset(addr, 0, sizeof(addr));
e1000_rar_set(hw, addr, index);
}
static int
eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct rte_eth_dev_info dev_info;
struct e1000_hw *hw;
uint32_t frame_size;
uint32_t rctl;
eth_em_infos_get(dev, &dev_info);
frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
/* check that mtu is within the allowed range */
if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
return -EINVAL;
/* refuse mtu that requires the support of scattered packets when this
* feature has not been enabled before. */
if (!dev->data->scattered_rx &&
frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
return -EINVAL;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
rctl = E1000_READ_REG(hw, E1000_RCTL);
/* switch to jumbo mode if needed */
if (frame_size > ETHER_MAX_LEN) {
dev->data->dev_conf.rxmode.jumbo_frame = 1;
rctl |= E1000_RCTL_LPE;
} else {
dev->data->dev_conf.rxmode.jumbo_frame = 0;
rctl &= ~E1000_RCTL_LPE;
}
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/* update max frame size */
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
return 0;
}
static int
eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
struct ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
return 0;
}
RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");