26e09db6cb
The tests are registered with their command name by adding a structure to a list. The structure of each test was declared in each test file and passed to the register macro. This rework generate the structure inside the register macro. Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com> Reviewed-by: Jan Viktorin <viktorin@rehivetech.com>
418 lines
12 KiB
C
418 lines
12 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
#include <stdio.h>
|
|
#include <inttypes.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_launch.h>
|
|
|
|
#include "test.h"
|
|
|
|
/*
|
|
* Ring
|
|
* ====
|
|
*
|
|
* Measures performance of various operations using rdtsc
|
|
* * Empty ring dequeue
|
|
* * Enqueue/dequeue of bursts in 1 threads
|
|
* * Enqueue/dequeue of bursts in 2 threads
|
|
*/
|
|
|
|
#define RING_NAME "RING_PERF"
|
|
#define RING_SIZE 4096
|
|
#define MAX_BURST 32
|
|
|
|
/*
|
|
* the sizes to enqueue and dequeue in testing
|
|
* (marked volatile so they won't be seen as compile-time constants)
|
|
*/
|
|
static const volatile unsigned bulk_sizes[] = { 8, 32 };
|
|
|
|
/* The ring structure used for tests */
|
|
static struct rte_ring *r;
|
|
|
|
struct lcore_pair {
|
|
unsigned c1, c2;
|
|
};
|
|
|
|
static volatile unsigned lcore_count = 0;
|
|
|
|
/**** Functions to analyse our core mask to get cores for different tests ***/
|
|
|
|
static int
|
|
get_two_hyperthreads(struct lcore_pair *lcp)
|
|
{
|
|
unsigned id1, id2;
|
|
unsigned c1, c2, s1, s2;
|
|
RTE_LCORE_FOREACH(id1) {
|
|
/* inner loop just re-reads all id's. We could skip the first few
|
|
* elements, but since number of cores is small there is little point
|
|
*/
|
|
RTE_LCORE_FOREACH(id2) {
|
|
if (id1 == id2)
|
|
continue;
|
|
c1 = lcore_config[id1].core_id;
|
|
c2 = lcore_config[id2].core_id;
|
|
s1 = lcore_config[id1].socket_id;
|
|
s2 = lcore_config[id2].socket_id;
|
|
if ((c1 == c2) && (s1 == s2)){
|
|
lcp->c1 = id1;
|
|
lcp->c2 = id2;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
get_two_cores(struct lcore_pair *lcp)
|
|
{
|
|
unsigned id1, id2;
|
|
unsigned c1, c2, s1, s2;
|
|
RTE_LCORE_FOREACH(id1) {
|
|
RTE_LCORE_FOREACH(id2) {
|
|
if (id1 == id2)
|
|
continue;
|
|
c1 = lcore_config[id1].core_id;
|
|
c2 = lcore_config[id2].core_id;
|
|
s1 = lcore_config[id1].socket_id;
|
|
s2 = lcore_config[id2].socket_id;
|
|
if ((c1 != c2) && (s1 == s2)){
|
|
lcp->c1 = id1;
|
|
lcp->c2 = id2;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
get_two_sockets(struct lcore_pair *lcp)
|
|
{
|
|
unsigned id1, id2;
|
|
unsigned s1, s2;
|
|
RTE_LCORE_FOREACH(id1) {
|
|
RTE_LCORE_FOREACH(id2) {
|
|
if (id1 == id2)
|
|
continue;
|
|
s1 = lcore_config[id1].socket_id;
|
|
s2 = lcore_config[id2].socket_id;
|
|
if (s1 != s2){
|
|
lcp->c1 = id1;
|
|
lcp->c2 = id2;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Get cycle counts for dequeuing from an empty ring. Should be 2 or 3 cycles */
|
|
static void
|
|
test_empty_dequeue(void)
|
|
{
|
|
const unsigned iter_shift = 26;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
unsigned i = 0;
|
|
void *burst[MAX_BURST];
|
|
|
|
const uint64_t sc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[0]);
|
|
const uint64_t sc_end = rte_rdtsc();
|
|
|
|
const uint64_t mc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[0]);
|
|
const uint64_t mc_end = rte_rdtsc();
|
|
|
|
printf("SC empty dequeue: %.2F\n",
|
|
(double)(sc_end-sc_start) / iterations);
|
|
printf("MC empty dequeue: %.2F\n",
|
|
(double)(mc_end-mc_start) / iterations);
|
|
}
|
|
|
|
/*
|
|
* for the separate enqueue and dequeue threads they take in one param
|
|
* and return two. Input = burst size, output = cycle average for sp/sc & mp/mc
|
|
*/
|
|
struct thread_params {
|
|
unsigned size; /* input value, the burst size */
|
|
double spsc, mpmc; /* output value, the single or multi timings */
|
|
};
|
|
|
|
/*
|
|
* Function that uses rdtsc to measure timing for ring enqueue. Needs pair
|
|
* thread running dequeue_bulk function
|
|
*/
|
|
static int
|
|
enqueue_bulk(void *p)
|
|
{
|
|
const unsigned iter_shift = 23;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
struct thread_params *params = p;
|
|
const unsigned size = params->size;
|
|
unsigned i;
|
|
void *burst[MAX_BURST] = {0};
|
|
|
|
if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
|
|
while(lcore_count != 2)
|
|
rte_pause();
|
|
|
|
const uint64_t sp_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
while (rte_ring_sp_enqueue_bulk(r, burst, size) != 0)
|
|
rte_pause();
|
|
const uint64_t sp_end = rte_rdtsc();
|
|
|
|
const uint64_t mp_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
while (rte_ring_mp_enqueue_bulk(r, burst, size) != 0)
|
|
rte_pause();
|
|
const uint64_t mp_end = rte_rdtsc();
|
|
|
|
params->spsc = ((double)(sp_end - sp_start))/(iterations*size);
|
|
params->mpmc = ((double)(mp_end - mp_start))/(iterations*size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function that uses rdtsc to measure timing for ring dequeue. Needs pair
|
|
* thread running enqueue_bulk function
|
|
*/
|
|
static int
|
|
dequeue_bulk(void *p)
|
|
{
|
|
const unsigned iter_shift = 23;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
struct thread_params *params = p;
|
|
const unsigned size = params->size;
|
|
unsigned i;
|
|
void *burst[MAX_BURST] = {0};
|
|
|
|
if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
|
|
while(lcore_count != 2)
|
|
rte_pause();
|
|
|
|
const uint64_t sc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
while (rte_ring_sc_dequeue_bulk(r, burst, size) != 0)
|
|
rte_pause();
|
|
const uint64_t sc_end = rte_rdtsc();
|
|
|
|
const uint64_t mc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
while (rte_ring_mc_dequeue_bulk(r, burst, size) != 0)
|
|
rte_pause();
|
|
const uint64_t mc_end = rte_rdtsc();
|
|
|
|
params->spsc = ((double)(sc_end - sc_start))/(iterations*size);
|
|
params->mpmc = ((double)(mc_end - mc_start))/(iterations*size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function that calls the enqueue and dequeue bulk functions on pairs of cores.
|
|
* used to measure ring perf between hyperthreads, cores and sockets.
|
|
*/
|
|
static void
|
|
run_on_core_pair(struct lcore_pair *cores,
|
|
lcore_function_t f1, lcore_function_t f2)
|
|
{
|
|
struct thread_params param1 = {0}, param2 = {0};
|
|
unsigned i;
|
|
for (i = 0; i < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); i++) {
|
|
lcore_count = 0;
|
|
param1.size = param2.size = bulk_sizes[i];
|
|
if (cores->c1 == rte_get_master_lcore()) {
|
|
rte_eal_remote_launch(f2, ¶m2, cores->c2);
|
|
f1(¶m1);
|
|
rte_eal_wait_lcore(cores->c2);
|
|
} else {
|
|
rte_eal_remote_launch(f1, ¶m1, cores->c1);
|
|
rte_eal_remote_launch(f2, ¶m2, cores->c2);
|
|
rte_eal_wait_lcore(cores->c1);
|
|
rte_eal_wait_lcore(cores->c2);
|
|
}
|
|
printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
|
|
param1.spsc + param2.spsc);
|
|
printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
|
|
param1.mpmc + param2.mpmc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Test function that determines how long an enqueue + dequeue of a single item
|
|
* takes on a single lcore. Result is for comparison with the bulk enq+deq.
|
|
*/
|
|
static void
|
|
test_single_enqueue_dequeue(void)
|
|
{
|
|
const unsigned iter_shift = 24;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
unsigned i = 0;
|
|
void *burst = NULL;
|
|
|
|
const uint64_t sc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_sp_enqueue(r, burst);
|
|
rte_ring_sc_dequeue(r, &burst);
|
|
}
|
|
const uint64_t sc_end = rte_rdtsc();
|
|
|
|
const uint64_t mc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_mp_enqueue(r, burst);
|
|
rte_ring_mc_dequeue(r, &burst);
|
|
}
|
|
const uint64_t mc_end = rte_rdtsc();
|
|
|
|
printf("SP/SC single enq/dequeue: %"PRIu64"\n",
|
|
(sc_end-sc_start) >> iter_shift);
|
|
printf("MP/MC single enq/dequeue: %"PRIu64"\n",
|
|
(mc_end-mc_start) >> iter_shift);
|
|
}
|
|
|
|
/*
|
|
* Test that does both enqueue and dequeue on a core using the burst() API calls
|
|
* instead of the bulk() calls used in other tests. Results should be the same
|
|
* as for the bulk function called on a single lcore.
|
|
*/
|
|
static void
|
|
test_burst_enqueue_dequeue(void)
|
|
{
|
|
const unsigned iter_shift = 23;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
unsigned sz, i = 0;
|
|
void *burst[MAX_BURST] = {0};
|
|
|
|
for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
|
|
const uint64_t sc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_sp_enqueue_burst(r, burst, bulk_sizes[sz]);
|
|
rte_ring_sc_dequeue_burst(r, burst, bulk_sizes[sz]);
|
|
}
|
|
const uint64_t sc_end = rte_rdtsc();
|
|
|
|
const uint64_t mc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_mp_enqueue_burst(r, burst, bulk_sizes[sz]);
|
|
rte_ring_mc_dequeue_burst(r, burst, bulk_sizes[sz]);
|
|
}
|
|
const uint64_t mc_end = rte_rdtsc();
|
|
|
|
uint64_t mc_avg = ((mc_end-mc_start) >> iter_shift) / bulk_sizes[sz];
|
|
uint64_t sc_avg = ((sc_end-sc_start) >> iter_shift) / bulk_sizes[sz];
|
|
|
|
printf("SP/SC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
|
|
sc_avg);
|
|
printf("MP/MC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
|
|
mc_avg);
|
|
}
|
|
}
|
|
|
|
/* Times enqueue and dequeue on a single lcore */
|
|
static void
|
|
test_bulk_enqueue_dequeue(void)
|
|
{
|
|
const unsigned iter_shift = 23;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
unsigned sz, i = 0;
|
|
void *burst[MAX_BURST] = {0};
|
|
|
|
for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
|
|
const uint64_t sc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_sp_enqueue_bulk(r, burst, bulk_sizes[sz]);
|
|
rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[sz]);
|
|
}
|
|
const uint64_t sc_end = rte_rdtsc();
|
|
|
|
const uint64_t mc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_mp_enqueue_bulk(r, burst, bulk_sizes[sz]);
|
|
rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[sz]);
|
|
}
|
|
const uint64_t mc_end = rte_rdtsc();
|
|
|
|
double sc_avg = ((double)(sc_end-sc_start) /
|
|
(iterations * bulk_sizes[sz]));
|
|
double mc_avg = ((double)(mc_end-mc_start) /
|
|
(iterations * bulk_sizes[sz]));
|
|
|
|
printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
|
|
sc_avg);
|
|
printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
|
|
mc_avg);
|
|
}
|
|
}
|
|
|
|
static int
|
|
test_ring_perf(void)
|
|
{
|
|
struct lcore_pair cores;
|
|
r = rte_ring_create(RING_NAME, RING_SIZE, rte_socket_id(), 0);
|
|
if (r == NULL && (r = rte_ring_lookup(RING_NAME)) == NULL)
|
|
return -1;
|
|
|
|
printf("### Testing single element and burst enq/deq ###\n");
|
|
test_single_enqueue_dequeue();
|
|
test_burst_enqueue_dequeue();
|
|
|
|
printf("\n### Testing empty dequeue ###\n");
|
|
test_empty_dequeue();
|
|
|
|
printf("\n### Testing using a single lcore ###\n");
|
|
test_bulk_enqueue_dequeue();
|
|
|
|
if (get_two_hyperthreads(&cores) == 0) {
|
|
printf("\n### Testing using two hyperthreads ###\n");
|
|
run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
|
|
}
|
|
if (get_two_cores(&cores) == 0) {
|
|
printf("\n### Testing using two physical cores ###\n");
|
|
run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
|
|
}
|
|
if (get_two_sockets(&cores) == 0) {
|
|
printf("\n### Testing using two NUMA nodes ###\n");
|
|
run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
REGISTER_TEST_COMMAND(ring_perf_autotest, test_ring_perf);
|