numam-dpdk/lib/librte_ipsec/esp_inb.c
David Marchand 7dde68cf0e net: add missing rte prefix for ESP tail
This structure has been missed during the big rework.

Fixes: 5ef2546767 ("net: add rte prefix to ESP structure")
Cc: stable@dpdk.org

Signed-off-by: David Marchand <david.marchand@redhat.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-10-08 12:14:31 +02:00

665 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <rte_ipsec.h>
#include <rte_esp.h>
#include <rte_ip.h>
#include <rte_errno.h>
#include <rte_cryptodev.h>
#include "sa.h"
#include "ipsec_sqn.h"
#include "crypto.h"
#include "iph.h"
#include "misc.h"
#include "pad.h"
typedef uint16_t (*esp_inb_process_t)(const struct rte_ipsec_sa *sa,
struct rte_mbuf *mb[], uint32_t sqn[], uint32_t dr[], uint16_t num,
uint8_t sqh_len);
/*
* helper function to fill crypto_sym op for cipher+auth algorithms.
* used by inb_cop_prepare(), see below.
*/
static inline void
sop_ciph_auth_prepare(struct rte_crypto_sym_op *sop,
const struct rte_ipsec_sa *sa, const union sym_op_data *icv,
uint32_t pofs, uint32_t plen)
{
sop->cipher.data.offset = pofs + sa->ctp.cipher.offset;
sop->cipher.data.length = plen - sa->ctp.cipher.length;
sop->auth.data.offset = pofs + sa->ctp.auth.offset;
sop->auth.data.length = plen - sa->ctp.auth.length;
sop->auth.digest.data = icv->va;
sop->auth.digest.phys_addr = icv->pa;
}
/*
* helper function to fill crypto_sym op for aead algorithms
* used by inb_cop_prepare(), see below.
*/
static inline void
sop_aead_prepare(struct rte_crypto_sym_op *sop,
const struct rte_ipsec_sa *sa, const union sym_op_data *icv,
uint32_t pofs, uint32_t plen)
{
sop->aead.data.offset = pofs + sa->ctp.cipher.offset;
sop->aead.data.length = plen - sa->ctp.cipher.length;
sop->aead.digest.data = icv->va;
sop->aead.digest.phys_addr = icv->pa;
sop->aead.aad.data = icv->va + sa->icv_len;
sop->aead.aad.phys_addr = icv->pa + sa->icv_len;
}
/*
* setup crypto op and crypto sym op for ESP inbound packet.
*/
static inline void
inb_cop_prepare(struct rte_crypto_op *cop,
const struct rte_ipsec_sa *sa, struct rte_mbuf *mb,
const union sym_op_data *icv, uint32_t pofs, uint32_t plen)
{
struct rte_crypto_sym_op *sop;
struct aead_gcm_iv *gcm;
struct aesctr_cnt_blk *ctr;
uint64_t *ivc, *ivp;
uint32_t algo;
algo = sa->algo_type;
ivp = rte_pktmbuf_mtod_offset(mb, uint64_t *,
pofs + sizeof(struct rte_esp_hdr));
/* fill sym op fields */
sop = cop->sym;
switch (algo) {
case ALGO_TYPE_AES_GCM:
sop_aead_prepare(sop, sa, icv, pofs, plen);
/* fill AAD IV (located inside crypto op) */
gcm = rte_crypto_op_ctod_offset(cop, struct aead_gcm_iv *,
sa->iv_ofs);
aead_gcm_iv_fill(gcm, ivp[0], sa->salt);
break;
case ALGO_TYPE_AES_CBC:
case ALGO_TYPE_3DES_CBC:
sop_ciph_auth_prepare(sop, sa, icv, pofs, plen);
/* copy iv from the input packet to the cop */
ivc = rte_crypto_op_ctod_offset(cop, uint64_t *, sa->iv_ofs);
copy_iv(ivc, ivp, sa->iv_len);
break;
case ALGO_TYPE_AES_CTR:
sop_ciph_auth_prepare(sop, sa, icv, pofs, plen);
/* fill CTR block (located inside crypto op) */
ctr = rte_crypto_op_ctod_offset(cop, struct aesctr_cnt_blk *,
sa->iv_ofs);
aes_ctr_cnt_blk_fill(ctr, ivp[0], sa->salt);
break;
case ALGO_TYPE_NULL:
sop_ciph_auth_prepare(sop, sa, icv, pofs, plen);
break;
}
}
/*
* Helper function for prepare() to deal with situation when
* ICV is spread by two segments. Tries to move ICV completely into the
* last segment.
*/
static struct rte_mbuf *
move_icv(struct rte_mbuf *ml, uint32_t ofs)
{
uint32_t n;
struct rte_mbuf *ms;
const void *prev;
void *new;
ms = ml->next;
n = ml->data_len - ofs;
prev = rte_pktmbuf_mtod_offset(ml, const void *, ofs);
new = rte_pktmbuf_prepend(ms, n);
if (new == NULL)
return NULL;
/* move n ICV bytes from ml into ms */
rte_memcpy(new, prev, n);
ml->data_len -= n;
return ms;
}
/*
* for pure cryptodev (lookaside none) depending on SA settings,
* we might have to write some extra data to the packet.
*/
static inline void
inb_pkt_xprepare(const struct rte_ipsec_sa *sa, rte_be64_t sqc,
const union sym_op_data *icv)
{
struct aead_gcm_aad *aad;
/* insert SQN.hi between ESP trailer and ICV */
if (sa->sqh_len != 0)
insert_sqh(sqn_hi32(sqc), icv->va, sa->icv_len);
/*
* fill AAD fields, if any (aad fields are placed after icv),
* right now we support only one AEAD algorithm: AES-GCM.
*/
if (sa->aad_len != 0) {
aad = (struct aead_gcm_aad *)(icv->va + sa->icv_len);
aead_gcm_aad_fill(aad, sa->spi, sqc, IS_ESN(sa));
}
}
/*
* setup/update packet data and metadata for ESP inbound tunnel case.
*/
static inline int32_t
inb_pkt_prepare(const struct rte_ipsec_sa *sa, const struct replay_sqn *rsn,
struct rte_mbuf *mb, uint32_t hlen, union sym_op_data *icv)
{
int32_t rc;
uint64_t sqn;
uint32_t clen, icv_len, icv_ofs, plen;
struct rte_mbuf *ml;
struct rte_esp_hdr *esph;
esph = rte_pktmbuf_mtod_offset(mb, struct rte_esp_hdr *, hlen);
/*
* retrieve and reconstruct SQN, then check it, then
* convert it back into network byte order.
*/
sqn = rte_be_to_cpu_32(esph->seq);
if (IS_ESN(sa))
sqn = reconstruct_esn(rsn->sqn, sqn, sa->replay.win_sz);
rc = esn_inb_check_sqn(rsn, sa, sqn);
if (rc != 0)
return rc;
sqn = rte_cpu_to_be_64(sqn);
/* start packet manipulation */
plen = mb->pkt_len;
plen = plen - hlen;
/* check that packet has a valid length */
clen = plen - sa->ctp.cipher.length;
if ((int32_t)clen < 0 || (clen & (sa->pad_align - 1)) != 0)
return -EBADMSG;
/* find ICV location */
icv_len = sa->icv_len;
icv_ofs = mb->pkt_len - icv_len;
ml = mbuf_get_seg_ofs(mb, &icv_ofs);
/*
* if ICV is spread by two segments, then try to
* move ICV completely into the last segment.
*/
if (ml->data_len < icv_ofs + icv_len) {
ml = move_icv(ml, icv_ofs);
if (ml == NULL)
return -ENOSPC;
/* new ICV location */
icv_ofs = 0;
}
icv_ofs += sa->sqh_len;
/* we have to allocate space for AAD somewhere,
* right now - just use free trailing space at the last segment.
* Would probably be more convenient to reserve space for AAD
* inside rte_crypto_op itself
* (again for IV space is already reserved inside cop).
*/
if (sa->aad_len + sa->sqh_len > rte_pktmbuf_tailroom(ml))
return -ENOSPC;
icv->va = rte_pktmbuf_mtod_offset(ml, void *, icv_ofs);
icv->pa = rte_pktmbuf_iova_offset(ml, icv_ofs);
/*
* if esn is used then high-order 32 bits are also used in ICV
* calculation but are not transmitted, update packet length
* to be consistent with auth data length and offset, this will
* be subtracted from packet length in post crypto processing
*/
mb->pkt_len += sa->sqh_len;
ml->data_len += sa->sqh_len;
inb_pkt_xprepare(sa, sqn, icv);
return plen;
}
/*
* setup/update packets and crypto ops for ESP inbound case.
*/
uint16_t
esp_inb_pkt_prepare(const struct rte_ipsec_session *ss, struct rte_mbuf *mb[],
struct rte_crypto_op *cop[], uint16_t num)
{
int32_t rc;
uint32_t i, k, hl;
struct rte_ipsec_sa *sa;
struct rte_cryptodev_sym_session *cs;
struct replay_sqn *rsn;
union sym_op_data icv;
uint32_t dr[num];
sa = ss->sa;
cs = ss->crypto.ses;
rsn = rsn_acquire(sa);
k = 0;
for (i = 0; i != num; i++) {
hl = mb[i]->l2_len + mb[i]->l3_len;
rc = inb_pkt_prepare(sa, rsn, mb[i], hl, &icv);
if (rc >= 0) {
lksd_none_cop_prepare(cop[k], cs, mb[i]);
inb_cop_prepare(cop[k], sa, mb[i], &icv, hl, rc);
k++;
} else
dr[i - k] = i;
}
rsn_release(sa, rsn);
/* copy not prepared mbufs beyond good ones */
if (k != num && k != 0) {
move_bad_mbufs(mb, dr, num, num - k);
rte_errno = EBADMSG;
}
return k;
}
/*
* Start with processing inbound packet.
* This is common part for both tunnel and transport mode.
* Extract information that will be needed later from mbuf metadata and
* actual packet data:
* - mbuf for packet's last segment
* - length of the L2/L3 headers
* - esp tail structure
*/
static inline void
process_step1(struct rte_mbuf *mb, uint32_t tlen, struct rte_mbuf **ml,
struct rte_esp_tail *espt, uint32_t *hlen, uint32_t *tofs)
{
const struct rte_esp_tail *pt;
uint32_t ofs;
ofs = mb->pkt_len - tlen;
hlen[0] = mb->l2_len + mb->l3_len;
ml[0] = mbuf_get_seg_ofs(mb, &ofs);
pt = rte_pktmbuf_mtod_offset(ml[0], const struct rte_esp_tail *, ofs);
tofs[0] = ofs;
espt[0] = pt[0];
}
/*
* Helper function to check pad bytes values.
* Note that pad bytes can be spread across multiple segments.
*/
static inline int
check_pad_bytes(struct rte_mbuf *mb, uint32_t ofs, uint32_t len)
{
const uint8_t *pd;
uint32_t k, n;
for (n = 0; n != len; n += k, mb = mb->next) {
k = mb->data_len - ofs;
k = RTE_MIN(k, len - n);
pd = rte_pktmbuf_mtod_offset(mb, const uint8_t *, ofs);
if (memcmp(pd, esp_pad_bytes + n, k) != 0)
break;
ofs = 0;
}
return len - n;
}
/*
* packet checks for transport mode:
* - no reported IPsec related failures in ol_flags
* - tail and header lengths are valid
* - padding bytes are valid
* apart from checks, function also updates tail offset (and segment)
* by taking into account pad length.
*/
static inline int32_t
trs_process_check(struct rte_mbuf *mb, struct rte_mbuf **ml,
uint32_t *tofs, struct rte_esp_tail espt, uint32_t hlen, uint32_t tlen)
{
if ((mb->ol_flags & PKT_RX_SEC_OFFLOAD_FAILED) != 0 ||
tlen + hlen > mb->pkt_len)
return -EBADMSG;
/* padding bytes are spread over multiple segments */
if (tofs[0] < espt.pad_len) {
tofs[0] = mb->pkt_len - tlen;
ml[0] = mbuf_get_seg_ofs(mb, tofs);
} else
tofs[0] -= espt.pad_len;
return check_pad_bytes(ml[0], tofs[0], espt.pad_len);
}
/*
* packet checks for tunnel mode:
* - same as for trasnport mode
* - esp tail next proto contains expected for that SA value
*/
static inline int32_t
tun_process_check(struct rte_mbuf *mb, struct rte_mbuf **ml,
uint32_t *tofs, struct rte_esp_tail espt, uint32_t hlen, uint32_t tlen,
uint8_t proto)
{
return (trs_process_check(mb, ml, tofs, espt, hlen, tlen) ||
espt.next_proto != proto);
}
/*
* step two for tunnel mode:
* - read SQN value (for future use)
* - cut of ICV, ESP tail and padding bytes
* - cut of ESP header and IV, also if needed - L2/L3 headers
* (controlled by *adj* value)
*/
static inline void *
tun_process_step2(struct rte_mbuf *mb, struct rte_mbuf *ml, uint32_t hlen,
uint32_t adj, uint32_t tofs, uint32_t tlen, uint32_t *sqn)
{
const struct rte_esp_hdr *ph;
/* read SQN value */
ph = rte_pktmbuf_mtod_offset(mb, const struct rte_esp_hdr *, hlen);
sqn[0] = ph->seq;
/* cut of ICV, ESP tail and padding bytes */
mbuf_cut_seg_ofs(mb, ml, tofs, tlen);
/* cut of L2/L3 headers, ESP header and IV */
return rte_pktmbuf_adj(mb, adj);
}
/*
* step two for transport mode:
* - read SQN value (for future use)
* - cut of ICV, ESP tail and padding bytes
* - cut of ESP header and IV
* - move L2/L3 header to fill the gap after ESP header removal
*/
static inline void *
trs_process_step2(struct rte_mbuf *mb, struct rte_mbuf *ml, uint32_t hlen,
uint32_t adj, uint32_t tofs, uint32_t tlen, uint32_t *sqn)
{
char *np, *op;
/* get start of the packet before modifications */
op = rte_pktmbuf_mtod(mb, char *);
/* cut off ESP header and IV */
np = tun_process_step2(mb, ml, hlen, adj, tofs, tlen, sqn);
/* move header bytes to fill the gap after ESP header removal */
remove_esph(np, op, hlen);
return np;
}
/*
* step three for transport mode:
* update mbuf metadata:
* - packet_type
* - ol_flags
*/
static inline void
trs_process_step3(struct rte_mbuf *mb)
{
/* reset mbuf packet type */
mb->packet_type &= (RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
/* clear the PKT_RX_SEC_OFFLOAD flag if set */
mb->ol_flags &= ~PKT_RX_SEC_OFFLOAD;
}
/*
* step three for tunnel mode:
* update mbuf metadata:
* - packet_type
* - ol_flags
* - tx_offload
*/
static inline void
tun_process_step3(struct rte_mbuf *mb, uint64_t txof_msk, uint64_t txof_val)
{
/* reset mbuf metatdata: L2/L3 len, packet type */
mb->packet_type = RTE_PTYPE_UNKNOWN;
mb->tx_offload = (mb->tx_offload & txof_msk) | txof_val;
/* clear the PKT_RX_SEC_OFFLOAD flag if set */
mb->ol_flags &= ~PKT_RX_SEC_OFFLOAD;
}
/*
* *process* function for tunnel packets
*/
static inline uint16_t
tun_process(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
uint32_t sqn[], uint32_t dr[], uint16_t num, uint8_t sqh_len)
{
uint32_t adj, i, k, tl;
uint32_t hl[num], to[num];
struct rte_esp_tail espt[num];
struct rte_mbuf *ml[num];
const void *outh;
void *inh;
/*
* remove icv, esp trailer and high-order
* 32 bits of esn from packet length
*/
const uint32_t tlen = sa->icv_len + sizeof(espt[0]) + sqh_len;
const uint32_t cofs = sa->ctp.cipher.offset;
/*
* to minimize stalls due to load latency,
* read mbufs metadata and esp tail first.
*/
for (i = 0; i != num; i++)
process_step1(mb[i], tlen, &ml[i], &espt[i], &hl[i], &to[i]);
k = 0;
for (i = 0; i != num; i++) {
adj = hl[i] + cofs;
tl = tlen + espt[i].pad_len;
/* check that packet is valid */
if (tun_process_check(mb[i], &ml[i], &to[i], espt[i], adj, tl,
sa->proto) == 0) {
outh = rte_pktmbuf_mtod_offset(mb[i], uint8_t *,
mb[i]->l2_len);
/* modify packet's layout */
inh = tun_process_step2(mb[i], ml[i], hl[i], adj,
to[i], tl, sqn + k);
/* update inner ip header */
update_tun_inb_l3hdr(sa, outh, inh);
/* update mbuf's metadata */
tun_process_step3(mb[i], sa->tx_offload.msk,
sa->tx_offload.val);
k++;
} else
dr[i - k] = i;
}
return k;
}
/*
* *process* function for tunnel packets
*/
static inline uint16_t
trs_process(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
uint32_t sqn[], uint32_t dr[], uint16_t num, uint8_t sqh_len)
{
char *np;
uint32_t i, k, l2, tl;
uint32_t hl[num], to[num];
struct rte_esp_tail espt[num];
struct rte_mbuf *ml[num];
/*
* remove icv, esp trailer and high-order
* 32 bits of esn from packet length
*/
const uint32_t tlen = sa->icv_len + sizeof(espt[0]) + sqh_len;
const uint32_t cofs = sa->ctp.cipher.offset;
/*
* to minimize stalls due to load latency,
* read mbufs metadata and esp tail first.
*/
for (i = 0; i != num; i++)
process_step1(mb[i], tlen, &ml[i], &espt[i], &hl[i], &to[i]);
k = 0;
for (i = 0; i != num; i++) {
tl = tlen + espt[i].pad_len;
l2 = mb[i]->l2_len;
/* check that packet is valid */
if (trs_process_check(mb[i], &ml[i], &to[i], espt[i],
hl[i] + cofs, tl) == 0) {
/* modify packet's layout */
np = trs_process_step2(mb[i], ml[i], hl[i], cofs,
to[i], tl, sqn + k);
update_trs_l3hdr(sa, np + l2, mb[i]->pkt_len,
l2, hl[i] - l2, espt[i].next_proto);
/* update mbuf's metadata */
trs_process_step3(mb[i]);
k++;
} else
dr[i - k] = i;
}
return k;
}
/*
* for group of ESP inbound packets perform SQN check and update.
*/
static inline uint16_t
esp_inb_rsn_update(struct rte_ipsec_sa *sa, const uint32_t sqn[],
uint32_t dr[], uint16_t num)
{
uint32_t i, k;
struct replay_sqn *rsn;
/* replay not enabled */
if (sa->replay.win_sz == 0)
return num;
rsn = rsn_update_start(sa);
k = 0;
for (i = 0; i != num; i++) {
if (esn_inb_update_sqn(rsn, sa, rte_be_to_cpu_32(sqn[i])) == 0)
k++;
else
dr[i - k] = i;
}
rsn_update_finish(sa, rsn);
return k;
}
/*
* process group of ESP inbound packets.
*/
static inline uint16_t
esp_inb_pkt_process(struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
uint16_t num, uint8_t sqh_len, esp_inb_process_t process)
{
uint32_t k, n;
uint32_t sqn[num];
uint32_t dr[num];
/* process packets, extract seq numbers */
k = process(sa, mb, sqn, dr, num, sqh_len);
/* handle unprocessed mbufs */
if (k != num && k != 0)
move_bad_mbufs(mb, dr, num, num - k);
/* update SQN and replay winow */
n = esp_inb_rsn_update(sa, sqn, dr, k);
/* handle mbufs with wrong SQN */
if (n != k && n != 0)
move_bad_mbufs(mb, dr, k, k - n);
if (n != num)
rte_errno = EBADMSG;
return n;
}
/*
* process group of ESP inbound tunnel packets.
*/
uint16_t
esp_inb_tun_pkt_process(const struct rte_ipsec_session *ss,
struct rte_mbuf *mb[], uint16_t num)
{
struct rte_ipsec_sa *sa = ss->sa;
return esp_inb_pkt_process(sa, mb, num, sa->sqh_len, tun_process);
}
uint16_t
inline_inb_tun_pkt_process(const struct rte_ipsec_session *ss,
struct rte_mbuf *mb[], uint16_t num)
{
return esp_inb_pkt_process(ss->sa, mb, num, 0, tun_process);
}
/*
* process group of ESP inbound transport packets.
*/
uint16_t
esp_inb_trs_pkt_process(const struct rte_ipsec_session *ss,
struct rte_mbuf *mb[], uint16_t num)
{
struct rte_ipsec_sa *sa = ss->sa;
return esp_inb_pkt_process(sa, mb, num, sa->sqh_len, trs_process);
}
uint16_t
inline_inb_trs_pkt_process(const struct rte_ipsec_session *ss,
struct rte_mbuf *mb[], uint16_t num)
{
return esp_inb_pkt_process(ss->sa, mb, num, 0, trs_process);
}