numam-dpdk/drivers/net/cxgbe/cxgbe_main.c
Rahul Lakkireddy 422d7823a9 net/cxgbe: add MAC match-all to track promiscuous traffic
Chelsio T6 ASIC doesn't track Rx promisc traffic dropped due to lack
of Rx buffers and hence the imissed counter doesn't increment. Add
support for RAW MAC filter to insert a wildcard matchall rule at
the end of MPS TCAM to make MPS track the promisc traffic. This
rule will only be added/removed when promisc mode is turned on/off
on the interface.

Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
2021-07-02 19:03:03 +02:00

2285 lines
61 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2018 Chelsio Communications.
* All rights reserved.
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_branch_prediction.h>
#include <rte_memory.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_alarm.h>
#include <rte_ether.h>
#include <ethdev_driver.h>
#include <ethdev_pci.h>
#include <rte_random.h>
#include <rte_dev.h>
#include <rte_kvargs.h>
#include "base/common.h"
#include "base/t4_regs.h"
#include "base/t4_msg.h"
#include "cxgbe.h"
#include "cxgbe_pfvf.h"
#include "clip_tbl.h"
#include "l2t.h"
#include "smt.h"
#include "mps_tcam.h"
static const u16 cxgbe_filter_mode_features[] = {
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
F_PROTOCOL | F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
F_PROTOCOL | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_TOS |
F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VLAN | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VNIC_ID | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_PROTOCOL | F_TOS |
F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VLAN | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VNIC_ID | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VLAN | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VLAN | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
(F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VNIC_ID | F_FCOE),
(F_FRAGMENTATION | F_VLAN | F_VNIC_ID | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
F_FCOE),
(F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT),
(F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT),
(F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN | F_PORT),
(F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT),
(F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_PORT),
};
/**
* Allocate a chunk of memory. The allocated memory is cleared.
*/
void *t4_alloc_mem(size_t size)
{
return rte_zmalloc(NULL, size, 0);
}
/**
* Free memory allocated through t4_alloc_mem().
*/
void t4_free_mem(void *addr)
{
rte_free(addr);
}
/*
* Response queue handler for the FW event queue.
*/
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
__rte_unused const struct pkt_gl *gl)
{
u8 opcode = ((const struct rss_header *)rsp)->opcode;
rsp++; /* skip RSS header */
/*
* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
*/
if (unlikely(opcode == CPL_FW4_MSG &&
((const struct cpl_fw4_msg *)rsp)->type ==
FW_TYPE_RSSCPL)) {
rsp++;
opcode = ((const struct rss_header *)rsp)->opcode;
rsp++;
if (opcode != CPL_SGE_EGR_UPDATE) {
dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
opcode);
goto out;
}
}
if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
/* do nothing */
} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
const struct cpl_fw6_msg *msg = (const void *)rsp;
t4_handle_fw_rpl(q->adapter, msg->data);
} else if (opcode == CPL_ABORT_RPL_RSS) {
const struct cpl_abort_rpl_rss *p = (const void *)rsp;
cxgbe_hash_del_filter_rpl(q->adapter, p);
} else if (opcode == CPL_SET_TCB_RPL) {
const struct cpl_set_tcb_rpl *p = (const void *)rsp;
cxgbe_filter_rpl(q->adapter, p);
} else if (opcode == CPL_ACT_OPEN_RPL) {
const struct cpl_act_open_rpl *p = (const void *)rsp;
cxgbe_hash_filter_rpl(q->adapter, p);
} else if (opcode == CPL_L2T_WRITE_RPL) {
const struct cpl_l2t_write_rpl *p = (const void *)rsp;
cxgbe_do_l2t_write_rpl(q->adapter, p);
} else if (opcode == CPL_SMT_WRITE_RPL) {
const struct cpl_smt_write_rpl *p = (const void *)rsp;
cxgbe_do_smt_write_rpl(q->adapter, p);
} else {
dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
opcode);
}
out:
return 0;
}
/**
* Setup sge control queues to pass control information.
*/
int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
{
struct sge *s = &adapter->sge;
int err = 0, i = 0;
for_each_port(adapter, i) {
struct port_info *pi = adap2pinfo(adapter, i);
char name[RTE_ETH_NAME_MAX_LEN];
struct sge_ctrl_txq *q = &s->ctrlq[i];
q->q.size = 1024;
err = t4_sge_alloc_ctrl_txq(adapter, q,
adapter->eth_dev, i,
s->fw_evtq.cntxt_id,
rte_socket_id());
if (err) {
dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
err);
goto out;
}
snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
pi->eth_dev->device->driver->name,
pi->eth_dev->data->port_id);
q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
RTE_CACHE_LINE_SIZE,
RTE_MBUF_PRIV_ALIGN,
RTE_MBUF_DEFAULT_BUF_SIZE,
SOCKET_ID_ANY);
if (!q->mb_pool) {
err = -rte_errno;
dev_err(adapter,
"Can't create ctrl pool for port %d. Err: %d\n",
pi->eth_dev->data->port_id, err);
goto out;
}
}
return 0;
out:
t4_free_sge_resources(adapter);
return err;
}
/**
* cxgbe_poll_for_completion: Poll rxq for completion
* @q: rxq to poll
* @ms: milliseconds to delay
* @cnt: number of times to poll
* @c: completion to check for 'done' status
*
* Polls the rxq for reples until completion is done or the count
* expires.
*/
int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
unsigned int cnt, struct t4_completion *c)
{
unsigned int i;
unsigned int work_done, budget = 32;
if (!c)
return -EINVAL;
for (i = 0; i < cnt; i++) {
cxgbe_poll(q, NULL, budget, &work_done);
t4_os_lock(&c->lock);
if (c->done) {
t4_os_unlock(&c->lock);
return 0;
}
t4_os_unlock(&c->lock);
rte_delay_ms(ms);
}
return -ETIMEDOUT;
}
int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
{
struct sge *s = &adapter->sge;
int err = 0;
int msi_idx = 0;
err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
rte_socket_id());
return err;
}
static int closest_timer(const struct sge *s, int time)
{
unsigned int i, match = 0;
int delta, min_delta = INT_MAX;
for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
delta = time - s->timer_val[i];
if (delta < 0)
delta = -delta;
if (delta < min_delta) {
min_delta = delta;
match = i;
}
}
return match;
}
static int closest_thres(const struct sge *s, int thres)
{
unsigned int i, match = 0;
int delta, min_delta = INT_MAX;
for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
delta = thres - s->counter_val[i];
if (delta < 0)
delta = -delta;
if (delta < min_delta) {
min_delta = delta;
match = i;
}
}
return match;
}
/**
* cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
* @q: the Rx queue
* @us: the hold-off time in us, or 0 to disable timer
* @cnt: the hold-off packet count, or 0 to disable counter
*
* Sets an Rx queue's interrupt hold-off time and packet count. At least
* one of the two needs to be enabled for the queue to generate interrupts.
*/
int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
unsigned int cnt)
{
struct adapter *adap = q->adapter;
unsigned int timer_val;
if (cnt) {
int err;
u32 v, new_idx;
new_idx = closest_thres(&adap->sge, cnt);
if (q->desc && q->pktcnt_idx != new_idx) {
/* the queue has already been created, update it */
v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
V_FW_PARAMS_PARAM_X(
FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
&v, &new_idx);
if (err)
return err;
}
q->pktcnt_idx = new_idx;
}
timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
closest_timer(&adap->sge, us);
if ((us | cnt) == 0)
q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
else
q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
V_QINTR_CNT_EN(cnt > 0);
return 0;
}
/**
* Allocate an active-open TID and set it to the supplied value.
*/
int cxgbe_alloc_atid(struct tid_info *t, void *data)
{
int atid = -1;
t4_os_lock(&t->atid_lock);
if (t->afree) {
union aopen_entry *p = t->afree;
atid = p - t->atid_tab;
t->afree = p->next;
p->data = data;
t->atids_in_use++;
}
t4_os_unlock(&t->atid_lock);
return atid;
}
/**
* Release an active-open TID.
*/
void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
{
union aopen_entry *p = &t->atid_tab[atid];
t4_os_lock(&t->atid_lock);
p->next = t->afree;
t->afree = p;
t->atids_in_use--;
t4_os_unlock(&t->atid_lock);
}
/**
* Populate a TID_RELEASE WR. Caller must properly size the skb.
*/
static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
{
struct cpl_tid_release *req;
req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
}
/**
* Release a TID and inform HW. If we are unable to allocate the release
* message we defer to a work queue.
*/
void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
unsigned short family)
{
struct rte_mbuf *mbuf;
struct adapter *adap = container_of(t, struct adapter, tids);
WARN_ON(tid >= t->ntids);
if (t->tid_tab[tid]) {
t->tid_tab[tid] = NULL;
__atomic_sub_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
if (t->hash_base && tid >= t->hash_base) {
if (family == FILTER_TYPE_IPV4)
__atomic_sub_fetch(&t->hash_tids_in_use, 1,
__ATOMIC_RELAXED);
} else {
if (family == FILTER_TYPE_IPV4)
__atomic_sub_fetch(&t->tids_in_use, 1,
__ATOMIC_RELAXED);
}
}
mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
if (mbuf) {
mbuf->data_len = sizeof(struct cpl_tid_release);
mbuf->pkt_len = mbuf->data_len;
mk_tid_release(mbuf, tid);
t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
}
}
/**
* Insert a TID.
*/
void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
unsigned short family)
{
t->tid_tab[tid] = data;
if (t->hash_base && tid >= t->hash_base) {
if (family == FILTER_TYPE_IPV4)
__atomic_add_fetch(&t->hash_tids_in_use, 1,
__ATOMIC_RELAXED);
} else {
if (family == FILTER_TYPE_IPV4)
__atomic_add_fetch(&t->tids_in_use, 1,
__ATOMIC_RELAXED);
}
__atomic_add_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
}
/**
* Free TID tables.
*/
static void tid_free(struct tid_info *t)
{
if (t->tid_tab) {
if (t->ftid_bmap)
rte_bitmap_free(t->ftid_bmap);
if (t->ftid_bmap_array)
t4_os_free(t->ftid_bmap_array);
t4_os_free(t->tid_tab);
}
memset(t, 0, sizeof(struct tid_info));
}
/**
* Allocate and initialize the TID tables. Returns 0 on success.
*/
static int tid_init(struct tid_info *t)
{
size_t size;
unsigned int ftid_bmap_size;
unsigned int natids = t->natids;
unsigned int max_ftids = t->nftids;
ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
size = t->ntids * sizeof(*t->tid_tab) +
max_ftids * sizeof(*t->ftid_tab) +
natids * sizeof(*t->atid_tab);
t->tid_tab = t4_os_alloc(size);
if (!t->tid_tab)
return -ENOMEM;
t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
if (!t->ftid_bmap_array) {
tid_free(t);
return -ENOMEM;
}
t4_os_lock_init(&t->atid_lock);
t4_os_lock_init(&t->ftid_lock);
t->afree = NULL;
t->atids_in_use = 0;
t->tids_in_use = 0;
t->conns_in_use = 0;
/* Setup the free list for atid_tab and clear the stid bitmap. */
if (natids) {
while (--natids)
t->atid_tab[natids - 1].next = &t->atid_tab[natids];
t->afree = t->atid_tab;
}
t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
ftid_bmap_size);
if (!t->ftid_bmap) {
tid_free(t);
return -ENOMEM;
}
return 0;
}
static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
unsigned int us, unsigned int cnt,
unsigned int size, unsigned int iqe_size)
{
q->adapter = adap;
cxgb4_set_rspq_intr_params(q, us, cnt);
q->iqe_len = iqe_size;
q->size = size;
}
int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
{
struct port_info *temp_pi, *pi = eth_dev->data->dev_private;
struct adapter *adap = pi->adapter;
u16 first_txq = 0, first_rxq = 0;
struct sge *s = &adap->sge;
u16 i, max_rxqs, max_txqs;
max_rxqs = s->max_ethqsets;
max_txqs = s->max_ethqsets;
for_each_port(adap, i) {
temp_pi = adap2pinfo(adap, i);
if (i == pi->port_id)
break;
if (max_rxqs <= temp_pi->n_rx_qsets ||
max_txqs <= temp_pi->n_tx_qsets)
return -ENOMEM;
first_rxq += temp_pi->n_rx_qsets;
first_txq += temp_pi->n_tx_qsets;
max_rxqs -= temp_pi->n_rx_qsets;
max_txqs -= temp_pi->n_tx_qsets;
}
if ((eth_dev->data->nb_rx_queues < 1) ||
(eth_dev->data->nb_tx_queues < 1))
return -EINVAL;
if (eth_dev->data->nb_rx_queues > max_rxqs ||
eth_dev->data->nb_tx_queues > max_txqs)
return -EINVAL;
/* We must configure RSS, since config has changed*/
pi->flags &= ~PORT_RSS_DONE;
pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
pi->first_rxqset = first_rxq;
pi->first_txqset = first_txq;
return 0;
}
void cxgbe_cfg_queues_free(struct adapter *adap)
{
if (adap->sge.ethtxq) {
rte_free(adap->sge.ethtxq);
adap->sge.ethtxq = NULL;
}
if (adap->sge.ethrxq) {
rte_free(adap->sge.ethrxq);
adap->sge.ethrxq = NULL;
}
adap->flags &= ~CFG_QUEUES;
}
int cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
{
struct port_info *pi = eth_dev->data->dev_private;
struct adapter *adap = pi->adapter;
struct sge *s = &adap->sge;
u16 i;
if (!(adap->flags & CFG_QUEUES)) {
s->ethrxq = rte_calloc_socket(NULL, s->max_ethqsets,
sizeof(struct sge_eth_rxq), 0,
rte_socket_id());
if (!s->ethrxq)
return -ENOMEM;
s->ethtxq = rte_calloc_socket(NULL, s->max_ethqsets,
sizeof(struct sge_eth_txq), 0,
rte_socket_id());
if (!s->ethtxq) {
rte_free(s->ethrxq);
s->ethrxq = NULL;
return -ENOMEM;
}
for (i = 0; i < s->max_ethqsets; i++) {
struct sge_eth_rxq *r = &s->ethrxq[i];
struct sge_eth_txq *t = &s->ethtxq[i];
init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
r->usembufs = 1;
r->fl.size = (r->usembufs ? 1024 : 72);
t->q.size = 1024;
}
init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
adap->flags |= CFG_QUEUES;
}
return 0;
}
void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
{
t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
&pi->stats_base);
}
void cxgbe_stats_reset(struct port_info *pi)
{
t4_clr_port_stats(pi->adapter, pi->tx_chan);
}
static void setup_memwin(struct adapter *adap)
{
u32 mem_win0_base;
/* For T5, only relative offset inside the PCIe BAR is passed */
mem_win0_base = MEMWIN0_BASE;
/*
* Set up memory window for accessing adapter memory ranges. (Read
* back MA register to ensure that changes propagate before we attempt
* to use the new values.)
*/
t4_write_reg(adap,
PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
MEMWIN_NIC),
mem_win0_base | V_BIR(0) |
V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
t4_read_reg(adap,
PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
MEMWIN_NIC));
}
int cxgbe_init_rss(struct adapter *adap)
{
unsigned int i;
if (is_pf4(adap)) {
int err;
err = t4_init_rss_mode(adap, adap->mbox);
if (err)
return err;
}
for_each_port(adap, i) {
struct port_info *pi = adap2pinfo(adap, i);
pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
if (!pi->rss)
return -ENOMEM;
pi->rss_hf = CXGBE_RSS_HF_ALL;
}
return 0;
}
/**
* Dump basic information about the adapter.
*/
void cxgbe_print_adapter_info(struct adapter *adap)
{
/**
* Hardware/Firmware/etc. Version/Revision IDs.
*/
t4_dump_version_info(adap);
}
void cxgbe_print_port_info(struct adapter *adap)
{
int i;
char buf[80];
struct rte_pci_addr *loc = &adap->pdev->addr;
for_each_port(adap, i) {
const struct port_info *pi = adap2pinfo(adap, i);
char *bufp = buf;
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
bufp += sprintf(bufp, "100M/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
bufp += sprintf(bufp, "1G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
bufp += sprintf(bufp, "10G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
bufp += sprintf(bufp, "25G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
bufp += sprintf(bufp, "40G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
bufp += sprintf(bufp, "50G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
bufp += sprintf(bufp, "100G/");
if (bufp != buf)
--bufp;
sprintf(bufp, "BASE-%s",
t4_get_port_type_description(
(enum fw_port_type)pi->link_cfg.port_type));
dev_info(adap,
" " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
loc->domain, loc->bus, loc->devid, loc->function,
CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
(adap->flags & USING_MSIX) ? " MSI-X" :
(adap->flags & USING_MSI) ? " MSI" : "");
}
}
static int check_devargs_handler(const char *key, const char *value, void *p)
{
if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
!strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
!strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
if (!strncmp(value, "1", 1)) {
bool *dst_val = (bool *)p;
*dst_val = true;
}
}
if (!strncmp(key, CXGBE_DEVARG_PF_FILTER_MODE, strlen(key)) ||
!strncmp(key, CXGBE_DEVARG_PF_FILTER_MASK, strlen(key))) {
u32 *dst_val = (u32 *)p;
char *endptr = NULL;
u32 arg_val;
arg_val = strtoul(value, &endptr, 16);
if (errno || endptr == value)
return -EINVAL;
*dst_val = arg_val;
}
return 0;
}
static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
void *p)
{
struct rte_kvargs *kvlist;
int ret = 0;
if (!devargs)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (!kvlist)
return 0;
if (!rte_kvargs_count(kvlist, key))
goto out;
ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
out:
rte_kvargs_free(kvlist);
return ret;
}
static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
const char *key, bool default_value)
{
struct rte_pci_device *pdev = adap->pdev;
int ret;
bool devarg_value = default_value;
*dst = default_value;
if (!pdev)
return;
ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
if (ret)
return;
*dst = devarg_value;
}
static void cxgbe_get_devargs_u32(struct adapter *adap, u32 *dst,
const char *key, u32 default_value)
{
struct rte_pci_device *pdev = adap->pdev;
u32 devarg_value = default_value;
int ret;
*dst = default_value;
if (!pdev)
return;
ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
if (ret)
return;
*dst = devarg_value;
}
void cxgbe_process_devargs(struct adapter *adap)
{
cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
cxgbe_get_devargs_u32(adap, &adap->devargs.filtermode,
CXGBE_DEVARG_PF_FILTER_MODE, 0);
cxgbe_get_devargs_u32(adap, &adap->devargs.filtermask,
CXGBE_DEVARG_PF_FILTER_MASK, 0);
}
static void configure_vlan_types(struct adapter *adapter)
{
int i;
for_each_port(adapter, i) {
/* OVLAN Type 0x88a8 */
t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
V_OVLAN_MASK(M_OVLAN_MASK) |
V_OVLAN_ETYPE(M_OVLAN_ETYPE),
V_OVLAN_MASK(M_OVLAN_MASK) |
V_OVLAN_ETYPE(0x88a8));
/* OVLAN Type 0x9100 */
t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
V_OVLAN_MASK(M_OVLAN_MASK) |
V_OVLAN_ETYPE(M_OVLAN_ETYPE),
V_OVLAN_MASK(M_OVLAN_MASK) |
V_OVLAN_ETYPE(0x9100));
/* IVLAN 0X8100 */
t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
V_IVLAN_ETYPE(M_IVLAN_ETYPE),
V_IVLAN_ETYPE(0x8100));
t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
F_OVLAN_EN0 | F_OVLAN_EN1 |
F_IVLAN_EN,
F_OVLAN_EN0 | F_OVLAN_EN1 |
F_IVLAN_EN);
}
t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
V_RM_OVLAN(!adapter->devargs.keep_ovlan));
}
static int cxgbe_get_filter_vnic_mode_from_devargs(u32 val)
{
u32 vnic_mode;
vnic_mode = val & (CXGBE_DEVARGS_FILTER_MODE_PF_VF |
CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER);
if (vnic_mode) {
switch (vnic_mode) {
case CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER:
return CXGBE_FILTER_VNIC_MODE_OVLAN;
case CXGBE_DEVARGS_FILTER_MODE_PF_VF:
return CXGBE_FILTER_VNIC_MODE_PFVF;
default:
return -EINVAL;
}
}
return CXGBE_FILTER_VNIC_MODE_NONE;
}
static int cxgbe_get_filter_mode_from_devargs(u32 val, bool closest_match)
{
int vnic_mode, fmode = 0;
bool found = false;
u8 i;
if (val >= CXGBE_DEVARGS_FILTER_MODE_MAX) {
pr_err("Unsupported flags set in filter mode. Must be < 0x%x\n",
CXGBE_DEVARGS_FILTER_MODE_MAX);
return -ERANGE;
}
vnic_mode = cxgbe_get_filter_vnic_mode_from_devargs(val);
if (vnic_mode < 0) {
pr_err("Unsupported Vnic-mode, more than 1 Vnic-mode selected\n");
return vnic_mode;
}
if (vnic_mode)
fmode |= F_VNIC_ID;
if (val & CXGBE_DEVARGS_FILTER_MODE_PHYSICAL_PORT)
fmode |= F_PORT;
if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_DSTMAC)
fmode |= F_MACMATCH;
if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_ETHTYPE)
fmode |= F_ETHERTYPE;
if (val & CXGBE_DEVARGS_FILTER_MODE_VLAN_INNER)
fmode |= F_VLAN;
if (val & CXGBE_DEVARGS_FILTER_MODE_IP_TOS)
fmode |= F_TOS;
if (val & CXGBE_DEVARGS_FILTER_MODE_IP_PROTOCOL)
fmode |= F_PROTOCOL;
for (i = 0; i < ARRAY_SIZE(cxgbe_filter_mode_features); i++) {
if ((cxgbe_filter_mode_features[i] & fmode) == fmode) {
found = true;
break;
}
}
if (!found)
return -EINVAL;
return closest_match ? cxgbe_filter_mode_features[i] : fmode;
}
static int configure_filter_mode_mask(struct adapter *adap)
{
u32 params[2], val[2], nparams = 0;
int ret;
if (!adap->devargs.filtermode && !adap->devargs.filtermask)
return 0;
if (!adap->devargs.filtermode || !adap->devargs.filtermask) {
pr_err("Unsupported, Provide both filtermode and filtermask devargs\n");
return -EINVAL;
}
if (adap->devargs.filtermask & ~adap->devargs.filtermode) {
pr_err("Unsupported, filtermask (0x%x) must be subset of filtermode (0x%x)\n",
adap->devargs.filtermask, adap->devargs.filtermode);
return -EINVAL;
}
params[0] = CXGBE_FW_PARAM_DEV(FILTER) |
V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermode,
true);
if (ret < 0) {
pr_err("Unsupported filtermode devargs combination:0x%x\n",
adap->devargs.filtermode);
return ret;
}
val[0] = V_FW_PARAMS_PARAM_FILTER_MODE(ret);
ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermask,
false);
if (ret < 0) {
pr_err("Unsupported filtermask devargs combination:0x%x\n",
adap->devargs.filtermask);
return ret;
}
val[0] |= V_FW_PARAMS_PARAM_FILTER_MASK(ret);
nparams++;
ret = cxgbe_get_filter_vnic_mode_from_devargs(adap->devargs.filtermode);
if (ret < 0)
return ret;
if (ret) {
params[1] = CXGBE_FW_PARAM_DEV(FILTER) |
V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
val[1] = ret - 1;
nparams++;
}
return t4_set_params(adap, adap->mbox, adap->pf, 0, nparams,
params, val);
}
static void configure_pcie_ext_tag(struct adapter *adapter)
{
u16 v;
int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
if (!pos)
return;
if (pos > 0) {
t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
v |= PCI_EXP_DEVCTL_EXT_TAG;
t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
if (is_t6(adapter->params.chip)) {
t4_set_reg_field(adapter, A_PCIE_CFG2,
V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
V_T6_TOTMAXTAG(7));
t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
V_T6_MINTAG(M_T6_MINTAG),
V_T6_MINTAG(8));
} else {
t4_set_reg_field(adapter, A_PCIE_CFG2,
V_TOTMAXTAG(M_TOTMAXTAG),
V_TOTMAXTAG(3));
t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
V_MINTAG(M_MINTAG),
V_MINTAG(8));
}
}
}
/* Figure out how many Queue Sets we can support */
void cxgbe_configure_max_ethqsets(struct adapter *adapter)
{
unsigned int ethqsets, reserved;
/* We need to reserve an Ingress Queue for the Asynchronous Firmware
* Event Queue and 1 Control Queue per port.
*
* For each Queue Set, we'll need the ability to allocate two Egress
* Contexts -- one for the Ingress Queue Free List and one for the TX
* Ethernet Queue.
*/
reserved = max(adapter->params.nports, 1);
if (is_pf4(adapter)) {
struct pf_resources *pfres = &adapter->params.pfres;
ethqsets = min(pfres->niqflint, pfres->nethctrl);
if (ethqsets > (pfres->neq / 2))
ethqsets = pfres->neq / 2;
} else {
struct vf_resources *vfres = &adapter->params.vfres;
ethqsets = min(vfres->niqflint, vfres->nethctrl);
if (ethqsets > (vfres->neq / 2))
ethqsets = vfres->neq / 2;
}
ethqsets -= reserved;
adapter->sge.max_ethqsets = ethqsets;
}
/*
* Tweak configuration based on system architecture, etc. Most of these have
* defaults assigned to them by Firmware Configuration Files (if we're using
* them) but need to be explicitly set if we're using hard-coded
* initialization. So these are essentially common tweaks/settings for
* Configuration Files and hard-coded initialization ...
*/
static int adap_init0_tweaks(struct adapter *adapter)
{
u8 rx_dma_offset;
/*
* Fix up various Host-Dependent Parameters like Page Size, Cache
* Line Size, etc. The firmware default is for a 4KB Page Size and
* 64B Cache Line Size ...
*/
t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
T5_LAST_REV);
/*
* Keep the chip default offset to deliver Ingress packets into our
* DMA buffers to zero
*/
rx_dma_offset = 0;
t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
V_PKTSHIFT(rx_dma_offset));
t4_set_reg_field(adapter, A_SGE_FLM_CFG,
V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
V_IDMAARBROUNDROBIN(1U));
/*
* Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
* adds the pseudo header itself.
*/
t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
F_CSUM_HAS_PSEUDO_HDR, 0);
return 0;
}
/*
* Attempt to initialize the adapter via a Firmware Configuration File.
*/
static int adap_init0_config(struct adapter *adapter, int reset)
{
u32 finiver, finicsum, cfcsum, param, val;
struct fw_caps_config_cmd caps_cmd;
unsigned long mtype = 0, maddr = 0;
u8 config_issued = 0;
char config_name[20];
int cfg_addr, ret;
/*
* Reset device if necessary.
*/
if (reset) {
ret = t4_fw_reset(adapter, adapter->mbox,
F_PIORSTMODE | F_PIORST);
if (ret < 0) {
dev_warn(adapter, "Firmware reset failed, error %d\n",
-ret);
goto bye;
}
}
cfg_addr = t4_flash_cfg_addr(adapter);
if (cfg_addr < 0) {
ret = cfg_addr;
dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
-ret);
goto bye;
}
strcpy(config_name, "On Flash");
mtype = FW_MEMTYPE_CF_FLASH;
maddr = cfg_addr;
/* Enable HASH filter region when support is available. */
val = 1;
param = CXGBE_FW_PARAM_DEV(HASHFILTER_WITH_OFLD);
t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 1,
&param, &val);
/*
* Issue a Capability Configuration command to the firmware to get it
* to parse the Configuration File. We don't use t4_fw_config_file()
* because we want the ability to modify various features after we've
* processed the configuration file ...
*/
memset(&caps_cmd, 0, sizeof(caps_cmd));
caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
caps_cmd.cfvalid_to_len16 =
cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
&caps_cmd);
/*
* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
* Configuration File in FLASH), our last gasp effort is to use the
* Firmware Configuration File which is embedded in the firmware. A
* very few early versions of the firmware didn't have one embedded
* but we can ignore those.
*/
if (ret == -ENOENT) {
dev_info(adapter, "%s: Going for embedded config in firmware..\n",
__func__);
memset(&caps_cmd, 0, sizeof(caps_cmd));
caps_cmd.op_to_write =
cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
sizeof(caps_cmd), &caps_cmd);
strcpy(config_name, "Firmware Default");
}
config_issued = 1;
if (ret < 0)
goto bye;
finiver = be32_to_cpu(caps_cmd.finiver);
finicsum = be32_to_cpu(caps_cmd.finicsum);
cfcsum = be32_to_cpu(caps_cmd.cfcsum);
if (finicsum != cfcsum)
dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
finicsum, cfcsum);
/*
* If we're a pure NIC driver then disable all offloading facilities.
* This will allow the firmware to optimize aspects of the hardware
* configuration which will result in improved performance.
*/
caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
caps_cmd.toecaps = 0;
caps_cmd.iscsicaps = 0;
caps_cmd.rdmacaps = 0;
caps_cmd.fcoecaps = 0;
caps_cmd.cryptocaps = 0;
/*
* And now tell the firmware to use the configuration we just loaded.
*/
caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
NULL);
if (ret < 0) {
dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
-ret);
goto bye;
}
/*
* Tweak configuration based on system architecture, etc.
*/
ret = adap_init0_tweaks(adapter);
if (ret < 0) {
dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
goto bye;
}
/*
* And finally tell the firmware to initialize itself using the
* parameters from the Configuration File.
*/
ret = t4_fw_initialize(adapter, adapter->mbox);
if (ret < 0) {
dev_warn(adapter, "Initializing Firmware failed, error %d\n",
-ret);
goto bye;
}
/*
* Return successfully and note that we're operating with parameters
* not supplied by the driver, rather than from hard-wired
* initialization constants buried in the driver.
*/
dev_info(adapter,
"Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
config_name, finiver, cfcsum);
return 0;
/*
* Something bad happened. Return the error ... (If the "error"
* is that there's no Configuration File on the adapter we don't
* want to issue a warning since this is fairly common.)
*/
bye:
if (config_issued && ret != -ENOENT)
dev_warn(adapter, "\"%s\" configuration file error %d\n",
config_name, -ret);
dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
return ret;
}
static int adap_init0(struct adapter *adap)
{
struct fw_caps_config_cmd caps_cmd;
int ret = 0;
u32 v, port_vec;
enum dev_state state;
u32 params[7], val[7];
int reset = 1;
int mbox = adap->mbox;
/*
* Contact FW, advertising Master capability.
*/
ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
if (ret < 0) {
dev_err(adap, "%s: could not connect to FW, error %d\n",
__func__, -ret);
goto bye;
}
CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
adap->mbox, ret);
if (ret == mbox)
adap->flags |= MASTER_PF;
if (state == DEV_STATE_INIT) {
/*
* Force halt and reset FW because a previous instance may have
* exited abnormally without properly shutting down
*/
ret = t4_fw_halt(adap, adap->mbox, reset);
if (ret < 0) {
dev_err(adap, "Failed to halt. Exit.\n");
goto bye;
}
ret = t4_fw_restart(adap, adap->mbox, reset);
if (ret < 0) {
dev_err(adap, "Failed to restart. Exit.\n");
goto bye;
}
state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
}
t4_get_version_info(adap);
ret = t4_get_core_clock(adap, &adap->params.vpd);
if (ret < 0) {
dev_err(adap, "%s: could not get core clock, error %d\n",
__func__, -ret);
goto bye;
}
/*
* If the firmware is initialized already (and we're not forcing a
* master initialization), note that we're living with existing
* adapter parameters. Otherwise, it's time to try initializing the
* adapter ...
*/
if (state == DEV_STATE_INIT) {
dev_info(adap, "Coming up as %s: Adapter already initialized\n",
adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
} else {
dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
ret = adap_init0_config(adap, reset);
if (ret == -ENOENT) {
dev_err(adap,
"No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
goto bye;
}
}
if (ret < 0) {
dev_err(adap, "could not initialize adapter, error %d\n", -ret);
goto bye;
}
/* Now that we've successfully configured and initialized the adapter
* (or found it already initialized), we can ask the Firmware what
* resources it has provisioned for us.
*/
ret = t4_get_pfres(adap);
if (ret) {
dev_err(adap->pdev_dev,
"Unable to retrieve resource provisioning info\n");
goto bye;
}
/* Find out what ports are available to us. */
v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
if (ret < 0) {
dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
__func__, ret);
goto bye;
}
adap->params.nports = hweight32(port_vec);
adap->params.portvec = port_vec;
dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
adap->params.nports);
/*
* Give the SGE code a chance to pull in anything that it needs ...
* Note that this must be called after we retrieve our VPD parameters
* in order to know how to convert core ticks to seconds, etc.
*/
ret = t4_sge_init(adap);
if (ret < 0) {
dev_err(adap, "t4_sge_init failed with error %d\n",
-ret);
goto bye;
}
/*
* Grab some of our basic fundamental operating parameters.
*/
params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
if (ret < 0)
goto bye;
adap->l2t_start = val[0];
adap->l2t_end = val[1];
adap->tids.ftid_base = val[2];
adap->tids.nftids = val[3] - val[2] + 1;
params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
if (ret < 0)
goto bye;
adap->clipt_start = val[0];
adap->clipt_end = val[1];
/*
* Get device capabilities so we can determine what resources we need
* to manage.
*/
memset(&caps_cmd, 0, sizeof(caps_cmd));
caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
&caps_cmd);
if (ret < 0)
goto bye;
if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
is_t6(adap->params.chip)) {
if (cxgbe_init_hash_filter(adap) < 0)
goto bye;
}
/* See if FW supports FW_FILTER2 work request */
if (is_t4(adap->params.chip)) {
adap->params.filter2_wr_support = 0;
} else {
params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1, params, val);
adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
}
/* Check if FW supports returning vin.
* If this is not supported, driver will interpret
* these values from viid.
*/
params[0] = CXGBE_FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1, params, val);
adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
/* query tid-related parameters */
params[0] = CXGBE_FW_PARAM_DEV(NTID);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
params, val);
if (ret < 0)
goto bye;
adap->tids.ntids = val[0];
adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
/* If we're running on newer firmware, let it know that we're
* prepared to deal with encapsulated CPL messages. Older
* firmware won't understand this and we'll just get
* unencapsulated messages ...
*/
params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
val[0] = 1;
(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
/*
* Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
* capability. Earlier versions of the firmware didn't have the
* ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
* permission to use ULPTX MEMWRITE DSGL.
*/
if (is_t4(adap->params.chip)) {
adap->params.ulptx_memwrite_dsgl = false;
} else {
params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1, params, val);
adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
}
/* Query for max number of packets that can be coalesced for Tx */
params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
if (!ret && val[0] > 0)
adap->params.max_tx_coalesce_num = val[0];
else
adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
params[0] = CXGBE_FW_PARAM_DEV(VI_ENABLE_INGRESS_AFTER_LINKUP);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
adap->params.vi_enable_rx = (ret == 0 && val[0] != 0);
/* Read the RAW MPS entries. In T6, the last 2 TCAM entries
* are reserved for RAW MAC addresses (rawf = 2, one per port).
*/
if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
params[0] = CXGBE_FW_PARAM_PFVF(RAWF_START);
params[1] = CXGBE_FW_PARAM_PFVF(RAWF_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
params, val);
if (ret == 0) {
adap->params.rawf_start = val[0];
adap->params.rawf_size = val[1] - val[0] + 1;
}
}
/*
* The MTU/MSS Table is initialized by now, so load their values. If
* we're initializing the adapter, then we'll make any modifications
* we want to the MTU/MSS Table and also initialize the congestion
* parameters.
*/
t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
if (state != DEV_STATE_INIT) {
int i;
/*
* The default MTU Table contains values 1492 and 1500.
* However, for TCP, it's better to have two values which are
* a multiple of 8 +/- 4 bytes apart near this popular MTU.
* This allows us to have a TCP Data Payload which is a
* multiple of 8 regardless of what combination of TCP Options
* are in use (always a multiple of 4 bytes) which is
* important for performance reasons. For instance, if no
* options are in use, then we have a 20-byte IP header and a
* 20-byte TCP header. In this case, a 1500-byte MSS would
* result in a TCP Data Payload of 1500 - 40 == 1460 bytes
* which is not a multiple of 8. So using an MSS of 1488 in
* this case results in a TCP Data Payload of 1448 bytes which
* is a multiple of 8. On the other hand, if 12-byte TCP Time
* Stamps have been negotiated, then an MTU of 1500 bytes
* results in a TCP Data Payload of 1448 bytes which, as
* above, is a multiple of 8 bytes ...
*/
for (i = 0; i < NMTUS; i++)
if (adap->params.mtus[i] == 1492) {
adap->params.mtus[i] = 1488;
break;
}
t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
adap->params.b_wnd);
}
t4_init_sge_params(adap);
ret = configure_filter_mode_mask(adap);
if (ret < 0)
goto bye;
t4_init_tp_params(adap);
configure_pcie_ext_tag(adap);
configure_vlan_types(adap);
cxgbe_configure_max_ethqsets(adap);
adap->params.drv_memwin = MEMWIN_NIC;
adap->flags |= FW_OK;
dev_debug(adap, "%s: returning zero..\n", __func__);
return 0;
/*
* Something bad happened. If a command timed out or failed with EIO
* FW does not operate within its spec or something catastrophic
* happened to HW/FW, stop issuing commands.
*/
bye:
if (ret != -ETIMEDOUT && ret != -EIO)
t4_fw_bye(adap, adap->mbox);
return ret;
}
/**
* t4_os_portmod_changed - handle port module changes
* @adap: the adapter associated with the module change
* @port_id: the port index whose module status has changed
*
* This is the OS-dependent handler for port module changes. It is
* invoked when a port module is removed or inserted for any OS-specific
* processing.
*/
void t4_os_portmod_changed(const struct adapter *adap, int port_id)
{
static const char * const mod_str[] = {
NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
};
const struct port_info *pi = adap2pinfo(adap, port_id);
if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NONE)
dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
else if (pi->link_cfg.mod_type < ARRAY_SIZE(mod_str))
dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
mod_str[pi->link_cfg.mod_type]);
else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
dev_info(adap, "Port%d: unsupported port module inserted\n",
pi->port_id);
else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
dev_info(adap, "Port%d: unknown port module inserted\n",
pi->port_id);
else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_ERROR)
dev_info(adap, "Port%d: transceiver module error\n",
pi->port_id);
else
dev_info(adap, "Port%d: unknown module type %d inserted\n",
pi->port_id, pi->link_cfg.mod_type);
}
void t4_os_link_changed(struct adapter *adap, int port_id)
{
struct port_info *pi = adap2pinfo(adap, port_id);
/* If link status has not changed or if firmware doesn't
* support enabling/disabling VI's Rx path during runtime,
* then return.
*/
if (adap->params.vi_enable_rx == 0 ||
pi->vi_en_rx == pi->link_cfg.link_ok)
return;
/* Don't enable VI Rx path, if link has been administratively
* turned off.
*/
if (pi->vi_en_tx == 0 && pi->vi_en_rx == 0)
return;
/* When link goes down, disable the port's Rx path to drop
* Rx traffic closer to the wire, instead of processing it
* further in the Rx pipeline. The Rx path will be re-enabled
* once the link up message comes in firmware event queue.
*/
pi->vi_en_rx = pi->link_cfg.link_ok;
t4_enable_vi(adap, adap->mbox, pi->viid, pi->vi_en_rx, pi->vi_en_tx);
}
bool cxgbe_force_linkup(struct adapter *adap)
{
if (is_pf4(adap))
return false; /* force_linkup not required for pf driver */
return adap->devargs.force_link_up;
}
/**
* link_start - enable a port
* @dev: the port to enable
*
* Performs the MAC and PHY actions needed to enable a port.
*/
int cxgbe_link_start(struct port_info *pi)
{
struct adapter *adapter = pi->adapter;
u64 conf_offloads;
unsigned int mtu;
int ret;
mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
(RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN);
conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
/*
* We do not set address filters and promiscuity here, the stack does
* that step explicitly.
*/
ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
!!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
true);
if (ret == 0) {
ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
(u8 *)&pi->eth_dev->data->mac_addrs[0]);
if (ret >= 0) {
pi->xact_addr_filt = ret;
ret = 0;
}
}
if (ret == 0 && is_pf4(adapter))
ret = t4_link_l1cfg(pi, pi->link_cfg.admin_caps);
if (ret == 0) {
/* Disable VI Rx until link up message is received in
* firmware event queue, if firmware supports enabling/
* disabling VI Rx at runtime.
*/
pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : 1;
pi->vi_en_tx = 1;
ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
pi->vi_en_rx, pi->vi_en_tx, false);
}
if (ret == 0 && cxgbe_force_linkup(adapter))
pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
return ret;
}
/**
* cxgbe_write_rss_conf - flash the RSS configuration for a given port
* @pi: the port
* @rss_hf: Hash configuration to apply
*/
int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
{
struct adapter *adapter = pi->adapter;
const struct sge_eth_rxq *rxq;
u64 flags = 0;
u16 rss;
int err;
/* Should never be called before setting up sge eth rx queues */
if (!(adapter->flags & FULL_INIT_DONE)) {
dev_err(adap, "%s No RXQs available on port %d\n",
__func__, pi->port_id);
return -EINVAL;
}
/* Don't allow unsupported hash functions */
if (rss_hf & ~CXGBE_RSS_HF_ALL)
return -EINVAL;
if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
F_FW_RSS_VI_CONFIG_CMD_UDPEN;
if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
F_FW_RSS_VI_CONFIG_CMD_UDPEN;
rxq = &adapter->sge.ethrxq[pi->first_rxqset];
rss = rxq[0].rspq.abs_id;
/* If Tunnel All Lookup isn't specified in the global RSS
* Configuration, then we need to specify a default Ingress
* Queue for any ingress packets which aren't hashed. We'll
* use our first ingress queue ...
*/
err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
flags, rss);
return err;
}
/**
* cxgbe_write_rss - write the RSS table for a given port
* @pi: the port
* @queues: array of queue indices for RSS
*
* Sets up the portion of the HW RSS table for the port's VI to distribute
* packets to the Rx queues in @queues.
*/
int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
{
u16 *rss;
int i, err;
struct adapter *adapter = pi->adapter;
const struct sge_eth_rxq *rxq;
/* Should never be called before setting up sge eth rx queues */
BUG_ON(!(adapter->flags & FULL_INIT_DONE));
rxq = &adapter->sge.ethrxq[pi->first_rxqset];
rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
if (!rss)
return -ENOMEM;
/* map the queue indices to queue ids */
for (i = 0; i < pi->rss_size; i++, queues++)
rss[i] = rxq[*queues].rspq.abs_id;
err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
pi->rss_size, rss, pi->rss_size);
rte_free(rss);
return err;
}
/**
* setup_rss - configure RSS
* @adapter: the adapter
*
* Sets up RSS to distribute packets to multiple receive queues. We
* configure the RSS CPU lookup table to distribute to the number of HW
* receive queues, and the response queue lookup table to narrow that
* down to the response queues actually configured for each port.
* We always configure the RSS mapping for all ports since the mapping
* table has plenty of entries.
*/
int cxgbe_setup_rss(struct port_info *pi)
{
int j, err;
struct adapter *adapter = pi->adapter;
dev_debug(adapter, "%s: pi->rss_size = %u; pi->n_rx_qsets = %u\n",
__func__, pi->rss_size, pi->n_rx_qsets);
if (!(pi->flags & PORT_RSS_DONE)) {
if (adapter->flags & FULL_INIT_DONE) {
/* Fill default values with equal distribution */
for (j = 0; j < pi->rss_size; j++)
pi->rss[j] = j % pi->n_rx_qsets;
err = cxgbe_write_rss(pi, pi->rss);
if (err)
return err;
err = cxgbe_write_rss_conf(pi, pi->rss_hf);
if (err)
return err;
pi->flags |= PORT_RSS_DONE;
}
}
return 0;
}
/*
* Enable NAPI scheduling and interrupt generation for all Rx queues.
*/
static void enable_rx(struct adapter *adap, struct sge_rspq *q)
{
/* 0-increment GTS to start the timer and enable interrupts */
t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
V_SEINTARM(q->intr_params) |
V_INGRESSQID(q->cntxt_id));
}
void cxgbe_enable_rx_queues(struct port_info *pi)
{
struct adapter *adap = pi->adapter;
struct sge *s = &adap->sge;
unsigned int i;
for (i = 0; i < pi->n_rx_qsets; i++)
enable_rx(adap, &s->ethrxq[pi->first_rxqset + i].rspq);
}
/**
* fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
* @port_type: Firmware Port Type
* @fw_caps: Firmware Port Capabilities
* @speed_caps: Device Info Speed Capabilities
*
* Translate a Firmware Port Capabilities specification to Device Info
* Speed Capabilities.
*/
static void fw_caps_to_speed_caps(enum fw_port_type port_type,
unsigned int fw_caps,
u32 *speed_caps)
{
#define SET_SPEED(__speed_name) \
do { \
*speed_caps |= ETH_LINK_ ## __speed_name; \
} while (0)
#define FW_CAPS_TO_SPEED(__fw_name) \
do { \
if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
SET_SPEED(__fw_name); \
} while (0)
switch (port_type) {
case FW_PORT_TYPE_BT_SGMII:
case FW_PORT_TYPE_BT_XFI:
case FW_PORT_TYPE_BT_XAUI:
FW_CAPS_TO_SPEED(SPEED_100M);
FW_CAPS_TO_SPEED(SPEED_1G);
FW_CAPS_TO_SPEED(SPEED_10G);
break;
case FW_PORT_TYPE_KX4:
case FW_PORT_TYPE_KX:
case FW_PORT_TYPE_FIBER_XFI:
case FW_PORT_TYPE_FIBER_XAUI:
case FW_PORT_TYPE_SFP:
case FW_PORT_TYPE_QSFP_10G:
case FW_PORT_TYPE_QSA:
FW_CAPS_TO_SPEED(SPEED_1G);
FW_CAPS_TO_SPEED(SPEED_10G);
break;
case FW_PORT_TYPE_KR:
SET_SPEED(SPEED_10G);
break;
case FW_PORT_TYPE_BP_AP:
case FW_PORT_TYPE_BP4_AP:
SET_SPEED(SPEED_1G);
SET_SPEED(SPEED_10G);
break;
case FW_PORT_TYPE_BP40_BA:
case FW_PORT_TYPE_QSFP:
SET_SPEED(SPEED_40G);
break;
case FW_PORT_TYPE_CR_QSFP:
case FW_PORT_TYPE_SFP28:
case FW_PORT_TYPE_KR_SFP28:
FW_CAPS_TO_SPEED(SPEED_1G);
FW_CAPS_TO_SPEED(SPEED_10G);
FW_CAPS_TO_SPEED(SPEED_25G);
break;
case FW_PORT_TYPE_CR2_QSFP:
SET_SPEED(SPEED_50G);
break;
case FW_PORT_TYPE_KR4_100G:
case FW_PORT_TYPE_CR4_QSFP:
FW_CAPS_TO_SPEED(SPEED_25G);
FW_CAPS_TO_SPEED(SPEED_40G);
FW_CAPS_TO_SPEED(SPEED_50G);
FW_CAPS_TO_SPEED(SPEED_100G);
break;
default:
break;
}
#undef FW_CAPS_TO_SPEED
#undef SET_SPEED
}
/**
* cxgbe_get_speed_caps - Fetch supported speed capabilities
* @pi: Underlying port's info
* @speed_caps: Device Info speed capabilities
*
* Fetch supported speed capabilities of the underlying port.
*/
void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
{
*speed_caps = 0;
fw_caps_to_speed_caps(pi->link_cfg.port_type, pi->link_cfg.pcaps,
speed_caps);
if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
*speed_caps |= ETH_LINK_SPEED_FIXED;
}
/**
* cxgbe_set_link_status - Set device link up or down.
* @pi: Underlying port's info
* @status: 0 - down, 1 - up
*
* Set the device link up or down.
*/
int cxgbe_set_link_status(struct port_info *pi, bool status)
{
struct adapter *adapter = pi->adapter;
int err = 0;
/* Wait for link up message from firmware to enable Rx path,
* if firmware supports enabling/disabling VI Rx at runtime.
*/
pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : status;
pi->vi_en_tx = status;
err = t4_enable_vi(adapter, adapter->mbox, pi->viid, pi->vi_en_rx,
pi->vi_en_tx);
if (err) {
dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
return err;
}
if (!status)
t4_reset_link_config(adapter, pi->pidx);
return 0;
}
/**
* cxgb_up - enable the adapter
* @adap: adapter being enabled
*
* Called when the first port is enabled, this function performs the
* actions necessary to make an adapter operational, such as completing
* the initialization of HW modules, and enabling interrupts.
*/
int cxgbe_up(struct adapter *adap)
{
enable_rx(adap, &adap->sge.fw_evtq);
t4_sge_tx_monitor_start(adap);
if (is_pf4(adap))
t4_intr_enable(adap);
adap->flags |= FULL_INIT_DONE;
/* TODO: deadman watchdog ?? */
return 0;
}
/*
* Close the port
*/
int cxgbe_down(struct port_info *pi)
{
return cxgbe_set_link_status(pi, false);
}
/*
* Release resources when all the ports have been stopped.
*/
void cxgbe_close(struct adapter *adapter)
{
if (adapter->flags & FULL_INIT_DONE) {
tid_free(&adapter->tids);
t4_cleanup_mpstcam(adapter);
t4_cleanup_clip_tbl(adapter);
t4_cleanup_l2t(adapter);
t4_cleanup_smt(adapter);
if (is_pf4(adapter))
t4_intr_disable(adapter);
t4_sge_tx_monitor_stop(adapter);
t4_free_sge_resources(adapter);
adapter->flags &= ~FULL_INIT_DONE;
}
cxgbe_cfg_queues_free(adapter);
if (is_pf4(adapter) && (adapter->flags & FW_OK))
t4_fw_bye(adapter, adapter->mbox);
}
static void adap_smt_index(struct adapter *adapter, u32 *smt_start_idx,
u32 *smt_size)
{
u32 params[2], smt_val[2];
int ret;
params[0] = CXGBE_FW_PARAM_PFVF(GET_SMT_START);
params[1] = CXGBE_FW_PARAM_PFVF(GET_SMT_SIZE);
ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2, params, smt_val);
/* if FW doesn't recognize this command then set it to default setting
* which is start index as 0 and size as 256.
*/
if (ret < 0) {
*smt_start_idx = 0;
*smt_size = SMT_SIZE;
} else {
*smt_start_idx = smt_val[0];
/* smt size can be zero, if nsmt is not yet configured in
* the config file or set as zero, then configure all the
* remaining entries to this PF itself.
*/
if (!smt_val[1])
*smt_size = SMT_SIZE - *smt_start_idx;
else
*smt_size = smt_val[1];
}
}
int cxgbe_probe(struct adapter *adapter)
{
u32 smt_start_idx, smt_size;
struct port_info *pi;
int func, i;
int err = 0;
u32 whoami;
int chip;
whoami = t4_read_reg(adapter, A_PL_WHOAMI);
chip = t4_get_chip_type(adapter,
CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
if (chip < 0)
return chip;
func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
adapter->mbox = func;
adapter->pf = func;
t4_os_lock_init(&adapter->mbox_lock);
TAILQ_INIT(&adapter->mbox_list);
t4_os_lock_init(&adapter->win0_lock);
err = t4_prep_adapter(adapter);
if (err)
return err;
setup_memwin(adapter);
err = adap_init0(adapter);
if (err) {
dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
__func__, err);
goto out_free;
}
if (!is_t4(adapter->params.chip)) {
/*
* The userspace doorbell BAR is split evenly into doorbell
* regions, each associated with an egress queue. If this
* per-queue region is large enough (at least UDBS_SEG_SIZE)
* then it can be used to submit a tx work request with an
* implied doorbell. Enable write combining on the BAR if
* there is room for such work requests.
*/
int s_qpp, qpp, num_seg;
s_qpp = (S_QUEUESPERPAGEPF0 +
(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
adapter->pf);
qpp = 1 << ((t4_read_reg(adapter,
A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
& M_QUEUESPERPAGEPF0);
num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
if (qpp > num_seg)
dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
if (!adapter->bar2) {
dev_err(adapter, "cannot map device bar2 region\n");
err = -ENOMEM;
goto out_free;
}
t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
V_STATMODE(0));
}
for_each_port(adapter, i) {
const unsigned int numa_node = rte_socket_id();
char name[RTE_ETH_NAME_MAX_LEN];
struct rte_eth_dev *eth_dev;
snprintf(name, sizeof(name), "%s_%d",
adapter->pdev->device.name, i);
if (i == 0) {
/* First port is already allocated by DPDK */
eth_dev = adapter->eth_dev;
goto allocate_mac;
}
/*
* now do all data allocation - for eth_dev structure,
* and internal (private) data for the remaining ports
*/
/* reserve an ethdev entry */
eth_dev = rte_eth_dev_allocate(name);
if (!eth_dev)
goto out_free;
eth_dev->data->dev_private =
rte_zmalloc_socket(name, sizeof(struct port_info),
RTE_CACHE_LINE_SIZE, numa_node);
if (!eth_dev->data->dev_private)
goto out_free;
allocate_mac:
pi = eth_dev->data->dev_private;
adapter->port[i] = pi;
pi->eth_dev = eth_dev;
pi->adapter = adapter;
pi->xact_addr_filt = -1;
pi->port_id = i;
pi->pidx = i;
pi->eth_dev->device = &adapter->pdev->device;
pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
RTE_ETHER_ADDR_LEN, 0);
if (!pi->eth_dev->data->mac_addrs) {
dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
__func__);
err = -1;
goto out_free;
}
if (i > 0) {
/* First port will be notified by upper layer */
rte_eth_dev_probing_finish(eth_dev);
}
}
if (adapter->flags & FW_OK) {
err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
if (err) {
dev_err(adapter, "%s: t4_port_init failed with err %d\n",
__func__, err);
goto out_free;
}
}
err = cxgbe_cfg_queues(adapter->eth_dev);
if (err)
goto out_free;
cxgbe_print_adapter_info(adapter);
cxgbe_print_port_info(adapter);
adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
adapter->clipt_end);
if (!adapter->clipt) {
/* We tolerate a lack of clip_table, giving up some
* functionality
*/
dev_warn(adapter, "could not allocate CLIP. Continuing\n");
}
adap_smt_index(adapter, &smt_start_idx, &smt_size);
adapter->smt = t4_init_smt(smt_start_idx, smt_size);
if (!adapter->smt)
dev_warn(adapter, "could not allocate SMT, continuing\n");
adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
if (!adapter->l2t) {
/* We tolerate a lack of L2T, giving up some functionality */
dev_warn(adapter, "could not allocate L2T. Continuing\n");
}
if (tid_init(&adapter->tids) < 0) {
/* Disable filtering support */
dev_warn(adapter, "could not allocate TID table, "
"filter support disabled. Continuing\n");
}
t4_os_lock_init(&adapter->flow_lock);
adapter->mpstcam = t4_init_mpstcam(adapter);
if (!adapter->mpstcam)
dev_warn(adapter, "could not allocate mps tcam table."
" Continuing\n");
if (is_hashfilter(adapter)) {
if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
u32 hash_base, hash_reg;
hash_reg = A_LE_DB_TID_HASHBASE;
hash_base = t4_read_reg(adapter, hash_reg);
adapter->tids.hash_base = hash_base / 4;
}
} else {
/* Disable hash filtering support */
dev_warn(adapter,
"Maskless filter support disabled. Continuing\n");
}
err = cxgbe_init_rss(adapter);
if (err)
goto out_free;
return 0;
out_free:
cxgbe_cfg_queues_free(adapter);
for_each_port(adapter, i) {
pi = adap2pinfo(adapter, i);
if (pi->viid != 0)
t4_free_vi(adapter, adapter->mbox, adapter->pf,
0, pi->viid);
rte_eth_dev_release_port(pi->eth_dev);
}
if (adapter->flags & FW_OK)
t4_fw_bye(adapter, adapter->mbox);
return -err;
}