numam-dpdk/lib/librte_fib/dir24_8.c
Vladimir Medvedkin 7dc7868b20 fib: add DIR24-8 dataplane algorithm
Add fib implementation for DIR24_8 algorithm for IPv4.
Implementation is similar to current LPM implementation but has
few enhancements:
faster control plane operations
more bits for userdata in table entries
configurable userdata size

Signed-off-by: Vladimir Medvedkin <vladimir.medvedkin@intel.com>
2019-11-06 00:11:44 +01:00

738 lines
18 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Vladimir Medvedkin <medvedkinv@gmail.com>
* Copyright(c) 2019 Intel Corporation
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <rte_debug.h>
#include <rte_malloc.h>
#include <rte_prefetch.h>
#include <rte_errno.h>
#include <rte_memory.h>
#include <rte_branch_prediction.h>
#include <rte_fib.h>
#include <rte_rib.h>
#include "dir24_8.h"
#define DIR24_8_NAMESIZE 64
#define DIR24_8_TBL24_NUM_ENT (1 << 24)
#define DIR24_8_TBL8_GRP_NUM_ENT 256U
#define DIR24_8_EXT_ENT 1
#define DIR24_8_TBL24_MASK 0xffffff00
#define BITMAP_SLAB_BIT_SIZE_LOG2 6
#define BITMAP_SLAB_BIT_SIZE (1 << BITMAP_SLAB_BIT_SIZE_LOG2)
#define BITMAP_SLAB_BITMASK (BITMAP_SLAB_BIT_SIZE - 1)
struct dir24_8_tbl {
uint32_t number_tbl8s; /**< Total number of tbl8s */
uint32_t rsvd_tbl8s; /**< Number of reserved tbl8s */
uint32_t cur_tbl8s; /**< Current number of tbl8s */
enum rte_fib_dir24_8_nh_sz nh_sz; /**< Size of nexthop entry */
uint64_t def_nh; /**< Default next hop */
uint64_t *tbl8; /**< tbl8 table. */
uint64_t *tbl8_idxes; /**< bitmap containing free tbl8 idxes*/
/* tbl24 table. */
__extension__ uint64_t tbl24[0] __rte_cache_aligned;
};
#define ROUNDUP(x, y) RTE_ALIGN_CEIL(x, (1 << (32 - y)))
enum lookup_type {
MACRO,
INLINE,
UNI
};
enum lookup_type test_lookup = MACRO;
static inline void *
get_tbl24_p(struct dir24_8_tbl *dp, uint32_t ip, uint8_t nh_sz)
{
return (void *)&((uint8_t *)dp->tbl24)[(ip &
DIR24_8_TBL24_MASK) >> (8 - nh_sz)];
}
static inline uint8_t
bits_in_nh(uint8_t nh_sz)
{
return 8 * (1 << nh_sz);
}
static inline uint64_t
get_max_nh(uint8_t nh_sz)
{
return ((1ULL << (bits_in_nh(nh_sz) - 1)) - 1);
}
static inline uint32_t
get_tbl24_idx(uint32_t ip)
{
return ip >> 8;
}
static inline uint32_t
get_tbl8_idx(uint32_t res, uint32_t ip)
{
return (res >> 1) * DIR24_8_TBL8_GRP_NUM_ENT + (uint8_t)ip;
}
static inline uint64_t
lookup_msk(uint8_t nh_sz)
{
return ((1ULL << ((1 << (nh_sz + 3)) - 1)) << 1) - 1;
}
static inline uint8_t
get_psd_idx(uint32_t val, uint8_t nh_sz)
{
return val & ((1 << (3 - nh_sz)) - 1);
}
static inline uint32_t
get_tbl_idx(uint32_t val, uint8_t nh_sz)
{
return val >> (3 - nh_sz);
}
static inline uint64_t
get_tbl24(struct dir24_8_tbl *dp, uint32_t ip, uint8_t nh_sz)
{
return ((dp->tbl24[get_tbl_idx(get_tbl24_idx(ip), nh_sz)] >>
(get_psd_idx(get_tbl24_idx(ip), nh_sz) *
bits_in_nh(nh_sz))) & lookup_msk(nh_sz));
}
static inline uint64_t
get_tbl8(struct dir24_8_tbl *dp, uint32_t res, uint32_t ip, uint8_t nh_sz)
{
return ((dp->tbl8[get_tbl_idx(get_tbl8_idx(res, ip), nh_sz)] >>
(get_psd_idx(get_tbl8_idx(res, ip), nh_sz) *
bits_in_nh(nh_sz))) & lookup_msk(nh_sz));
}
static inline int
is_entry_extended(uint64_t ent)
{
return (ent & DIR24_8_EXT_ENT) == DIR24_8_EXT_ENT;
}
#define LOOKUP_FUNC(suffix, type, bulk_prefetch, nh_sz) \
static void dir24_8_lookup_bulk_##suffix(void *p, const uint32_t *ips, \
uint64_t *next_hops, const unsigned int n) \
{ \
struct dir24_8_tbl *dp = (struct dir24_8_tbl *)p; \
uint64_t tmp; \
uint32_t i; \
uint32_t prefetch_offset = \
RTE_MIN((unsigned int)bulk_prefetch, n); \
\
for (i = 0; i < prefetch_offset; i++) \
rte_prefetch0(get_tbl24_p(dp, ips[i], nh_sz)); \
for (i = 0; i < (n - prefetch_offset); i++) { \
rte_prefetch0(get_tbl24_p(dp, \
ips[i + prefetch_offset], nh_sz)); \
tmp = ((type *)dp->tbl24)[ips[i] >> 8]; \
if (unlikely(is_entry_extended(tmp))) \
tmp = ((type *)dp->tbl8)[(uint8_t)ips[i] + \
((tmp >> 1) * DIR24_8_TBL8_GRP_NUM_ENT)]; \
next_hops[i] = tmp >> 1; \
} \
for (; i < n; i++) { \
tmp = ((type *)dp->tbl24)[ips[i] >> 8]; \
if (unlikely(is_entry_extended(tmp))) \
tmp = ((type *)dp->tbl8)[(uint8_t)ips[i] + \
((tmp >> 1) * DIR24_8_TBL8_GRP_NUM_ENT)]; \
next_hops[i] = tmp >> 1; \
} \
} \
LOOKUP_FUNC(1b, uint8_t, 5, 0)
LOOKUP_FUNC(2b, uint16_t, 6, 1)
LOOKUP_FUNC(4b, uint32_t, 15, 2)
LOOKUP_FUNC(8b, uint64_t, 12, 3)
static inline void
dir24_8_lookup_bulk(struct dir24_8_tbl *dp, const uint32_t *ips,
uint64_t *next_hops, const unsigned int n, uint8_t nh_sz)
{
uint64_t tmp;
uint32_t i;
uint32_t prefetch_offset = RTE_MIN(15U, n);
for (i = 0; i < prefetch_offset; i++)
rte_prefetch0(get_tbl24_p(dp, ips[i], nh_sz));
for (i = 0; i < (n - prefetch_offset); i++) {
rte_prefetch0(get_tbl24_p(dp, ips[i + prefetch_offset],
nh_sz));
tmp = get_tbl24(dp, ips[i], nh_sz);
if (unlikely(is_entry_extended(tmp)))
tmp = get_tbl8(dp, tmp, ips[i], nh_sz);
next_hops[i] = tmp >> 1;
}
for (; i < n; i++) {
tmp = get_tbl24(dp, ips[i], nh_sz);
if (unlikely(is_entry_extended(tmp)))
tmp = get_tbl8(dp, tmp, ips[i], nh_sz);
next_hops[i] = tmp >> 1;
}
}
static void
dir24_8_lookup_bulk_0(void *p, const uint32_t *ips,
uint64_t *next_hops, const unsigned int n)
{
struct dir24_8_tbl *dp = (struct dir24_8_tbl *)p;
dir24_8_lookup_bulk(dp, ips, next_hops, n, 0);
}
static void
dir24_8_lookup_bulk_1(void *p, const uint32_t *ips,
uint64_t *next_hops, const unsigned int n)
{
struct dir24_8_tbl *dp = (struct dir24_8_tbl *)p;
dir24_8_lookup_bulk(dp, ips, next_hops, n, 1);
}
static void
dir24_8_lookup_bulk_2(void *p, const uint32_t *ips,
uint64_t *next_hops, const unsigned int n)
{
struct dir24_8_tbl *dp = (struct dir24_8_tbl *)p;
dir24_8_lookup_bulk(dp, ips, next_hops, n, 2);
}
static void
dir24_8_lookup_bulk_3(void *p, const uint32_t *ips,
uint64_t *next_hops, const unsigned int n)
{
struct dir24_8_tbl *dp = (struct dir24_8_tbl *)p;
dir24_8_lookup_bulk(dp, ips, next_hops, n, 3);
}
static void
dir24_8_lookup_bulk_uni(void *p, const uint32_t *ips,
uint64_t *next_hops, const unsigned int n)
{
struct dir24_8_tbl *dp = (struct dir24_8_tbl *)p;
uint64_t tmp;
uint32_t i;
uint32_t prefetch_offset = RTE_MIN(15U, n);
uint8_t nh_sz = dp->nh_sz;
for (i = 0; i < prefetch_offset; i++)
rte_prefetch0(get_tbl24_p(dp, ips[i], nh_sz));
for (i = 0; i < (n - prefetch_offset); i++) {
rte_prefetch0(get_tbl24_p(dp, ips[i + prefetch_offset],
nh_sz));
tmp = get_tbl24(dp, ips[i], nh_sz);
if (unlikely(is_entry_extended(tmp)))
tmp = get_tbl8(dp, tmp, ips[i], nh_sz);
next_hops[i] = tmp >> 1;
}
for (; i < n; i++) {
tmp = get_tbl24(dp, ips[i], nh_sz);
if (unlikely(is_entry_extended(tmp)))
tmp = get_tbl8(dp, tmp, ips[i], nh_sz);
next_hops[i] = tmp >> 1;
}
}
rte_fib_lookup_fn_t
dir24_8_get_lookup_fn(struct rte_fib_conf *fib_conf)
{
enum rte_fib_dir24_8_nh_sz nh_sz = fib_conf->dir24_8.nh_sz;
if (test_lookup == MACRO) {
switch (nh_sz) {
case RTE_FIB_DIR24_8_1B:
return dir24_8_lookup_bulk_1b;
case RTE_FIB_DIR24_8_2B:
return dir24_8_lookup_bulk_2b;
case RTE_FIB_DIR24_8_4B:
return dir24_8_lookup_bulk_4b;
case RTE_FIB_DIR24_8_8B:
return dir24_8_lookup_bulk_8b;
}
} else if (test_lookup == INLINE) {
switch (nh_sz) {
case RTE_FIB_DIR24_8_1B:
return dir24_8_lookup_bulk_0;
case RTE_FIB_DIR24_8_2B:
return dir24_8_lookup_bulk_1;
case RTE_FIB_DIR24_8_4B:
return dir24_8_lookup_bulk_2;
case RTE_FIB_DIR24_8_8B:
return dir24_8_lookup_bulk_3;
}
} else
return dir24_8_lookup_bulk_uni;
return NULL;
}
static void
write_to_fib(void *ptr, uint64_t val, enum rte_fib_dir24_8_nh_sz size, int n)
{
int i;
uint8_t *ptr8 = (uint8_t *)ptr;
uint16_t *ptr16 = (uint16_t *)ptr;
uint32_t *ptr32 = (uint32_t *)ptr;
uint64_t *ptr64 = (uint64_t *)ptr;
switch (size) {
case RTE_FIB_DIR24_8_1B:
for (i = 0; i < n; i++)
ptr8[i] = (uint8_t)val;
break;
case RTE_FIB_DIR24_8_2B:
for (i = 0; i < n; i++)
ptr16[i] = (uint16_t)val;
break;
case RTE_FIB_DIR24_8_4B:
for (i = 0; i < n; i++)
ptr32[i] = (uint32_t)val;
break;
case RTE_FIB_DIR24_8_8B:
for (i = 0; i < n; i++)
ptr64[i] = (uint64_t)val;
break;
}
}
static int
tbl8_get_idx(struct dir24_8_tbl *dp)
{
uint32_t i;
int bit_idx;
for (i = 0; (i < (dp->number_tbl8s >> BITMAP_SLAB_BIT_SIZE_LOG2)) &&
(dp->tbl8_idxes[i] == UINT64_MAX); i++)
;
if (i < (dp->number_tbl8s >> BITMAP_SLAB_BIT_SIZE_LOG2)) {
bit_idx = __builtin_ctzll(~dp->tbl8_idxes[i]);
dp->tbl8_idxes[i] |= (1ULL << bit_idx);
return (i << BITMAP_SLAB_BIT_SIZE_LOG2) + bit_idx;
}
return -ENOSPC;
}
static inline void
tbl8_free_idx(struct dir24_8_tbl *dp, int idx)
{
dp->tbl8_idxes[idx >> BITMAP_SLAB_BIT_SIZE_LOG2] &=
~(1ULL << (idx & BITMAP_SLAB_BITMASK));
}
static int
tbl8_alloc(struct dir24_8_tbl *dp, uint64_t nh)
{
int64_t tbl8_idx;
uint8_t *tbl8_ptr;
tbl8_idx = tbl8_get_idx(dp);
if (tbl8_idx < 0)
return tbl8_idx;
tbl8_ptr = (uint8_t *)dp->tbl8 +
((tbl8_idx * DIR24_8_TBL8_GRP_NUM_ENT) <<
dp->nh_sz);
/*Init tbl8 entries with nexthop from tbl24*/
write_to_fib((void *)tbl8_ptr, nh|
DIR24_8_EXT_ENT, dp->nh_sz,
DIR24_8_TBL8_GRP_NUM_ENT);
dp->cur_tbl8s++;
return tbl8_idx;
}
static void
tbl8_recycle(struct dir24_8_tbl *dp, uint32_t ip, uint64_t tbl8_idx)
{
uint32_t i;
uint64_t nh;
uint8_t *ptr8;
uint16_t *ptr16;
uint32_t *ptr32;
uint64_t *ptr64;
switch (dp->nh_sz) {
case RTE_FIB_DIR24_8_1B:
ptr8 = &((uint8_t *)dp->tbl8)[tbl8_idx *
DIR24_8_TBL8_GRP_NUM_ENT];
nh = *ptr8;
for (i = 1; i < DIR24_8_TBL8_GRP_NUM_ENT; i++) {
if (nh != ptr8[i])
return;
}
((uint8_t *)dp->tbl24)[ip >> 8] =
nh & ~DIR24_8_EXT_ENT;
for (i = 0; i < DIR24_8_TBL8_GRP_NUM_ENT; i++)
ptr8[i] = 0;
break;
case RTE_FIB_DIR24_8_2B:
ptr16 = &((uint16_t *)dp->tbl8)[tbl8_idx *
DIR24_8_TBL8_GRP_NUM_ENT];
nh = *ptr16;
for (i = 1; i < DIR24_8_TBL8_GRP_NUM_ENT; i++) {
if (nh != ptr16[i])
return;
}
((uint16_t *)dp->tbl24)[ip >> 8] =
nh & ~DIR24_8_EXT_ENT;
for (i = 0; i < DIR24_8_TBL8_GRP_NUM_ENT; i++)
ptr16[i] = 0;
break;
case RTE_FIB_DIR24_8_4B:
ptr32 = &((uint32_t *)dp->tbl8)[tbl8_idx *
DIR24_8_TBL8_GRP_NUM_ENT];
nh = *ptr32;
for (i = 1; i < DIR24_8_TBL8_GRP_NUM_ENT; i++) {
if (nh != ptr32[i])
return;
}
((uint32_t *)dp->tbl24)[ip >> 8] =
nh & ~DIR24_8_EXT_ENT;
for (i = 0; i < DIR24_8_TBL8_GRP_NUM_ENT; i++)
ptr32[i] = 0;
break;
case RTE_FIB_DIR24_8_8B:
ptr64 = &((uint64_t *)dp->tbl8)[tbl8_idx *
DIR24_8_TBL8_GRP_NUM_ENT];
nh = *ptr64;
for (i = 1; i < DIR24_8_TBL8_GRP_NUM_ENT; i++) {
if (nh != ptr64[i])
return;
}
((uint64_t *)dp->tbl24)[ip >> 8] =
nh & ~DIR24_8_EXT_ENT;
for (i = 0; i < DIR24_8_TBL8_GRP_NUM_ENT; i++)
ptr64[i] = 0;
break;
}
tbl8_free_idx(dp, tbl8_idx);
dp->cur_tbl8s--;
}
static int
install_to_fib(struct dir24_8_tbl *dp, uint32_t ledge, uint32_t redge,
uint64_t next_hop)
{
uint64_t tbl24_tmp;
int tbl8_idx;
int tmp_tbl8_idx;
uint8_t *tbl8_ptr;
uint32_t len;
len = ((ledge == 0) && (redge == 0)) ? 1 << 24 :
((redge & DIR24_8_TBL24_MASK) - ROUNDUP(ledge, 24)) >> 8;
if (((ledge >> 8) != (redge >> 8)) || (len == 1 << 24)) {
if ((ROUNDUP(ledge, 24) - ledge) != 0) {
tbl24_tmp = get_tbl24(dp, ledge, dp->nh_sz);
if ((tbl24_tmp & DIR24_8_EXT_ENT) !=
DIR24_8_EXT_ENT) {
/**
* Make sure there is space for two TBL8.
* This is necessary when installing range that
* needs tbl8 for ledge and redge.
*/
tbl8_idx = tbl8_alloc(dp, tbl24_tmp);
tmp_tbl8_idx = tbl8_get_idx(dp);
if (tbl8_idx < 0)
return -ENOSPC;
else if (tmp_tbl8_idx < 0) {
tbl8_free_idx(dp, tbl8_idx);
return -ENOSPC;
}
tbl8_free_idx(dp, tmp_tbl8_idx);
/*update dir24 entry with tbl8 index*/
write_to_fib(get_tbl24_p(dp, ledge,
dp->nh_sz), (tbl8_idx << 1)|
DIR24_8_EXT_ENT,
dp->nh_sz, 1);
} else
tbl8_idx = tbl24_tmp >> 1;
tbl8_ptr = (uint8_t *)dp->tbl8 +
(((tbl8_idx * DIR24_8_TBL8_GRP_NUM_ENT) +
(ledge & ~DIR24_8_TBL24_MASK)) <<
dp->nh_sz);
/*update tbl8 with new next hop*/
write_to_fib((void *)tbl8_ptr, (next_hop << 1)|
DIR24_8_EXT_ENT,
dp->nh_sz, ROUNDUP(ledge, 24) - ledge);
tbl8_recycle(dp, ledge, tbl8_idx);
}
write_to_fib(get_tbl24_p(dp, ROUNDUP(ledge, 24), dp->nh_sz),
next_hop << 1, dp->nh_sz, len);
if (redge & ~DIR24_8_TBL24_MASK) {
tbl24_tmp = get_tbl24(dp, redge, dp->nh_sz);
if ((tbl24_tmp & DIR24_8_EXT_ENT) !=
DIR24_8_EXT_ENT) {
tbl8_idx = tbl8_alloc(dp, tbl24_tmp);
if (tbl8_idx < 0)
return -ENOSPC;
/*update dir24 entry with tbl8 index*/
write_to_fib(get_tbl24_p(dp, redge,
dp->nh_sz), (tbl8_idx << 1)|
DIR24_8_EXT_ENT,
dp->nh_sz, 1);
} else
tbl8_idx = tbl24_tmp >> 1;
tbl8_ptr = (uint8_t *)dp->tbl8 +
((tbl8_idx * DIR24_8_TBL8_GRP_NUM_ENT) <<
dp->nh_sz);
/*update tbl8 with new next hop*/
write_to_fib((void *)tbl8_ptr, (next_hop << 1)|
DIR24_8_EXT_ENT,
dp->nh_sz, redge & ~DIR24_8_TBL24_MASK);
tbl8_recycle(dp, redge, tbl8_idx);
}
} else if ((redge - ledge) != 0) {
tbl24_tmp = get_tbl24(dp, ledge, dp->nh_sz);
if ((tbl24_tmp & DIR24_8_EXT_ENT) !=
DIR24_8_EXT_ENT) {
tbl8_idx = tbl8_alloc(dp, tbl24_tmp);
if (tbl8_idx < 0)
return -ENOSPC;
/*update dir24 entry with tbl8 index*/
write_to_fib(get_tbl24_p(dp, ledge, dp->nh_sz),
(tbl8_idx << 1)|
DIR24_8_EXT_ENT,
dp->nh_sz, 1);
} else
tbl8_idx = tbl24_tmp >> 1;
tbl8_ptr = (uint8_t *)dp->tbl8 +
(((tbl8_idx * DIR24_8_TBL8_GRP_NUM_ENT) +
(ledge & ~DIR24_8_TBL24_MASK)) <<
dp->nh_sz);
/*update tbl8 with new next hop*/
write_to_fib((void *)tbl8_ptr, (next_hop << 1)|
DIR24_8_EXT_ENT,
dp->nh_sz, redge - ledge);
tbl8_recycle(dp, ledge, tbl8_idx);
}
return 0;
}
static int
modify_fib(struct dir24_8_tbl *dp, struct rte_rib *rib, uint32_t ip,
uint8_t depth, uint64_t next_hop)
{
struct rte_rib_node *tmp = NULL;
uint32_t ledge, redge, tmp_ip;
int ret;
uint8_t tmp_depth;
ledge = ip;
do {
tmp = rte_rib_get_nxt(rib, ip, depth, tmp,
RTE_RIB_GET_NXT_COVER);
if (tmp != NULL) {
rte_rib_get_depth(tmp, &tmp_depth);
if (tmp_depth == depth)
continue;
rte_rib_get_ip(tmp, &tmp_ip);
redge = tmp_ip & rte_rib_depth_to_mask(tmp_depth);
if (ledge == redge) {
ledge = redge +
(uint32_t)(1ULL << (32 - tmp_depth));
continue;
}
ret = install_to_fib(dp, ledge, redge,
next_hop);
if (ret != 0)
return ret;
ledge = redge +
(uint32_t)(1ULL << (32 - tmp_depth));
} else {
redge = ip + (uint32_t)(1ULL << (32 - depth));
if (ledge == redge)
break;
ret = install_to_fib(dp, ledge, redge,
next_hop);
if (ret != 0)
return ret;
}
} while (tmp);
return 0;
}
int
dir24_8_modify(struct rte_fib *fib, uint32_t ip, uint8_t depth,
uint64_t next_hop, int op)
{
struct dir24_8_tbl *dp;
struct rte_rib *rib;
struct rte_rib_node *tmp = NULL;
struct rte_rib_node *node;
struct rte_rib_node *parent;
int ret = 0;
uint64_t par_nh, node_nh;
if ((fib == NULL) || (depth > RTE_FIB_MAXDEPTH))
return -EINVAL;
dp = rte_fib_get_dp(fib);
rib = rte_fib_get_rib(fib);
RTE_ASSERT((dp != NULL) && (rib != NULL));
if (next_hop > get_max_nh(dp->nh_sz))
return -EINVAL;
ip &= rte_rib_depth_to_mask(depth);
node = rte_rib_lookup_exact(rib, ip, depth);
switch (op) {
case RTE_FIB_ADD:
if (node != NULL) {
rte_rib_get_nh(node, &node_nh);
if (node_nh == next_hop)
return 0;
ret = modify_fib(dp, rib, ip, depth, next_hop);
if (ret == 0)
rte_rib_set_nh(node, next_hop);
return 0;
}
if (depth > 24) {
tmp = rte_rib_get_nxt(rib, ip, 24, NULL,
RTE_RIB_GET_NXT_COVER);
if ((tmp == NULL) &&
(dp->rsvd_tbl8s >= dp->number_tbl8s))
return -ENOSPC;
}
node = rte_rib_insert(rib, ip, depth);
if (node == NULL)
return -rte_errno;
rte_rib_set_nh(node, next_hop);
parent = rte_rib_lookup_parent(node);
if (parent != NULL) {
rte_rib_get_nh(parent, &par_nh);
if (par_nh == next_hop)
return 0;
}
ret = modify_fib(dp, rib, ip, depth, next_hop);
if (ret != 0) {
rte_rib_remove(rib, ip, depth);
return ret;
}
if ((depth > 24) && (tmp == NULL))
dp->rsvd_tbl8s++;
return 0;
case RTE_FIB_DEL:
if (node == NULL)
return -ENOENT;
parent = rte_rib_lookup_parent(node);
if (parent != NULL) {
rte_rib_get_nh(parent, &par_nh);
rte_rib_get_nh(node, &node_nh);
if (par_nh != node_nh)
ret = modify_fib(dp, rib, ip, depth, par_nh);
} else
ret = modify_fib(dp, rib, ip, depth, dp->def_nh);
if (ret == 0) {
rte_rib_remove(rib, ip, depth);
if (depth > 24) {
tmp = rte_rib_get_nxt(rib, ip, 24, NULL,
RTE_RIB_GET_NXT_COVER);
if (tmp == NULL)
dp->rsvd_tbl8s--;
}
}
return ret;
default:
break;
}
return -EINVAL;
}
void *
dir24_8_create(const char *name, int socket_id, struct rte_fib_conf *fib_conf)
{
char mem_name[DIR24_8_NAMESIZE];
struct dir24_8_tbl *dp;
uint64_t def_nh;
uint32_t num_tbl8;
enum rte_fib_dir24_8_nh_sz nh_sz;
if ((name == NULL) || (fib_conf == NULL) ||
(fib_conf->dir24_8.nh_sz < RTE_FIB_DIR24_8_1B) ||
(fib_conf->dir24_8.nh_sz > RTE_FIB_DIR24_8_8B) ||
(fib_conf->dir24_8.num_tbl8 >
get_max_nh(fib_conf->dir24_8.nh_sz)) ||
(fib_conf->dir24_8.num_tbl8 == 0) ||
(fib_conf->default_nh >
get_max_nh(fib_conf->dir24_8.nh_sz))) {
rte_errno = EINVAL;
return NULL;
}
def_nh = fib_conf->default_nh;
nh_sz = fib_conf->dir24_8.nh_sz;
num_tbl8 = RTE_ALIGN_CEIL(fib_conf->dir24_8.num_tbl8,
BITMAP_SLAB_BIT_SIZE);
snprintf(mem_name, sizeof(mem_name), "DP_%s", name);
dp = rte_zmalloc_socket(name, sizeof(struct dir24_8_tbl) +
DIR24_8_TBL24_NUM_ENT * (1 << nh_sz), RTE_CACHE_LINE_SIZE,
socket_id);
if (dp == NULL) {
rte_errno = ENOMEM;
return NULL;
}
/* Init table with default value */
write_to_fib(dp->tbl24, (def_nh << 1), nh_sz, 1 << 24);
snprintf(mem_name, sizeof(mem_name), "TBL8_%p", dp);
uint64_t tbl8_sz = DIR24_8_TBL8_GRP_NUM_ENT * (1ULL << nh_sz) *
(num_tbl8 + 1);
dp->tbl8 = rte_zmalloc_socket(mem_name, tbl8_sz,
RTE_CACHE_LINE_SIZE, socket_id);
if (dp->tbl8 == NULL) {
rte_errno = ENOMEM;
rte_free(dp);
return NULL;
}
dp->def_nh = def_nh;
dp->nh_sz = nh_sz;
dp->number_tbl8s = num_tbl8;
snprintf(mem_name, sizeof(mem_name), "TBL8_idxes_%p", dp);
dp->tbl8_idxes = rte_zmalloc_socket(mem_name,
RTE_ALIGN_CEIL(dp->number_tbl8s, 64) >> 3,
RTE_CACHE_LINE_SIZE, socket_id);
if (dp->tbl8_idxes == NULL) {
rte_errno = ENOMEM;
rte_free(dp->tbl8);
rte_free(dp);
return NULL;
}
return dp;
}
void
dir24_8_free(void *p)
{
struct dir24_8_tbl *dp = (struct dir24_8_tbl *)p;
rte_free(dp->tbl8_idxes);
rte_free(dp->tbl8);
rte_free(dp);
}