numam-dpdk/drivers/net/enic/enic_rxtx.c
John Daley c3e09182bc net/enic: support scatter Rx in MTU update
Re-initialize Rq's when MTU is changed. This allows for more
efficient use of mbufs when moving from an MTU that is greater
than the mbuf size to one that is less. Also move to using Rx
scatter mode when moving from an MTU less than the mbuf size
to one that is greater.

Signed-off-by: Nelson Escobar <neescoba@cisco.com>
Signed-off-by: John Daley <johndale@cisco.com>
2016-09-30 12:27:18 +02:00

569 lines
15 KiB
C

/* Copyright 2008-2016 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* Copyright (c) 2014, Cisco Systems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_mbuf.h>
#include <rte_ethdev.h>
#include <rte_prefetch.h>
#include "enic_compat.h"
#include "rq_enet_desc.h"
#include "enic.h"
#define RTE_PMD_USE_PREFETCH
#ifdef RTE_PMD_USE_PREFETCH
/*Prefetch a cache line into all cache levels. */
#define rte_enic_prefetch(p) rte_prefetch0(p)
#else
#define rte_enic_prefetch(p) do {} while (0)
#endif
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while (0)
#endif
static inline uint16_t
enic_cq_rx_desc_ciflags(struct cq_enet_rq_desc *crd)
{
return le16_to_cpu(crd->completed_index_flags) & ~CQ_DESC_COMP_NDX_MASK;
}
static inline uint16_t
enic_cq_rx_desc_bwflags(struct cq_enet_rq_desc *crd)
{
return le16_to_cpu(crd->bytes_written_flags) &
~CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
}
static inline uint8_t
enic_cq_rx_desc_packet_error(uint16_t bwflags)
{
return (bwflags & CQ_ENET_RQ_DESC_FLAGS_TRUNCATED) ==
CQ_ENET_RQ_DESC_FLAGS_TRUNCATED;
}
static inline uint8_t
enic_cq_rx_desc_eop(uint16_t ciflags)
{
return (ciflags & CQ_ENET_RQ_DESC_FLAGS_EOP)
== CQ_ENET_RQ_DESC_FLAGS_EOP;
}
static inline uint8_t
enic_cq_rx_desc_csum_not_calc(struct cq_enet_rq_desc *cqrd)
{
return (le16_to_cpu(cqrd->q_number_rss_type_flags) &
CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC) ==
CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC;
}
static inline uint8_t
enic_cq_rx_desc_ipv4_csum_ok(struct cq_enet_rq_desc *cqrd)
{
return (cqrd->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK) ==
CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK;
}
static inline uint8_t
enic_cq_rx_desc_tcp_udp_csum_ok(struct cq_enet_rq_desc *cqrd)
{
return (cqrd->flags & CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK) ==
CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK;
}
static inline uint8_t
enic_cq_rx_desc_rss_type(struct cq_enet_rq_desc *cqrd)
{
return (uint8_t)((le16_to_cpu(cqrd->q_number_rss_type_flags) >>
CQ_DESC_Q_NUM_BITS) & CQ_ENET_RQ_DESC_RSS_TYPE_MASK);
}
static inline uint32_t
enic_cq_rx_desc_rss_hash(struct cq_enet_rq_desc *cqrd)
{
return le32_to_cpu(cqrd->rss_hash);
}
static inline uint16_t
enic_cq_rx_desc_vlan(struct cq_enet_rq_desc *cqrd)
{
return le16_to_cpu(cqrd->vlan);
}
static inline uint16_t
enic_cq_rx_desc_n_bytes(struct cq_desc *cqd)
{
struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
return le16_to_cpu(cqrd->bytes_written_flags) &
CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
}
static inline uint8_t
enic_cq_rx_check_err(struct cq_desc *cqd)
{
struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
uint16_t bwflags;
bwflags = enic_cq_rx_desc_bwflags(cqrd);
if (unlikely(enic_cq_rx_desc_packet_error(bwflags)))
return 1;
return 0;
}
/* Lookup table to translate RX CQ flags to mbuf flags. */
static inline uint32_t
enic_cq_rx_flags_to_pkt_type(struct cq_desc *cqd)
{
struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
uint8_t cqrd_flags = cqrd->flags;
static const uint32_t cq_type_table[128] __rte_cache_aligned = {
[0x00] = RTE_PTYPE_UNKNOWN,
[0x20] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN
| RTE_PTYPE_L4_NONFRAG,
[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN
| RTE_PTYPE_L4_UDP,
[0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN
| RTE_PTYPE_L4_TCP,
[0x60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN
| RTE_PTYPE_L4_FRAG,
[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN
| RTE_PTYPE_L4_UDP,
[0x64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN
| RTE_PTYPE_L4_TCP,
[0x10] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN
| RTE_PTYPE_L4_NONFRAG,
[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN
| RTE_PTYPE_L4_UDP,
[0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN
| RTE_PTYPE_L4_TCP,
[0x50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN
| RTE_PTYPE_L4_FRAG,
[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN
| RTE_PTYPE_L4_UDP,
[0x54] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN
| RTE_PTYPE_L4_TCP,
/* All others reserved */
};
cqrd_flags &= CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT
| CQ_ENET_RQ_DESC_FLAGS_IPV4 | CQ_ENET_RQ_DESC_FLAGS_IPV6
| CQ_ENET_RQ_DESC_FLAGS_TCP | CQ_ENET_RQ_DESC_FLAGS_UDP;
return cq_type_table[cqrd_flags];
}
static inline void
enic_cq_rx_to_pkt_flags(struct cq_desc *cqd, struct rte_mbuf *mbuf)
{
struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
uint16_t ciflags, bwflags, pkt_flags = 0;
ciflags = enic_cq_rx_desc_ciflags(cqrd);
bwflags = enic_cq_rx_desc_bwflags(cqrd);
mbuf->ol_flags = 0;
/* flags are meaningless if !EOP */
if (unlikely(!enic_cq_rx_desc_eop(ciflags)))
goto mbuf_flags_done;
/* VLAN stripping */
if (bwflags & CQ_ENET_RQ_DESC_FLAGS_VLAN_STRIPPED) {
pkt_flags |= PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED;
mbuf->vlan_tci = enic_cq_rx_desc_vlan(cqrd);
} else {
mbuf->vlan_tci = 0;
}
/* RSS flag */
if (enic_cq_rx_desc_rss_type(cqrd)) {
pkt_flags |= PKT_RX_RSS_HASH;
mbuf->hash.rss = enic_cq_rx_desc_rss_hash(cqrd);
}
/* checksum flags */
if (!enic_cq_rx_desc_csum_not_calc(cqrd) &&
(mbuf->packet_type & RTE_PTYPE_L3_IPV4)) {
uint32_t l4_flags = mbuf->packet_type & RTE_PTYPE_L4_MASK;
if (unlikely(!enic_cq_rx_desc_ipv4_csum_ok(cqrd)))
pkt_flags |= PKT_RX_IP_CKSUM_BAD;
if (l4_flags == RTE_PTYPE_L4_UDP ||
l4_flags == RTE_PTYPE_L4_TCP) {
if (unlikely(!enic_cq_rx_desc_tcp_udp_csum_ok(cqrd)))
pkt_flags |= PKT_RX_L4_CKSUM_BAD;
}
}
mbuf_flags_done:
mbuf->ol_flags = pkt_flags;
}
/* dummy receive function to replace actual function in
* order to do safe reconfiguration operations.
*/
uint16_t
enic_dummy_recv_pkts(__rte_unused void *rx_queue,
__rte_unused struct rte_mbuf **rx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
uint16_t
enic_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct vnic_rq *sop_rq = rx_queue;
struct vnic_rq *data_rq;
struct vnic_rq *rq;
struct enic *enic = vnic_dev_priv(sop_rq->vdev);
uint16_t cq_idx;
uint16_t rq_idx;
uint16_t rq_num;
struct rte_mbuf *nmb, *rxmb;
uint16_t nb_rx = 0;
struct vnic_cq *cq;
volatile struct cq_desc *cqd_ptr;
uint8_t color;
uint16_t seg_length;
struct rte_mbuf *first_seg = sop_rq->pkt_first_seg;
struct rte_mbuf *last_seg = sop_rq->pkt_last_seg;
cq = &enic->cq[enic_cq_rq(enic, sop_rq->index)];
cq_idx = cq->to_clean; /* index of cqd, rqd, mbuf_table */
cqd_ptr = (struct cq_desc *)(cq->ring.descs) + cq_idx;
data_rq = &enic->rq[sop_rq->data_queue_idx];
while (nb_rx < nb_pkts) {
volatile struct rq_enet_desc *rqd_ptr;
dma_addr_t dma_addr;
struct cq_desc cqd;
uint8_t packet_error;
uint16_t ciflags;
/* Check for pkts available */
color = (cqd_ptr->type_color >> CQ_DESC_COLOR_SHIFT)
& CQ_DESC_COLOR_MASK;
if (color == cq->last_color)
break;
/* Get the cq descriptor and extract rq info from it */
cqd = *cqd_ptr;
rq_num = cqd.q_number & CQ_DESC_Q_NUM_MASK;
rq_idx = cqd.completed_index & CQ_DESC_COMP_NDX_MASK;
rq = &enic->rq[rq_num];
rqd_ptr = ((struct rq_enet_desc *)rq->ring.descs) + rq_idx;
/* allocate a new mbuf */
nmb = rte_mbuf_raw_alloc(rq->mp);
if (nmb == NULL) {
rte_atomic64_inc(&enic->soft_stats.rx_nombuf);
break;
}
/* A packet error means descriptor and data are untrusted */
packet_error = enic_cq_rx_check_err(&cqd);
/* Get the mbuf to return and replace with one just allocated */
rxmb = rq->mbuf_ring[rq_idx];
rq->mbuf_ring[rq_idx] = nmb;
/* Increment cqd, rqd, mbuf_table index */
cq_idx++;
if (unlikely(cq_idx == cq->ring.desc_count)) {
cq_idx = 0;
cq->last_color = cq->last_color ? 0 : 1;
}
/* Prefetch next mbuf & desc while processing current one */
cqd_ptr = (struct cq_desc *)(cq->ring.descs) + cq_idx;
rte_enic_prefetch(cqd_ptr);
ciflags = enic_cq_rx_desc_ciflags(
(struct cq_enet_rq_desc *)&cqd);
/* Push descriptor for newly allocated mbuf */
nmb->data_off = RTE_PKTMBUF_HEADROOM;
dma_addr = (dma_addr_t)(nmb->buf_physaddr +
RTE_PKTMBUF_HEADROOM);
rq_enet_desc_enc(rqd_ptr, dma_addr,
(rq->is_sop ? RQ_ENET_TYPE_ONLY_SOP
: RQ_ENET_TYPE_NOT_SOP),
nmb->buf_len - RTE_PKTMBUF_HEADROOM);
/* Fill in the rest of the mbuf */
seg_length = enic_cq_rx_desc_n_bytes(&cqd);
if (rq->is_sop) {
first_seg = rxmb;
first_seg->nb_segs = 1;
first_seg->pkt_len = seg_length;
} else {
first_seg->pkt_len = (uint16_t)(first_seg->pkt_len
+ seg_length);
first_seg->nb_segs++;
last_seg->next = rxmb;
}
rxmb->next = NULL;
rxmb->port = enic->port_id;
rxmb->data_len = seg_length;
rq->rx_nb_hold++;
if (!(enic_cq_rx_desc_eop(ciflags))) {
last_seg = rxmb;
continue;
}
/* cq rx flags are only valid if eop bit is set */
first_seg->packet_type = enic_cq_rx_flags_to_pkt_type(&cqd);
enic_cq_rx_to_pkt_flags(&cqd, first_seg);
if (unlikely(packet_error)) {
rte_pktmbuf_free(first_seg);
rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
continue;
}
/* prefetch mbuf data for caller */
rte_packet_prefetch(RTE_PTR_ADD(first_seg->buf_addr,
RTE_PKTMBUF_HEADROOM));
/* store the mbuf address into the next entry of the array */
rx_pkts[nb_rx++] = first_seg;
}
sop_rq->pkt_first_seg = first_seg;
sop_rq->pkt_last_seg = last_seg;
cq->to_clean = cq_idx;
if ((sop_rq->rx_nb_hold + data_rq->rx_nb_hold) >
sop_rq->rx_free_thresh) {
if (data_rq->in_use) {
data_rq->posted_index =
enic_ring_add(data_rq->ring.desc_count,
data_rq->posted_index,
data_rq->rx_nb_hold);
data_rq->rx_nb_hold = 0;
}
sop_rq->posted_index = enic_ring_add(sop_rq->ring.desc_count,
sop_rq->posted_index,
sop_rq->rx_nb_hold);
sop_rq->rx_nb_hold = 0;
rte_mb();
if (data_rq->in_use)
iowrite32(data_rq->posted_index,
&data_rq->ctrl->posted_index);
rte_compiler_barrier();
iowrite32(sop_rq->posted_index, &sop_rq->ctrl->posted_index);
}
return nb_rx;
}
static inline void enic_free_wq_bufs(struct vnic_wq *wq, u16 completed_index)
{
struct vnic_wq_buf *buf;
struct rte_mbuf *m, *free[ENIC_MAX_WQ_DESCS];
unsigned int nb_to_free, nb_free = 0, i;
struct rte_mempool *pool;
unsigned int tail_idx;
unsigned int desc_count = wq->ring.desc_count;
nb_to_free = enic_ring_sub(desc_count, wq->tail_idx, completed_index)
+ 1;
tail_idx = wq->tail_idx;
buf = &wq->bufs[tail_idx];
pool = ((struct rte_mbuf *)buf->mb)->pool;
for (i = 0; i < nb_to_free; i++) {
buf = &wq->bufs[tail_idx];
m = __rte_pktmbuf_prefree_seg((struct rte_mbuf *)(buf->mb));
buf->mb = NULL;
if (unlikely(m == NULL)) {
tail_idx = enic_ring_incr(desc_count, tail_idx);
continue;
}
if (likely(m->pool == pool)) {
RTE_ASSERT(nb_free < ENIC_MAX_WQ_DESCS);
free[nb_free++] = m;
} else {
rte_mempool_put_bulk(pool, (void *)free, nb_free);
free[0] = m;
nb_free = 1;
pool = m->pool;
}
tail_idx = enic_ring_incr(desc_count, tail_idx);
}
rte_mempool_put_bulk(pool, (void **)free, nb_free);
wq->tail_idx = tail_idx;
wq->ring.desc_avail += nb_to_free;
}
unsigned int enic_cleanup_wq(__rte_unused struct enic *enic, struct vnic_wq *wq)
{
u16 completed_index;
completed_index = *((uint32_t *)wq->cqmsg_rz->addr) & 0xffff;
if (wq->last_completed_index != completed_index) {
enic_free_wq_bufs(wq, completed_index);
wq->last_completed_index = completed_index;
}
return 0;
}
uint16_t enic_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t index;
unsigned int pkt_len, data_len;
unsigned int nb_segs;
struct rte_mbuf *tx_pkt;
struct vnic_wq *wq = (struct vnic_wq *)tx_queue;
struct enic *enic = vnic_dev_priv(wq->vdev);
unsigned short vlan_id;
uint64_t ol_flags;
uint64_t ol_flags_mask;
unsigned int wq_desc_avail;
int head_idx;
struct vnic_wq_buf *buf;
unsigned int desc_count;
struct wq_enet_desc *descs, *desc_p, desc_tmp;
uint16_t mss;
uint8_t vlan_tag_insert;
uint8_t eop;
uint64_t bus_addr;
enic_cleanup_wq(enic, wq);
wq_desc_avail = vnic_wq_desc_avail(wq);
head_idx = wq->head_idx;
desc_count = wq->ring.desc_count;
ol_flags_mask = PKT_TX_VLAN_PKT | PKT_TX_IP_CKSUM | PKT_TX_L4_MASK;
nb_pkts = RTE_MIN(nb_pkts, ENIC_TX_XMIT_MAX);
for (index = 0; index < nb_pkts; index++) {
tx_pkt = *tx_pkts++;
nb_segs = tx_pkt->nb_segs;
if (nb_segs > wq_desc_avail) {
if (index > 0)
goto post;
goto done;
}
pkt_len = tx_pkt->pkt_len;
data_len = tx_pkt->data_len;
ol_flags = tx_pkt->ol_flags;
mss = 0;
vlan_id = 0;
vlan_tag_insert = 0;
bus_addr = (dma_addr_t)
(tx_pkt->buf_physaddr + tx_pkt->data_off);
descs = (struct wq_enet_desc *)wq->ring.descs;
desc_p = descs + head_idx;
eop = (data_len == pkt_len);
if (ol_flags & ol_flags_mask) {
if (ol_flags & PKT_TX_VLAN_PKT) {
vlan_tag_insert = 1;
vlan_id = tx_pkt->vlan_tci;
}
if (ol_flags & PKT_TX_IP_CKSUM)
mss |= ENIC_CALC_IP_CKSUM;
/* Nic uses just 1 bit for UDP and TCP */
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
case PKT_TX_UDP_CKSUM:
mss |= ENIC_CALC_TCP_UDP_CKSUM;
break;
}
}
wq_enet_desc_enc(&desc_tmp, bus_addr, data_len, mss, 0, 0, eop,
eop, 0, vlan_tag_insert, vlan_id, 0);
*desc_p = desc_tmp;
buf = &wq->bufs[head_idx];
buf->mb = (void *)tx_pkt;
head_idx = enic_ring_incr(desc_count, head_idx);
wq_desc_avail--;
if (!eop) {
for (tx_pkt = tx_pkt->next; tx_pkt; tx_pkt =
tx_pkt->next) {
data_len = tx_pkt->data_len;
if (tx_pkt->next == NULL)
eop = 1;
desc_p = descs + head_idx;
bus_addr = (dma_addr_t)(tx_pkt->buf_physaddr
+ tx_pkt->data_off);
wq_enet_desc_enc((struct wq_enet_desc *)
&desc_tmp, bus_addr, data_len,
mss, 0, 0, eop, eop, 0,
vlan_tag_insert, vlan_id, 0);
*desc_p = desc_tmp;
buf = &wq->bufs[head_idx];
buf->mb = (void *)tx_pkt;
head_idx = enic_ring_incr(desc_count, head_idx);
wq_desc_avail--;
}
}
}
post:
rte_wmb();
iowrite32(head_idx, &wq->ctrl->posted_index);
done:
wq->ring.desc_avail = wq_desc_avail;
wq->head_idx = head_idx;
return index;
}