numam-dpdk/drivers/net/szedata2/rte_eth_szedata2.h
Matej Vido c7f9ccfb58 szedata2: support promiscuous and allmulticast modes
add functions for enabling/disabling promiscuous, allmulticast modes

Signed-off-by: Matej Vido <vido@cesnet.cz>
2016-03-16 18:52:18 +01:00

463 lines
12 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) 2015 - 2016 CESNET
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of CESNET nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef RTE_PMD_SZEDATA2_H_
#define RTE_PMD_SZEDATA2_H_
#include <stdbool.h>
#include <rte_byteorder.h>
/* PCI Vendor ID */
#define PCI_VENDOR_ID_NETCOPE 0x1b26
/* PCI Device IDs */
#define PCI_DEVICE_ID_NETCOPE_COMBO80G 0xcb80
#define PCI_DEVICE_ID_NETCOPE_COMBO100G 0xc1c1
#define PCI_DEVICE_ID_NETCOPE_COMBO100G2 0xc2c1
/* number of PCI resource used by COMBO card */
#define PCI_RESOURCE_NUMBER 0
/* szedata2_packet header length == 4 bytes == 2B segment size + 2B hw size */
#define RTE_SZE2_PACKET_HEADER_SIZE 4
#define RTE_SZE2_MMIO_MAX 10
/*!
* Round 'what' to the nearest larger (or equal) multiple of '8'
* (szedata2 packet is aligned to 8 bytes)
*/
#define RTE_SZE2_ALIGN8(what) (((what) + ((8) - 1)) & (~((8) - 1)))
/*! main handle structure */
struct szedata {
int fd;
struct sze2_instance_info *info;
uint32_t *write_size;
void *space[RTE_SZE2_MMIO_MAX];
struct szedata_lock lock[2][2];
__u32 *rx_asize, *tx_asize;
/* szedata_read_next variables - to keep context (ct) */
/*
* rx
*/
/** initial sze lock ptr */
const struct szedata_lock *ct_rx_lck_orig;
/** current sze lock ptr (initial or next) */
const struct szedata_lock *ct_rx_lck;
/** remaining bytes (not read) within current lock */
unsigned int ct_rx_rem_bytes;
/** current pointer to locked memory */
unsigned char *ct_rx_cur_ptr;
/**
* allocated buffer to store RX packet if it was split
* into 2 buffers
*/
unsigned char *ct_rx_buffer;
/** registered function to provide filtering based on hwdata */
int (*ct_rx_filter)(u_int16_t hwdata_len, u_char *hwdata);
/*
* tx
*/
/**
* buffer for tx - packet is prepared here
* (in future for burst write)
*/
unsigned char *ct_tx_buffer;
/** initial sze TX lock ptrs - number according to TX interfaces */
const struct szedata_lock **ct_tx_lck_orig;
/** current sze TX lock ptrs - number according to TX interfaces */
const struct szedata_lock **ct_tx_lck;
/** already written bytes in both locks */
unsigned int *ct_tx_written_bytes;
/** remaining bytes (not written) within current lock */
unsigned int *ct_tx_rem_bytes;
/** current pointers to locked memory */
unsigned char **ct_tx_cur_ptr;
/** NUMA node closest to PCIe device, or -1 */
int numa_node;
};
/*
* @return Byte from PCI resource at offset "offset".
*/
static inline uint8_t
pci_resource_read8(struct rte_eth_dev *dev, uint32_t offset)
{
return *((uint8_t *)((uint8_t *)
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr +
offset));
}
/*
* @return Two bytes from PCI resource starting at offset "offset".
*/
static inline uint16_t
pci_resource_read16(struct rte_eth_dev *dev, uint32_t offset)
{
return rte_le_to_cpu_16(*((uint16_t *)((uint8_t *)
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr +
offset)));
}
/*
* @return Four bytes from PCI resource starting at offset "offset".
*/
static inline uint32_t
pci_resource_read32(struct rte_eth_dev *dev, uint32_t offset)
{
return rte_le_to_cpu_32(*((uint32_t *)((uint8_t *)
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr +
offset)));
}
/*
* @return Eight bytes from PCI resource starting at offset "offset".
*/
static inline uint64_t
pci_resource_read64(struct rte_eth_dev *dev, uint32_t offset)
{
return rte_le_to_cpu_64(*((uint64_t *)((uint8_t *)
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr +
offset)));
}
/*
* Write one byte to PCI resource address space at offset "offset".
*/
static inline void
pci_resource_write8(struct rte_eth_dev *dev, uint32_t offset, uint8_t val)
{
*((uint8_t *)((uint8_t *)
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr +
offset)) = val;
}
/*
* Write two bytes to PCI resource address space at offset "offset".
*/
static inline void
pci_resource_write16(struct rte_eth_dev *dev, uint32_t offset, uint16_t val)
{
*((uint16_t *)((uint8_t *)
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr +
offset)) = rte_cpu_to_le_16(val);
}
/*
* Write four bytes to PCI resource address space at offset "offset".
*/
static inline void
pci_resource_write32(struct rte_eth_dev *dev, uint32_t offset, uint32_t val)
{
*((uint32_t *)((uint8_t *)
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr +
offset)) = rte_cpu_to_le_32(val);
}
/*
* Write eight bytes to PCI resource address space at offset "offset".
*/
static inline void
pci_resource_write64(struct rte_eth_dev *dev, uint32_t offset, uint64_t val)
{
*((uint64_t *)((uint8_t *)
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr +
offset)) = rte_cpu_to_le_64(val);
}
#define SZEDATA2_PCI_RESOURCE_PTR(dev, offset, type) \
((type)((uint8_t *) \
((dev)->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr) \
+ (offset)))
enum szedata2_link_speed {
SZEDATA2_LINK_SPEED_DEFAULT = 0,
SZEDATA2_LINK_SPEED_10G,
SZEDATA2_LINK_SPEED_40G,
SZEDATA2_LINK_SPEED_100G,
};
enum szedata2_mac_check_mode {
SZEDATA2_MAC_CHMODE_PROMISC = 0x0,
SZEDATA2_MAC_CHMODE_ONLY_VALID = 0x1,
SZEDATA2_MAC_CHMODE_ALL_BROADCAST = 0x2,
SZEDATA2_MAC_CHMODE_ALL_MULTICAST = 0x3,
};
/*
* Structure describes CGMII IBUF address space
*/
struct szedata2_cgmii_ibuf {
/** Total Received Frames Counter low part */
uint32_t trfcl;
/** Correct Frames Counter low part */
uint32_t cfcl;
/** Discarded Frames Counter low part */
uint32_t dfcl;
/** Counter of frames discarded due to buffer overflow low part */
uint32_t bodfcl;
/** Total Received Frames Counter high part */
uint32_t trfch;
/** Correct Frames Counter high part */
uint32_t cfch;
/** Discarded Frames Counter high part */
uint32_t dfch;
/** Counter of frames discarded due to buffer overflow high part */
uint32_t bodfch;
/** IBUF enable register */
uint32_t ibuf_en;
/** Error mask register */
uint32_t err_mask;
/** IBUF status register */
uint32_t ibuf_st;
/** IBUF command register */
uint32_t ibuf_cmd;
/** Minimum frame length allowed */
uint32_t mfla;
/** Frame MTU */
uint32_t mtu;
/** MAC address check mode */
uint32_t mac_chmode;
/** Octets Received OK Counter low part */
uint32_t orocl;
/** Octets Received OK Counter high part */
uint32_t oroch;
} __rte_packed;
/* Offset of CGMII IBUF memory for MAC addresses */
#define SZEDATA2_CGMII_IBUF_MAC_MEM_OFF 0x80
/*
* @return
* true if IBUF is enabled
* false if IBUF is disabled
*/
static inline bool
cgmii_ibuf_is_enabled(volatile struct szedata2_cgmii_ibuf *ibuf)
{
return ((rte_le_to_cpu_32(ibuf->ibuf_en) & 0x1) != 0) ? true : false;
}
/*
* Enables IBUF.
*/
static inline void
cgmii_ibuf_enable(volatile struct szedata2_cgmii_ibuf *ibuf)
{
ibuf->ibuf_en =
rte_cpu_to_le_32(rte_le_to_cpu_32(ibuf->ibuf_en) | 0x1);
}
/*
* Disables IBUF.
*/
static inline void
cgmii_ibuf_disable(volatile struct szedata2_cgmii_ibuf *ibuf)
{
ibuf->ibuf_en =
rte_cpu_to_le_32(rte_le_to_cpu_32(ibuf->ibuf_en) & ~0x1);
}
/*
* @return
* true if ibuf link is up
* false if ibuf link is down
*/
static inline bool
cgmii_ibuf_is_link_up(volatile struct szedata2_cgmii_ibuf *ibuf)
{
return ((rte_le_to_cpu_32(ibuf->ibuf_st) & 0x80) != 0) ? true : false;
}
/*
* @return
* MAC address check mode
*/
static inline enum szedata2_mac_check_mode
cgmii_ibuf_mac_mode_read(volatile struct szedata2_cgmii_ibuf *ibuf)
{
switch (rte_le_to_cpu_32(ibuf->mac_chmode) & 0x3) {
case 0x0:
return SZEDATA2_MAC_CHMODE_PROMISC;
case 0x1:
return SZEDATA2_MAC_CHMODE_ONLY_VALID;
case 0x2:
return SZEDATA2_MAC_CHMODE_ALL_BROADCAST;
case 0x3:
return SZEDATA2_MAC_CHMODE_ALL_MULTICAST;
default:
return SZEDATA2_MAC_CHMODE_PROMISC;
}
}
/*
* Writes "mode" in MAC address check mode register.
*/
static inline void
cgmii_ibuf_mac_mode_write(volatile struct szedata2_cgmii_ibuf *ibuf,
enum szedata2_mac_check_mode mode)
{
ibuf->mac_chmode = rte_cpu_to_le_32(
(rte_le_to_cpu_32(ibuf->mac_chmode) & ~0x3) | mode);
}
/*
* Structure describes CGMII OBUF address space
*/
struct szedata2_cgmii_obuf {
/** Total Sent Frames Counter low part */
uint32_t tsfcl;
/** Octets Sent Counter low part */
uint32_t oscl;
/** Total Discarded Frames Counter low part */
uint32_t tdfcl;
/** reserved */
uint32_t reserved1;
/** Total Sent Frames Counter high part */
uint32_t tsfch;
/** Octets Sent Counter high part */
uint32_t osch;
/** Total Discarded Frames Counter high part */
uint32_t tdfch;
/** reserved */
uint32_t reserved2;
/** OBUF enable register */
uint32_t obuf_en;
/** reserved */
uint64_t reserved3;
/** OBUF control register */
uint32_t ctrl;
/** OBUF status register */
uint32_t obuf_st;
} __rte_packed;
/*
* @return
* true if OBUF is enabled
* false if OBUF is disabled
*/
static inline bool
cgmii_obuf_is_enabled(volatile struct szedata2_cgmii_obuf *obuf)
{
return ((rte_le_to_cpu_32(obuf->obuf_en) & 0x1) != 0) ? true : false;
}
/*
* Enables OBUF.
*/
static inline void
cgmii_obuf_enable(volatile struct szedata2_cgmii_obuf *obuf)
{
obuf->obuf_en =
rte_cpu_to_le_32(rte_le_to_cpu_32(obuf->obuf_en) | 0x1);
}
/*
* Disables OBUF.
*/
static inline void
cgmii_obuf_disable(volatile struct szedata2_cgmii_obuf *obuf)
{
obuf->obuf_en =
rte_cpu_to_le_32(rte_le_to_cpu_32(obuf->obuf_en) & ~0x1);
}
/*
* Function takes value from IBUF status register. Values in IBUF and OBUF
* should be same.
*
* @return Link speed constant.
*/
static inline enum szedata2_link_speed
cgmii_link_speed(volatile struct szedata2_cgmii_ibuf *ibuf)
{
uint32_t speed = (rte_le_to_cpu_32(ibuf->ibuf_st) & 0x70) >> 4;
switch (speed) {
case 0x03:
return SZEDATA2_LINK_SPEED_10G;
case 0x04:
return SZEDATA2_LINK_SPEED_40G;
case 0x05:
return SZEDATA2_LINK_SPEED_100G;
default:
return SZEDATA2_LINK_SPEED_DEFAULT;
}
}
/*
* IBUFs and OBUFs can generally be located at different offsets in different
* firmwares.
* This part defines base offsets of IBUFs and OBUFs through various firmwares.
* Currently one firmware type is supported.
* Type of firmware is set through configuration option
* CONFIG_RTE_LIBRTE_PMD_SZEDATA_AS.
* Possible values are:
* 0 - for firmwares:
* NIC_100G1_LR4
* HANIC_100G1_LR4
* HANIC_100G1_SR10
*/
#if !defined(RTE_LIBRTE_PMD_SZEDATA2_AS)
#error "RTE_LIBRTE_PMD_SZEDATA2_AS has to be defined"
#elif RTE_LIBRTE_PMD_SZEDATA2_AS == 0
/*
* CGMII IBUF offset from the beginning of PCI resource address space.
*/
#define SZEDATA2_CGMII_IBUF_BASE_OFF 0x8000
/*
* Size of CGMII IBUF.
*/
#define SZEDATA2_CGMII_IBUF_SIZE 0x200
/*
* GCMII OBUF offset from the beginning of PCI resource address space.
*/
#define SZEDATA2_CGMII_OBUF_BASE_OFF 0x9000
/*
* Size of CGMII OBUF.
*/
#define SZEDATA2_CGMII_OBUF_SIZE 0x100
#else
#error "RTE_LIBRTE_PMD_SZEDATA2_AS has wrong value, see comments in config file"
#endif
#endif