numam-dpdk/lib/librte_efd/rte_efd.c
Ciara Power ad2ffbf6d4 efd: check max SIMD bitwidth
When choosing a vector path to take, an extra condition must be
satisfied to ensure the max SIMD bitwidth allows for the CPU enabled
path.

Signed-off-by: Ciara Power <ciara.power@intel.com>
Acked-by: Yipeng Wang <yipeng1.wang@intel.com>
2020-10-19 16:45:02 +02:00

1357 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <errno.h>
#include <stdarg.h>
#include <sys/queue.h>
#include <rte_string_fns.h>
#include <rte_log.h>
#include <rte_eal_memconfig.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#include <rte_memcpy.h>
#include <rte_ring.h>
#include <rte_jhash.h>
#include <rte_hash_crc.h>
#include <rte_tailq.h>
#include <rte_vect.h>
#include "rte_efd.h"
#if defined(RTE_ARCH_X86)
#include "rte_efd_x86.h"
#elif defined(RTE_ARCH_ARM64)
#include "rte_efd_arm64.h"
#endif
#define EFD_KEY(key_idx, table) (table->keys + ((key_idx) * table->key_len))
/** Hash function used to determine chunk_id and bin_id for a group */
#define EFD_HASH(key, table) \
(uint32_t)(rte_jhash(key, table->key_len, 0xbc9f1d34))
/** Hash function used as constant component of perfect hash search */
#define EFD_HASHFUNCA(key, table) \
(uint32_t)(rte_hash_crc(key, table->key_len, 0xbc9f1d35))
/** Hash function used as multiplicative component of perfect hash search */
#define EFD_HASHFUNCB(key, table) \
(uint32_t)(rte_hash_crc(key, table->key_len, 0xbc9f1d36))
/*************************************************************************
* Fixed constants
*************************************************************************/
/* These parameters are fixed by the efd_bin_to_group balancing table */
#define EFD_CHUNK_NUM_GROUPS (64)
#define EFD_CHUNK_NUM_BINS (256)
#define EFD_CHUNK_NUM_BIN_TO_GROUP_SETS \
(EFD_CHUNK_NUM_BINS / EFD_CHUNK_NUM_GROUPS)
/*
* Target number of rules that each chunk is created to handle.
* Used when initially allocating the table
*/
#define EFD_TARGET_CHUNK_NUM_RULES \
(EFD_CHUNK_NUM_GROUPS * EFD_TARGET_GROUP_NUM_RULES)
/*
* Max number of rules that each chunk is created to handle.
* Used when initially allocating the table
*/
#define EFD_TARGET_CHUNK_MAX_NUM_RULES \
(EFD_CHUNK_NUM_GROUPS * EFD_MAX_GROUP_NUM_RULES)
/** This is fixed based on the bin_to_group permutation array */
#define EFD_MAX_GROUP_NUM_BINS (16)
/**
* The end of the chunks array needs some extra padding to ensure
* that vectorization over-reads on the last online chunk stay within
allocated memory
*/
#define EFD_NUM_CHUNK_PADDING_BYTES (256)
/* All different internal lookup functions */
enum efd_lookup_internal_function {
EFD_LOOKUP_SCALAR = 0,
EFD_LOOKUP_AVX2,
EFD_LOOKUP_NEON,
EFD_LOOKUP_NUM
};
TAILQ_HEAD(rte_efd_list, rte_tailq_entry);
static struct rte_tailq_elem rte_efd_tailq = {
.name = "RTE_EFD",
};
EAL_REGISTER_TAILQ(rte_efd_tailq);
/** Internal permutation array used to shuffle bins into pseudorandom groups */
const uint32_t efd_bin_to_group[EFD_CHUNK_NUM_BIN_TO_GROUP_SETS][EFD_CHUNK_NUM_BINS] = {
{
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11,
12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15,
16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19,
20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23,
24, 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27,
28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 31,
32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 35, 35, 35, 35,
36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 38, 39, 39, 39, 39,
40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 43,
44, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47,
48, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 51, 51, 51, 51,
52, 52, 52, 52, 53, 53, 53, 53, 54, 54, 54, 54, 55, 55, 55, 55,
56, 56, 56, 56, 57, 57, 57, 57, 58, 58, 58, 58, 59, 59, 59, 59,
60, 60, 60, 60, 61, 61, 61, 61, 62, 62, 62, 62, 63, 63, 63, 63
},
{
34, 33, 48, 59, 0, 21, 36, 18, 9, 49, 54, 38, 51, 23, 31, 5,
44, 23, 37, 52, 11, 4, 58, 20, 38, 40, 38, 22, 26, 28, 42, 6,
46, 16, 31, 28, 46, 14, 60, 0, 35, 53, 16, 58, 16, 29, 39, 7,
1, 54, 15, 11, 48, 3, 62, 9, 58, 5, 30, 43, 17, 7, 36, 34,
6, 36, 2, 14, 10, 1, 47, 47, 20, 45, 62, 56, 34, 25, 39, 18,
51, 41, 61, 25, 56, 40, 41, 37, 52, 35, 30, 57, 11, 42, 37, 27,
54, 19, 26, 13, 48, 31, 46, 15, 12, 10, 16, 20, 43, 17, 12, 55,
45, 18, 8, 41, 7, 31, 42, 63, 12, 14, 21, 57, 24, 40, 5, 41,
13, 44, 23, 59, 25, 57, 52, 50, 62, 1, 2, 49, 32, 57, 26, 43,
56, 60, 55, 5, 49, 6, 3, 50, 46, 39, 27, 33, 17, 4, 53, 13,
2, 19, 36, 51, 63, 0, 22, 33, 59, 28, 29, 23, 45, 33, 53, 27,
22, 21, 40, 56, 4, 18, 44, 47, 28, 17, 4, 50, 21, 62, 8, 39,
0, 8, 15, 24, 29, 24, 9, 11, 48, 61, 35, 55, 43, 1, 54, 42,
53, 60, 22, 3, 32, 52, 25, 8, 15, 60, 7, 55, 27, 63, 19, 10,
63, 24, 61, 19, 12, 38, 6, 29, 13, 37, 10, 3, 45, 32, 32, 30,
49, 61, 44, 14, 20, 58, 35, 30, 2, 26, 34, 51, 9, 59, 47, 50
},
{
32, 35, 32, 34, 55, 5, 6, 23, 49, 11, 6, 23, 52, 37, 29, 54,
55, 40, 63, 50, 29, 52, 61, 25, 12, 56, 39, 38, 29, 11, 46, 1,
40, 11, 19, 56, 7, 28, 51, 16, 15, 48, 21, 51, 60, 31, 14, 22,
41, 47, 59, 56, 53, 28, 58, 26, 43, 27, 41, 33, 24, 52, 44, 38,
13, 59, 48, 51, 60, 15, 3, 30, 15, 0, 10, 62, 44, 14, 28, 51,
38, 2, 41, 26, 25, 49, 10, 12, 55, 57, 27, 35, 19, 33, 0, 30,
5, 36, 47, 53, 5, 53, 20, 43, 34, 37, 52, 41, 21, 63, 59, 9,
24, 1, 45, 24, 39, 44, 45, 16, 9, 17, 7, 50, 57, 22, 18, 28,
25, 45, 2, 40, 58, 15, 17, 3, 1, 27, 61, 39, 19, 0, 19, 21,
57, 62, 54, 60, 54, 40, 48, 33, 36, 37, 4, 42, 1, 43, 58, 8,
13, 42, 10, 56, 35, 22, 48, 61, 63, 10, 49, 9, 24, 9, 25, 57,
33, 18, 13, 31, 42, 36, 36, 55, 30, 37, 53, 34, 59, 4, 4, 23,
8, 16, 58, 14, 30, 11, 12, 63, 49, 62, 2, 39, 47, 22, 2, 60,
18, 8, 46, 31, 6, 20, 32, 29, 46, 42, 20, 31, 32, 61, 34, 4,
47, 26, 20, 43, 26, 21, 7, 3, 16, 35, 18, 44, 27, 62, 13, 23,
6, 50, 12, 8, 45, 17, 3, 46, 50, 7, 14, 5, 17, 54, 38, 0
},
{
29, 56, 5, 7, 54, 48, 23, 37, 35, 44, 52, 40, 33, 49, 60, 0,
59, 51, 28, 12, 41, 26, 2, 23, 34, 5, 59, 40, 3, 19, 6, 26,
35, 53, 45, 49, 29, 57, 28, 62, 58, 59, 19, 53, 59, 62, 6, 54,
13, 15, 48, 50, 45, 21, 41, 12, 34, 40, 24, 56, 19, 21, 35, 18,
55, 45, 9, 61, 47, 61, 19, 15, 16, 39, 17, 31, 3, 51, 21, 50,
17, 25, 25, 11, 44, 16, 18, 28, 14, 2, 37, 61, 58, 27, 62, 4,
14, 17, 1, 9, 46, 28, 37, 0, 53, 43, 57, 7, 57, 46, 21, 41,
39, 14, 52, 60, 44, 53, 49, 60, 49, 63, 13, 11, 29, 1, 55, 47,
55, 12, 60, 43, 54, 37, 13, 6, 42, 10, 36, 13, 9, 8, 34, 51,
31, 32, 12, 7, 57, 2, 26, 14, 3, 30, 63, 3, 32, 1, 5, 11,
27, 24, 26, 44, 31, 23, 56, 38, 62, 0, 40, 30, 6, 23, 38, 2,
47, 5, 15, 27, 16, 10, 31, 25, 22, 63, 30, 25, 20, 33, 32, 50,
29, 43, 55, 10, 50, 45, 56, 20, 4, 7, 27, 46, 11, 16, 22, 52,
35, 20, 41, 54, 46, 33, 42, 18, 63, 8, 22, 58, 36, 4, 51, 42,
38, 32, 38, 22, 17, 0, 47, 8, 48, 8, 48, 1, 61, 36, 33, 20,
24, 39, 39, 18, 30, 36, 9, 43, 42, 24, 10, 58, 4, 15, 34, 52
},
};
/*************************************************************************
* Offline region structures
*************************************************************************/
/** Online group containing number of rules, values, keys and their bins
* for EFD_MAX_GROUP_NUM_RULES rules.
*/
struct efd_offline_group_rules {
uint32_t num_rules;
/**< Sum of the number of rules in all bins assigned to this group. */
uint32_t key_idx[EFD_MAX_GROUP_NUM_RULES];
/**< Array with all keys of the group. */
efd_value_t value[EFD_MAX_GROUP_NUM_RULES];
/**< Array with all values of the keys of the group. */
uint8_t bin_id[EFD_MAX_GROUP_NUM_RULES];
/**< Stores the bin for each corresponding key to
* avoid having to recompute it
*/
};
/** Offline chunk record, containing EFD_TARGET_CHUNK_NUM_RULES rules.
* Those rules are split into EFD_CHUNK_NUM_GROUPS groups per chunk.
*/
struct efd_offline_chunk_rules {
uint16_t num_rules;
/**< Number of rules in the entire chunk;
* used to detect unbalanced groups
*/
struct efd_offline_group_rules group_rules[EFD_CHUNK_NUM_GROUPS];
/**< Array of all groups in the chunk. */
};
/*************************************************************************
* Online region structures
*************************************************************************/
/** Online group containing values for EFD_MAX_GROUP_NUM_RULES rules. */
struct efd_online_group_entry {
efd_hashfunc_t hash_idx[RTE_EFD_VALUE_NUM_BITS];
efd_lookuptbl_t lookup_table[RTE_EFD_VALUE_NUM_BITS];
} __rte_packed;
/**
* A single chunk record, containing EFD_TARGET_CHUNK_NUM_RULES rules.
* Those rules are split into EFD_CHUNK_NUM_GROUPS groups per chunk.
*/
struct efd_online_chunk {
uint8_t bin_choice_list[(EFD_CHUNK_NUM_BINS * 2 + 7) / 8];
/**< This is a packed indirection index into the 'groups' array.
* Each byte contains four two-bit values which index into
* the efd_bin_to_group array.
* The efd_bin_to_group array returns the index into the groups array
*/
struct efd_online_group_entry groups[EFD_CHUNK_NUM_GROUPS];
/**< Array of all the groups in the chunk. */
} __rte_packed;
/**
* EFD table structure
*/
struct rte_efd_table {
char name[RTE_EFD_NAMESIZE]; /**< Name of the efd table. */
uint32_t key_len; /**< Length of the key stored offline */
uint32_t max_num_rules;
/**< Static maximum number of entries the table was constructed to hold. */
uint32_t num_rules;
/**< Number of entries currently in the table . */
uint32_t num_chunks;
/**< Number of chunks in the table needed to support num_rules. */
uint32_t num_chunks_shift;
/**< Bits to shift to get chunk id, instead of dividing by num_chunk. */
enum efd_lookup_internal_function lookup_fn;
/**< Indicates which lookup function to use. */
struct efd_online_chunk *chunks[RTE_MAX_NUMA_NODES];
/**< Dynamic array of size num_chunks of chunk records. */
struct efd_offline_chunk_rules *offline_chunks;
/**< Dynamic array of size num_chunks of key-value pairs. */
struct rte_ring *free_slots;
/**< Ring that stores all indexes of the free slots in the key table */
uint8_t *keys; /**< Dynamic array of size max_num_rules of keys */
};
/**
* Computes the chunk ID for a given key hash
*
* @param table
* EFD table to reference
* @param hashed_key
* 32-bit key hash returned by EFD_HASH
*
* @return
* chunk ID containing this key hash
*/
static inline uint32_t
efd_get_chunk_id(const struct rte_efd_table * const table,
const uint32_t hashed_key)
{
return hashed_key & (table->num_chunks - 1);
}
/**
* Computes the bin ID for a given key hash
*
* @param table
* EFD table to reference
* @param hashed_key
* 32-bit key hash returned by EFD_HASH
*
* @return bin ID containing this key hash
*/
static inline uint32_t
efd_get_bin_id(const struct rte_efd_table * const table,
const uint32_t hashed_key)
{
return (hashed_key >> table->num_chunks_shift) & (EFD_CHUNK_NUM_BINS - 1);
}
/**
* Looks up the current permutation choice for a particular bin in the online table
*
* @param table
* EFD table to reference
* @param socket_id
* Socket ID to use to look up existing values (ideally caller's socket id)
* @param chunk_id
* Chunk ID of bin to look up
* @param bin_id
* Bin ID to look up
*
* @return
* Currently active permutation choice in the online table
*/
static inline uint8_t
efd_get_choice(const struct rte_efd_table * const table,
const unsigned int socket_id, const uint32_t chunk_id,
const uint32_t bin_id)
{
struct efd_online_chunk *chunk = &table->chunks[socket_id][chunk_id];
/*
* Grab the chunk (byte) that contains the choices
* for four neighboring bins.
*/
uint8_t choice_chunk =
chunk->bin_choice_list[bin_id / EFD_CHUNK_NUM_BIN_TO_GROUP_SETS];
/*
* Compute the offset into the chunk that contains
* the group_id lookup position
*/
int offset = (bin_id & 0x3) * 2;
/* Extract from the byte just the desired lookup position */
return (uint8_t) ((choice_chunk >> offset) & 0x3);
}
/**
* Compute the chunk_id and bin_id for a given key
*
* @param table
* EFD table to reference
* @param key
* Key to hash and find location of
* @param chunk_id
* Computed chunk ID
* @param bin_id
* Computed bin ID
*
*/
static inline void
efd_compute_ids(const struct rte_efd_table * const table,
const void *key, uint32_t * const chunk_id, uint32_t * const bin_id)
{
/* Compute the position of the entry in the hash table */
uint32_t h = EFD_HASH(key, table);
/* Compute the chunk_id where that entry can be found */
*chunk_id = efd_get_chunk_id(table, h);
/*
* Compute the bin within that chunk where the entry
* can be found (0 - 255)
*/
*bin_id = efd_get_bin_id(table, h);
}
/**
* Search for a hash function for a group that satisfies all group results
*/
static inline int
efd_search_hash(struct rte_efd_table * const table,
const struct efd_offline_group_rules * const off_group,
struct efd_online_group_entry * const on_group)
{
efd_hashfunc_t hash_idx;
efd_hashfunc_t start_hash_idx[RTE_EFD_VALUE_NUM_BITS];
efd_lookuptbl_t start_lookup_table[RTE_EFD_VALUE_NUM_BITS];
uint32_t i, j, rule_id;
uint32_t hash_val_a[EFD_MAX_GROUP_NUM_RULES];
uint32_t hash_val_b[EFD_MAX_GROUP_NUM_RULES];
uint32_t hash_val[EFD_MAX_GROUP_NUM_RULES];
rte_prefetch0(off_group->value);
/*
* Prepopulate the hash_val tables by running the two hash functions
* for each provided rule
*/
for (i = 0; i < off_group->num_rules; i++) {
void *key_stored = EFD_KEY(off_group->key_idx[i], table);
hash_val_b[i] = EFD_HASHFUNCB(key_stored, table);
hash_val_a[i] = EFD_HASHFUNCA(key_stored, table);
}
for (i = 0; i < RTE_EFD_VALUE_NUM_BITS; i++) {
hash_idx = on_group->hash_idx[i];
start_hash_idx[i] = hash_idx;
start_lookup_table[i] = on_group->lookup_table[i];
do {
efd_lookuptbl_t lookup_table = 0;
efd_lookuptbl_t lookup_table_complement = 0;
for (rule_id = 0; rule_id < off_group->num_rules; rule_id++)
hash_val[rule_id] = hash_val_a[rule_id] + (hash_idx *
hash_val_b[rule_id]);
/*
* The goal here is to find a hash function for this
* particular bit entry that meets the following criteria:
* The most significant bits of the hash result define a
* shift into the lookup table where the bit will be stored
*/
/* Iterate over each provided rule */
for (rule_id = 0; rule_id < off_group->num_rules;
rule_id++) {
/*
* Use the few most significant bits (number based on
* EFD_LOOKUPTBL_SIZE) to see what position the
* expected bit should be set in the lookup_table
*/
uint32_t bucket_idx = hash_val[rule_id] >>
EFD_LOOKUPTBL_SHIFT;
/*
* Get the current bit of interest.
* This only find an appropriate hash function
* for one bit at a time of the rule
*/
efd_lookuptbl_t expected =
(off_group->value[rule_id] >> i) & 0x1;
/*
* Add the expected bit (if set) to a map
* (lookup_table). Also set its complement
* in lookup_table_complement
*/
lookup_table |= expected << bucket_idx;
lookup_table_complement |= (1 - expected)
<< bucket_idx;
/*
* If ever the hash function of two different
* elements result in different values at the
* same location in the lookup_table,
* the current hash_idx is not valid.
*/
if (lookup_table & lookup_table_complement)
break;
}
/*
* Check if the previous loop completed without
* breaking early
*/
if (rule_id == off_group->num_rules) {
/*
* Current hash function worked, store it
* for the current group
*/
on_group->hash_idx[i] = hash_idx;
on_group->lookup_table[i] = lookup_table;
/*
* Make sure that the hash function has changed
* from the starting value
*/
hash_idx = start_hash_idx[i] + 1;
break;
}
hash_idx++;
} while (hash_idx != start_hash_idx[i]);
/* Failed to find perfect hash for this group */
if (hash_idx == start_hash_idx[i]) {
/*
* Restore previous hash_idx and lookup_table
* for all value bits
*/
for (j = 0; j < i; j++) {
on_group->hash_idx[j] = start_hash_idx[j];
on_group->lookup_table[j] = start_lookup_table[j];
}
return 1;
}
}
return 0;
}
struct rte_efd_table *
rte_efd_create(const char *name, uint32_t max_num_rules, uint32_t key_len,
uint8_t online_cpu_socket_bitmask, uint8_t offline_cpu_socket)
{
struct rte_efd_table *table = NULL;
uint8_t *key_array = NULL;
uint32_t num_chunks, num_chunks_shift;
uint8_t socket_id;
struct rte_efd_list *efd_list = NULL;
struct rte_tailq_entry *te;
uint64_t offline_table_size;
char ring_name[RTE_RING_NAMESIZE];
struct rte_ring *r = NULL;
unsigned int i;
efd_list = RTE_TAILQ_CAST(rte_efd_tailq.head, rte_efd_list);
if (online_cpu_socket_bitmask == 0) {
RTE_LOG(ERR, EFD, "At least one CPU socket must be enabled "
"in the bitmask\n");
return NULL;
}
if (max_num_rules == 0) {
RTE_LOG(ERR, EFD, "Max num rules must be higher than 0\n");
return NULL;
}
/*
* Compute the minimum number of chunks (smallest power of 2)
* that can hold all of the rules
*/
if (max_num_rules % EFD_TARGET_CHUNK_NUM_RULES == 0)
num_chunks = rte_align32pow2(max_num_rules /
EFD_TARGET_CHUNK_NUM_RULES);
else
num_chunks = rte_align32pow2((max_num_rules /
EFD_TARGET_CHUNK_NUM_RULES) + 1);
num_chunks_shift = rte_bsf32(num_chunks);
rte_mcfg_tailq_write_lock();
/*
* Guarantee there's no existing: this is normally already checked
* by ring creation above
*/
TAILQ_FOREACH(te, efd_list, next)
{
table = (struct rte_efd_table *) te->data;
if (strncmp(name, table->name, RTE_EFD_NAMESIZE) == 0)
break;
}
table = NULL;
if (te != NULL) {
rte_errno = EEXIST;
te = NULL;
goto error_unlock_exit;
}
te = rte_zmalloc("EFD_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, EFD, "tailq entry allocation failed\n");
goto error_unlock_exit;
}
/* Create a new EFD table management structure */
table = rte_zmalloc_socket(NULL,
sizeof(struct rte_efd_table),
RTE_CACHE_LINE_SIZE,
offline_cpu_socket);
if (table == NULL) {
RTE_LOG(ERR, EFD, "Allocating EFD table management structure"
" on socket %u failed\n",
offline_cpu_socket);
goto error_unlock_exit;
}
RTE_LOG(DEBUG, EFD, "Allocated EFD table management structure "
"on socket %u\n", offline_cpu_socket);
table->max_num_rules = num_chunks * EFD_TARGET_CHUNK_MAX_NUM_RULES;
table->num_rules = 0;
table->num_chunks = num_chunks;
table->num_chunks_shift = num_chunks_shift;
table->key_len = key_len;
/* key_array */
key_array = rte_zmalloc_socket(NULL,
table->max_num_rules * table->key_len,
RTE_CACHE_LINE_SIZE,
offline_cpu_socket);
if (key_array == NULL) {
RTE_LOG(ERR, EFD, "Allocating key array"
" on socket %u failed\n",
offline_cpu_socket);
goto error_unlock_exit;
}
table->keys = key_array;
strlcpy(table->name, name, sizeof(table->name));
RTE_LOG(DEBUG, EFD, "Creating an EFD table with %u chunks,"
" which potentially supports %u entries\n",
num_chunks, table->max_num_rules);
/* Make sure all the allocatable table pointers are NULL initially */
for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES; socket_id++)
table->chunks[socket_id] = NULL;
table->offline_chunks = NULL;
/*
* Allocate one online table per socket specified
* in the user-supplied bitmask
*/
uint64_t online_table_size = num_chunks * sizeof(struct efd_online_chunk) +
EFD_NUM_CHUNK_PADDING_BYTES;
for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES; socket_id++) {
if ((online_cpu_socket_bitmask >> socket_id) & 0x01) {
/*
* Allocate all of the EFD table chunks (the online portion)
* as a continuous block
*/
table->chunks[socket_id] =
rte_zmalloc_socket(
NULL,
online_table_size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (table->chunks[socket_id] == NULL) {
RTE_LOG(ERR, EFD,
"Allocating EFD online table on "
"socket %u failed\n",
socket_id);
goto error_unlock_exit;
}
RTE_LOG(DEBUG, EFD,
"Allocated EFD online table of size "
"%"PRIu64" bytes (%.2f MB) on socket %u\n",
online_table_size,
(float) online_table_size /
(1024.0F * 1024.0F),
socket_id);
}
}
#if defined(RTE_ARCH_X86)
/*
* For less than 4 bits, scalar function performs better
* than vectorised version
*/
if (RTE_EFD_VALUE_NUM_BITS > 3
&& rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2)
&& rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
table->lookup_fn = EFD_LOOKUP_AVX2;
else
#endif
#if defined(RTE_ARCH_ARM64)
/*
* For less than or equal to 16 bits, scalar function performs better
* than vectorised version
*/
if (RTE_EFD_VALUE_NUM_BITS > 16 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128)
table->lookup_fn = EFD_LOOKUP_NEON;
else
#endif
table->lookup_fn = EFD_LOOKUP_SCALAR;
/*
* Allocate the EFD table offline portion (with the actual rules
* mapping keys to values) as a continuous block.
* This could be several gigabytes of memory.
*/
offline_table_size = num_chunks * sizeof(struct efd_offline_chunk_rules);
table->offline_chunks =
rte_zmalloc_socket(NULL,
offline_table_size,
RTE_CACHE_LINE_SIZE,
offline_cpu_socket);
if (table->offline_chunks == NULL) {
RTE_LOG(ERR, EFD, "Allocating EFD offline table on socket %u "
"failed\n", offline_cpu_socket);
goto error_unlock_exit;
}
RTE_LOG(DEBUG, EFD,
"Allocated EFD offline table of size %"PRIu64" bytes "
" (%.2f MB) on socket %u\n", offline_table_size,
(float) offline_table_size / (1024.0F * 1024.0F),
offline_cpu_socket);
te->data = (void *) table;
TAILQ_INSERT_TAIL(efd_list, te, next);
rte_mcfg_tailq_write_unlock();
snprintf(ring_name, sizeof(ring_name), "HT_%s", table->name);
/* Create ring (Dummy slot index is not enqueued) */
r = rte_ring_create(ring_name, rte_align32pow2(table->max_num_rules),
offline_cpu_socket, 0);
if (r == NULL) {
RTE_LOG(ERR, EFD, "memory allocation failed\n");
rte_efd_free(table);
return NULL;
}
/* Populate free slots ring. Entry zero is reserved for key misses. */
for (i = 0; i < table->max_num_rules; i++)
rte_ring_sp_enqueue(r, (void *) ((uintptr_t) i));
table->free_slots = r;
return table;
error_unlock_exit:
rte_mcfg_tailq_write_unlock();
rte_efd_free(table);
return NULL;
}
struct rte_efd_table *
rte_efd_find_existing(const char *name)
{
struct rte_efd_table *table = NULL;
struct rte_tailq_entry *te;
struct rte_efd_list *efd_list;
efd_list = RTE_TAILQ_CAST(rte_efd_tailq.head, rte_efd_list);
rte_mcfg_tailq_read_lock();
TAILQ_FOREACH(te, efd_list, next)
{
table = (struct rte_efd_table *) te->data;
if (strncmp(name, table->name, RTE_EFD_NAMESIZE) == 0)
break;
}
rte_mcfg_tailq_read_unlock();
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return table;
}
void
rte_efd_free(struct rte_efd_table *table)
{
uint8_t socket_id;
struct rte_efd_list *efd_list;
struct rte_tailq_entry *te, *temp;
if (table == NULL)
return;
for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES; socket_id++)
rte_free(table->chunks[socket_id]);
efd_list = RTE_TAILQ_CAST(rte_efd_tailq.head, rte_efd_list);
rte_mcfg_tailq_write_lock();
TAILQ_FOREACH_SAFE(te, efd_list, next, temp) {
if (te->data == (void *) table) {
TAILQ_REMOVE(efd_list, te, next);
rte_free(te);
break;
}
}
rte_mcfg_tailq_write_unlock();
rte_ring_free(table->free_slots);
rte_free(table->offline_chunks);
rte_free(table->keys);
rte_free(table);
}
/**
* Applies a previously computed table entry to the specified table for all
* socket-local copies of the online table.
* Intended to apply an update for only a single change
* to a key/value pair at a time
*
* @param table
* EFD table to reference
* @param socket_id
* Socket ID to use to lookup existing values (ideally caller's socket id)
* @param chunk_id
* Chunk index to update
* @param group_id
* Group index to update
* @param bin_id
* Bin within the group that this update affects
* @param new_bin_choice
* Newly chosen permutation which this bin should use - only lower 2 bits
* @param new_group_entry
* Previously computed updated chunk/group entry
*/
static inline void
efd_apply_update(struct rte_efd_table * const table, const unsigned int socket_id,
const uint32_t chunk_id, const uint32_t group_id,
const uint32_t bin_id, const uint8_t new_bin_choice,
const struct efd_online_group_entry * const new_group_entry)
{
int i;
struct efd_online_chunk *chunk = &table->chunks[socket_id][chunk_id];
uint8_t bin_index = bin_id / EFD_CHUNK_NUM_BIN_TO_GROUP_SETS;
/*
* Grab the current byte that contains the choices
* for four neighboring bins
*/
uint8_t choice_chunk =
chunk->bin_choice_list[bin_index];
/* Compute the offset into the chunk that needs to be updated */
int offset = (bin_id & 0x3) * 2;
/* Zero the two bits of interest and set them to new_bin_choice */
choice_chunk = (choice_chunk & (~(0x03 << offset)))
| ((new_bin_choice & 0x03) << offset);
/* Update the online table with the new data across all sockets */
for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
if (table->chunks[i] != NULL) {
memcpy(&(table->chunks[i][chunk_id].groups[group_id]),
new_group_entry,
sizeof(struct efd_online_group_entry));
table->chunks[i][chunk_id].bin_choice_list[bin_index] =
choice_chunk;
}
}
}
/*
* Move the bin from prev group to the new group
*/
static inline void
move_groups(uint32_t bin_id, uint8_t bin_size,
struct efd_offline_group_rules *new_group,
struct efd_offline_group_rules * const current_group)
{
uint8_t empty_idx = 0;
unsigned int i;
if (new_group == current_group)
return;
for (i = 0; i < current_group->num_rules; i++) {
/*
* Move keys that belong to the same bin
* to the new group
*/
if (current_group->bin_id[i] == bin_id) {
new_group->key_idx[new_group->num_rules] =
current_group->key_idx[i];
new_group->value[new_group->num_rules] =
current_group->value[i];
new_group->bin_id[new_group->num_rules] =
current_group->bin_id[i];
new_group->num_rules++;
} else {
if (i != empty_idx) {
/*
* Need to move this key towards
* the top of the array
*/
current_group->key_idx[empty_idx] =
current_group->key_idx[i];
current_group->value[empty_idx] =
current_group->value[i];
current_group->bin_id[empty_idx] =
current_group->bin_id[i];
}
empty_idx++;
}
}
current_group->num_rules -= bin_size;
}
/*
* Revert group/s to their previous state before
* trying to insert/add a new key
*/
static inline void
revert_groups(struct efd_offline_group_rules *previous_group,
struct efd_offline_group_rules *current_group, uint8_t bin_size)
{
unsigned int i;
if (current_group == previous_group)
return;
/* Move keys back to previous group */
for (i = current_group->num_rules - bin_size;
i < current_group->num_rules; i++) {
previous_group->key_idx[previous_group->num_rules] =
current_group->key_idx[i];
previous_group->value[previous_group->num_rules] =
current_group->value[i];
previous_group->bin_id[previous_group->num_rules] =
current_group->bin_id[i];
previous_group->num_rules++;
}
/*
* Decrease number of rules after the move
* in the new group
*/
current_group->num_rules -= bin_size;
}
/**
* Computes an updated table entry where the supplied key points to a new host.
* If no entry exists, one is inserted.
*
* This function does NOT modify the online table(s)
* This function DOES modify the offline table
*
* @param table
* EFD table to reference
* @param socket_id
* Socket ID to use to lookup existing values (ideally caller's socket id)
* @param key
* Key to insert
* @param value
* Value to associate with key
* @param chunk_id
* Chunk ID of the chunk that was modified
* @param group_id
* Group ID of the group that was modified
* @param bin_id
* Bin ID that was modified
* @param new_bin_choice
* Newly chosen permutation which this bin will use
* @param entry
* Newly computed online entry to apply later with efd_apply_update
*
* @return
* RTE_EFD_UPDATE_WARN_GROUP_FULL
* Operation is insert, and the last available space in the
* key's group was just used. Future inserts may fail as groups fill up.
* This operation was still successful, and entry contains a valid update
* RTE_EFD_UPDATE_FAILED
* Either the EFD failed to find a suitable perfect hash or the group was full
* This is a fatal error, and the table is now in an indeterminate state
* RTE_EFD_UPDATE_NO_CHANGE
* Operation resulted in no change to the table (same value already exists)
* 0
* Insert or update was successful, and the new efd_online_group_entry
* is stored in *entry
*
* @warning
* Note that entry will be UNCHANGED if the update has no effect, and thus any
* subsequent use of the entry content will likely be invalid
*/
static inline int
efd_compute_update(struct rte_efd_table * const table,
const unsigned int socket_id, const void *key,
const efd_value_t value, uint32_t * const chunk_id,
uint32_t * const group_id, uint32_t * const bin_id,
uint8_t * const new_bin_choice,
struct efd_online_group_entry * const entry)
{
unsigned int i;
int ret;
uint32_t new_idx;
void *new_k, *slot_id = NULL;
int status = EXIT_SUCCESS;
unsigned int found = 0;
efd_compute_ids(table, key, chunk_id, bin_id);
struct efd_offline_chunk_rules * const chunk =
&table->offline_chunks[*chunk_id];
struct efd_offline_group_rules *new_group;
uint8_t current_choice = efd_get_choice(table, socket_id,
*chunk_id, *bin_id);
uint32_t current_group_id = efd_bin_to_group[current_choice][*bin_id];
struct efd_offline_group_rules * const current_group =
&chunk->group_rules[current_group_id];
uint8_t bin_size = 0;
uint8_t key_changed_index = 0;
efd_value_t key_changed_previous_value = 0;
uint32_t key_idx_previous = 0;
/* Scan the current group and see if the key is already present */
for (i = 0; i < current_group->num_rules; i++) {
if (current_group->bin_id[i] == *bin_id)
bin_size++;
else
continue;
void *key_stored = EFD_KEY(current_group->key_idx[i], table);
if (found == 0 && unlikely(memcmp(key_stored, key,
table->key_len) == 0)) {
/* Key is already present */
/*
* If previous value is same as new value,
* no additional work is required
*/
if (current_group->value[i] == value)
return RTE_EFD_UPDATE_NO_CHANGE;
key_idx_previous = current_group->key_idx[i];
key_changed_previous_value = current_group->value[i];
key_changed_index = i;
current_group->value[i] = value;
found = 1;
}
}
if (found == 0) {
/* Key does not exist. Insert the rule into the bin/group */
if (unlikely(current_group->num_rules >= EFD_MAX_GROUP_NUM_RULES)) {
RTE_LOG(ERR, EFD,
"Fatal: No room remaining for insert into "
"chunk %u group %u bin %u\n",
*chunk_id,
current_group_id, *bin_id);
return RTE_EFD_UPDATE_FAILED;
}
if (unlikely(current_group->num_rules ==
(EFD_MAX_GROUP_NUM_RULES - 1))) {
RTE_LOG(INFO, EFD, "Warn: Insert into last "
"available slot in chunk %u "
"group %u bin %u\n", *chunk_id,
current_group_id, *bin_id);
status = RTE_EFD_UPDATE_WARN_GROUP_FULL;
}
if (rte_ring_sc_dequeue(table->free_slots, &slot_id) != 0)
return RTE_EFD_UPDATE_FAILED;
new_k = RTE_PTR_ADD(table->keys, (uintptr_t) slot_id *
table->key_len);
rte_prefetch0(new_k);
new_idx = (uint32_t) ((uintptr_t) slot_id);
rte_memcpy(EFD_KEY(new_idx, table), key, table->key_len);
current_group->key_idx[current_group->num_rules] = new_idx;
current_group->value[current_group->num_rules] = value;
current_group->bin_id[current_group->num_rules] = *bin_id;
current_group->num_rules++;
table->num_rules++;
bin_size++;
} else {
uint32_t last = current_group->num_rules - 1;
/* Swap the key with the last key inserted*/
current_group->key_idx[key_changed_index] =
current_group->key_idx[last];
current_group->value[key_changed_index] =
current_group->value[last];
current_group->bin_id[key_changed_index] =
current_group->bin_id[last];
/*
* Key to be updated will always be available
* at the end of the group
*/
current_group->key_idx[last] = key_idx_previous;
current_group->value[last] = value;
current_group->bin_id[last] = *bin_id;
}
*new_bin_choice = current_choice;
*group_id = current_group_id;
new_group = current_group;
/* Group need to be rebalanced when it starts to get loaded */
if (current_group->num_rules > EFD_MIN_BALANCED_NUM_RULES) {
/*
* Subtract the number of entries in the bin from
* the original group
*/
current_group->num_rules -= bin_size;
/*
* Figure out which of the available groups that this bin
* can map to is the smallest (using the current group
* as baseline)
*/
uint8_t smallest_choice = current_choice;
uint8_t smallest_size = current_group->num_rules;
uint32_t smallest_group_id = current_group_id;
unsigned char choice;
for (choice = 0; choice < EFD_CHUNK_NUM_BIN_TO_GROUP_SETS;
choice++) {
uint32_t test_group_id =
efd_bin_to_group[choice][*bin_id];
uint32_t num_rules =
chunk->group_rules[test_group_id].num_rules;
if (num_rules < smallest_size) {
smallest_choice = choice;
smallest_size = num_rules;
smallest_group_id = test_group_id;
}
}
*new_bin_choice = smallest_choice;
*group_id = smallest_group_id;
new_group = &chunk->group_rules[smallest_group_id];
current_group->num_rules += bin_size;
}
uint8_t choice = 0;
for (;;) {
if (current_group != new_group &&
new_group->num_rules + bin_size >
EFD_MAX_GROUP_NUM_RULES) {
RTE_LOG(DEBUG, EFD,
"Unable to move_groups to dest group "
"containing %u entries."
"bin_size:%u choice:%02x\n",
new_group->num_rules, bin_size,
choice - 1);
goto next_choice;
}
move_groups(*bin_id, bin_size, new_group, current_group);
/*
* Recompute the hash function for the modified group,
* and return it to the caller
*/
ret = efd_search_hash(table, new_group, entry);
if (!ret)
return status;
RTE_LOG(DEBUG, EFD,
"Failed to find perfect hash for group "
"containing %u entries. bin_size:%u choice:%02x\n",
new_group->num_rules, bin_size, choice - 1);
/* Restore groups modified to their previous state */
revert_groups(current_group, new_group, bin_size);
next_choice:
if (choice == EFD_CHUNK_NUM_BIN_TO_GROUP_SETS)
break;
*new_bin_choice = choice;
*group_id = efd_bin_to_group[choice][*bin_id];
new_group = &chunk->group_rules[*group_id];
choice++;
}
if (!found) {
current_group->num_rules--;
table->num_rules--;
} else
current_group->value[current_group->num_rules - 1] =
key_changed_previous_value;
return RTE_EFD_UPDATE_FAILED;
}
int
rte_efd_update(struct rte_efd_table * const table, const unsigned int socket_id,
const void *key, const efd_value_t value)
{
uint32_t chunk_id = 0, group_id = 0, bin_id = 0;
uint8_t new_bin_choice = 0;
struct efd_online_group_entry entry;
int status = efd_compute_update(table, socket_id, key, value,
&chunk_id, &group_id, &bin_id,
&new_bin_choice, &entry);
if (status == RTE_EFD_UPDATE_NO_CHANGE)
return EXIT_SUCCESS;
if (status == RTE_EFD_UPDATE_FAILED)
return status;
efd_apply_update(table, socket_id, chunk_id, group_id, bin_id,
new_bin_choice, &entry);
return status;
}
int
rte_efd_delete(struct rte_efd_table * const table, const unsigned int socket_id,
const void *key, efd_value_t * const prev_value)
{
unsigned int i;
uint32_t chunk_id, bin_id;
uint8_t not_found = 1;
efd_compute_ids(table, key, &chunk_id, &bin_id);
struct efd_offline_chunk_rules * const chunk =
&table->offline_chunks[chunk_id];
uint8_t current_choice = efd_get_choice(table, socket_id,
chunk_id, bin_id);
uint32_t current_group_id = efd_bin_to_group[current_choice][bin_id];
struct efd_offline_group_rules * const current_group =
&chunk->group_rules[current_group_id];
/*
* Search the current group for the specified key.
* If it exists, remove it and re-pack the other values
*/
for (i = 0; i < current_group->num_rules; i++) {
if (not_found) {
/* Found key that needs to be removed */
if (memcmp(EFD_KEY(current_group->key_idx[i], table),
key, table->key_len) == 0) {
/* Store previous value if requested by caller */
if (prev_value != NULL)
*prev_value = current_group->value[i];
not_found = 0;
rte_ring_sp_enqueue(table->free_slots,
(void *)((uintptr_t)current_group->key_idx[i]));
}
} else {
/*
* If the desired key has been found,
* need to shift other values up one
*/
/* Need to shift this entry back up one index */
current_group->key_idx[i - 1] = current_group->key_idx[i];
current_group->value[i - 1] = current_group->value[i];
current_group->bin_id[i - 1] = current_group->bin_id[i];
}
}
if (not_found == 0) {
table->num_rules--;
current_group->num_rules--;
}
return not_found;
}
static inline efd_value_t
efd_lookup_internal_scalar(const efd_hashfunc_t *group_hash_idx,
const efd_lookuptbl_t *group_lookup_table,
const uint32_t hash_val_a, const uint32_t hash_val_b)
{
efd_value_t value = 0;
uint32_t i;
for (i = 0; i < RTE_EFD_VALUE_NUM_BITS; i++) {
value <<= 1;
uint32_t h = hash_val_a + (hash_val_b *
group_hash_idx[RTE_EFD_VALUE_NUM_BITS - i - 1]);
uint16_t bucket_idx = h >> EFD_LOOKUPTBL_SHIFT;
value |= (group_lookup_table[
RTE_EFD_VALUE_NUM_BITS - i - 1] >>
bucket_idx) & 0x1;
}
return value;
}
static inline efd_value_t
efd_lookup_internal(const struct efd_online_group_entry * const group,
const uint32_t hash_val_a, const uint32_t hash_val_b,
enum efd_lookup_internal_function lookup_fn)
{
efd_value_t value = 0;
switch (lookup_fn) {
#if defined(RTE_ARCH_X86) && defined(CC_SUPPORT_AVX2)
case EFD_LOOKUP_AVX2:
return efd_lookup_internal_avx2(group->hash_idx,
group->lookup_table,
hash_val_a,
hash_val_b);
break;
#endif
#if defined(RTE_ARCH_ARM64)
case EFD_LOOKUP_NEON:
return efd_lookup_internal_neon(group->hash_idx,
group->lookup_table,
hash_val_a,
hash_val_b);
break;
#endif
case EFD_LOOKUP_SCALAR:
/* Fall-through */
default:
return efd_lookup_internal_scalar(group->hash_idx,
group->lookup_table,
hash_val_a,
hash_val_b);
}
return value;
}
efd_value_t
rte_efd_lookup(const struct rte_efd_table * const table,
const unsigned int socket_id, const void *key)
{
uint32_t chunk_id, group_id, bin_id;
uint8_t bin_choice;
const struct efd_online_group_entry *group;
const struct efd_online_chunk * const chunks = table->chunks[socket_id];
/* Determine the chunk and group location for the given key */
efd_compute_ids(table, key, &chunk_id, &bin_id);
bin_choice = efd_get_choice(table, socket_id, chunk_id, bin_id);
group_id = efd_bin_to_group[bin_choice][bin_id];
group = &chunks[chunk_id].groups[group_id];
return efd_lookup_internal(group,
EFD_HASHFUNCA(key, table),
EFD_HASHFUNCB(key, table),
table->lookup_fn);
}
void rte_efd_lookup_bulk(const struct rte_efd_table * const table,
const unsigned int socket_id, const int num_keys,
const void **key_list, efd_value_t * const value_list)
{
int i;
uint32_t chunk_id_list[RTE_EFD_BURST_MAX];
uint32_t bin_id_list[RTE_EFD_BURST_MAX];
uint8_t bin_choice_list[RTE_EFD_BURST_MAX];
uint32_t group_id_list[RTE_EFD_BURST_MAX];
struct efd_online_group_entry *group;
struct efd_online_chunk *chunks = table->chunks[socket_id];
for (i = 0; i < num_keys; i++) {
efd_compute_ids(table, key_list[i], &chunk_id_list[i],
&bin_id_list[i]);
rte_prefetch0(&chunks[chunk_id_list[i]].bin_choice_list);
}
for (i = 0; i < num_keys; i++) {
bin_choice_list[i] = efd_get_choice(table, socket_id,
chunk_id_list[i], bin_id_list[i]);
group_id_list[i] =
efd_bin_to_group[bin_choice_list[i]][bin_id_list[i]];
group = &chunks[chunk_id_list[i]].groups[group_id_list[i]];
rte_prefetch0(group);
}
for (i = 0; i < num_keys; i++) {
group = &chunks[chunk_id_list[i]].groups[group_id_list[i]];
value_list[i] = efd_lookup_internal(group,
EFD_HASHFUNCA(key_list[i], table),
EFD_HASHFUNCB(key_list[i], table),
table->lookup_fn);
}
}