2695db95a1
This commit adds cycle-count mode to the compression perf tool. The new mode enhances the compression performance tool to allow cycle-count measurement of both hardware and softwate PMDs. Signed-off-by: Artur Trybula <arturx.trybula@intel.com> Acked-by: Fiona Trahe <fiona.trahe@intel.com>
443 lines
11 KiB
C
443 lines
11 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2018 Intel Corporation
|
|
*/
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_log.h>
|
|
#include <rte_compressdev.h>
|
|
|
|
#include "comp_perf_test_verify.h"
|
|
#include "comp_perf_test_common.h"
|
|
|
|
void
|
|
cperf_verify_test_destructor(void *arg)
|
|
{
|
|
if (arg) {
|
|
comp_perf_free_memory(
|
|
((struct cperf_verify_ctx *)arg)->options,
|
|
&((struct cperf_verify_ctx *)arg)->mem);
|
|
rte_free(arg);
|
|
}
|
|
}
|
|
|
|
void *
|
|
cperf_verify_test_constructor(uint8_t dev_id, uint16_t qp_id,
|
|
struct comp_test_data *options)
|
|
{
|
|
struct cperf_verify_ctx *ctx = NULL;
|
|
|
|
ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
|
|
|
|
if (ctx == NULL)
|
|
return NULL;
|
|
|
|
ctx->mem.dev_id = dev_id;
|
|
ctx->mem.qp_id = qp_id;
|
|
ctx->options = options;
|
|
|
|
if (!comp_perf_allocate_memory(ctx->options, &ctx->mem) &&
|
|
!prepare_bufs(ctx->options, &ctx->mem))
|
|
return ctx;
|
|
|
|
cperf_verify_test_destructor(ctx);
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
main_loop(struct cperf_verify_ctx *ctx, enum rte_comp_xform_type type)
|
|
{
|
|
struct comp_test_data *test_data = ctx->options;
|
|
uint8_t *output_data_ptr = NULL;
|
|
size_t *output_data_sz = NULL;
|
|
struct cperf_mem_resources *mem = &ctx->mem;
|
|
|
|
uint8_t dev_id = mem->dev_id;
|
|
uint32_t i, iter, num_iter;
|
|
struct rte_comp_op **ops, **deq_ops;
|
|
void *priv_xform = NULL;
|
|
struct rte_comp_xform xform;
|
|
size_t output_size = 0;
|
|
struct rte_mbuf **input_bufs, **output_bufs;
|
|
int res = 0;
|
|
int allocated = 0;
|
|
uint32_t out_seg_sz;
|
|
|
|
if (test_data == NULL || !test_data->burst_sz) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Unknown burst size\n");
|
|
return -1;
|
|
}
|
|
|
|
ops = rte_zmalloc_socket(NULL,
|
|
2 * mem->total_bufs * sizeof(struct rte_comp_op *),
|
|
0, rte_socket_id());
|
|
|
|
if (ops == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Can't allocate memory for ops strucures\n");
|
|
return -1;
|
|
}
|
|
|
|
deq_ops = &ops[mem->total_bufs];
|
|
|
|
if (type == RTE_COMP_COMPRESS) {
|
|
xform = (struct rte_comp_xform) {
|
|
.type = RTE_COMP_COMPRESS,
|
|
.compress = {
|
|
.algo = RTE_COMP_ALGO_DEFLATE,
|
|
.deflate.huffman = test_data->huffman_enc,
|
|
.level = test_data->level,
|
|
.window_size = test_data->window_sz,
|
|
.chksum = RTE_COMP_CHECKSUM_NONE,
|
|
.hash_algo = RTE_COMP_HASH_ALGO_NONE
|
|
}
|
|
};
|
|
output_data_ptr = ctx->mem.compressed_data;
|
|
output_data_sz = &ctx->comp_data_sz;
|
|
input_bufs = mem->decomp_bufs;
|
|
output_bufs = mem->comp_bufs;
|
|
out_seg_sz = test_data->out_seg_sz;
|
|
} else {
|
|
xform = (struct rte_comp_xform) {
|
|
.type = RTE_COMP_DECOMPRESS,
|
|
.decompress = {
|
|
.algo = RTE_COMP_ALGO_DEFLATE,
|
|
.chksum = RTE_COMP_CHECKSUM_NONE,
|
|
.window_size = test_data->window_sz,
|
|
.hash_algo = RTE_COMP_HASH_ALGO_NONE
|
|
}
|
|
};
|
|
output_data_ptr = ctx->mem.decompressed_data;
|
|
output_data_sz = &ctx->decomp_data_sz;
|
|
input_bufs = mem->comp_bufs;
|
|
output_bufs = mem->decomp_bufs;
|
|
out_seg_sz = test_data->seg_sz;
|
|
}
|
|
|
|
/* Create private xform */
|
|
if (rte_compressdev_private_xform_create(dev_id, &xform,
|
|
&priv_xform) < 0) {
|
|
RTE_LOG(ERR, USER1, "Private xform could not be created\n");
|
|
res = -1;
|
|
goto end;
|
|
}
|
|
|
|
num_iter = 1;
|
|
|
|
for (iter = 0; iter < num_iter; iter++) {
|
|
uint32_t total_ops = mem->total_bufs;
|
|
uint32_t remaining_ops = mem->total_bufs;
|
|
uint32_t total_deq_ops = 0;
|
|
uint32_t total_enq_ops = 0;
|
|
uint16_t ops_unused = 0;
|
|
uint16_t num_enq = 0;
|
|
uint16_t num_deq = 0;
|
|
|
|
output_size = 0;
|
|
|
|
while (remaining_ops > 0) {
|
|
uint16_t num_ops = RTE_MIN(remaining_ops,
|
|
test_data->burst_sz);
|
|
uint16_t ops_needed = num_ops - ops_unused;
|
|
|
|
/*
|
|
* Move the unused operations from the previous
|
|
* enqueue_burst call to the front, to maintain order
|
|
*/
|
|
if ((ops_unused > 0) && (num_enq > 0)) {
|
|
size_t nb_b_to_mov =
|
|
ops_unused * sizeof(struct rte_comp_op *);
|
|
|
|
memmove(ops, &ops[num_enq], nb_b_to_mov);
|
|
}
|
|
|
|
/* Allocate compression operations */
|
|
if (ops_needed && !rte_comp_op_bulk_alloc(
|
|
mem->op_pool,
|
|
&ops[ops_unused],
|
|
ops_needed)) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Could not allocate enough operations\n");
|
|
res = -1;
|
|
goto end;
|
|
}
|
|
allocated += ops_needed;
|
|
|
|
for (i = 0; i < ops_needed; i++) {
|
|
/*
|
|
* Calculate next buffer to attach to operation
|
|
*/
|
|
uint32_t buf_id = total_enq_ops + i +
|
|
ops_unused;
|
|
uint16_t op_id = ops_unused + i;
|
|
/* Reset all data in output buffers */
|
|
struct rte_mbuf *m = output_bufs[buf_id];
|
|
|
|
m->pkt_len = out_seg_sz * m->nb_segs;
|
|
while (m) {
|
|
m->data_len = m->buf_len - m->data_off;
|
|
m = m->next;
|
|
}
|
|
ops[op_id]->m_src = input_bufs[buf_id];
|
|
ops[op_id]->m_dst = output_bufs[buf_id];
|
|
ops[op_id]->src.offset = 0;
|
|
ops[op_id]->src.length =
|
|
rte_pktmbuf_pkt_len(input_bufs[buf_id]);
|
|
ops[op_id]->dst.offset = 0;
|
|
ops[op_id]->flush_flag = RTE_COMP_FLUSH_FINAL;
|
|
ops[op_id]->input_chksum = buf_id;
|
|
ops[op_id]->private_xform = priv_xform;
|
|
}
|
|
|
|
if (unlikely(test_data->perf_comp_force_stop))
|
|
goto end;
|
|
|
|
num_enq = rte_compressdev_enqueue_burst(dev_id,
|
|
mem->qp_id, ops,
|
|
num_ops);
|
|
if (num_enq == 0) {
|
|
struct rte_compressdev_stats stats;
|
|
|
|
rte_compressdev_stats_get(dev_id, &stats);
|
|
if (stats.enqueue_err_count) {
|
|
res = -1;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
ops_unused = num_ops - num_enq;
|
|
remaining_ops -= num_enq;
|
|
total_enq_ops += num_enq;
|
|
|
|
num_deq = rte_compressdev_dequeue_burst(dev_id,
|
|
mem->qp_id,
|
|
deq_ops,
|
|
test_data->burst_sz);
|
|
total_deq_ops += num_deq;
|
|
|
|
for (i = 0; i < num_deq; i++) {
|
|
struct rte_comp_op *op = deq_ops[i];
|
|
|
|
if (op->status ==
|
|
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED ||
|
|
op->status ==
|
|
RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Out of space error occurred due to uncompressible input data expanding to larger than destination buffer. Increase the EXPANSE_RATIO constant to use this data.\n");
|
|
res = -1;
|
|
goto end;
|
|
} else if (op->status !=
|
|
RTE_COMP_OP_STATUS_SUCCESS) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Some operations were not successful\n");
|
|
goto end;
|
|
}
|
|
|
|
const void *read_data_addr =
|
|
rte_pktmbuf_read(op->m_dst, 0,
|
|
op->produced, output_data_ptr);
|
|
if (read_data_addr == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Could not copy buffer in destination\n");
|
|
res = -1;
|
|
goto end;
|
|
}
|
|
|
|
if (read_data_addr != output_data_ptr)
|
|
rte_memcpy(output_data_ptr,
|
|
rte_pktmbuf_mtod(op->m_dst,
|
|
uint8_t *),
|
|
op->produced);
|
|
output_data_ptr += op->produced;
|
|
output_size += op->produced;
|
|
|
|
}
|
|
|
|
|
|
if (iter == num_iter - 1) {
|
|
for (i = 0; i < num_deq; i++) {
|
|
struct rte_comp_op *op = deq_ops[i];
|
|
struct rte_mbuf *m = op->m_dst;
|
|
|
|
m->pkt_len = op->produced;
|
|
uint32_t remaining_data = op->produced;
|
|
uint16_t data_to_append;
|
|
|
|
while (remaining_data > 0) {
|
|
data_to_append =
|
|
RTE_MIN(remaining_data,
|
|
out_seg_sz);
|
|
m->data_len = data_to_append;
|
|
remaining_data -=
|
|
data_to_append;
|
|
m = m->next;
|
|
}
|
|
}
|
|
}
|
|
rte_mempool_put_bulk(mem->op_pool,
|
|
(void **)deq_ops, num_deq);
|
|
allocated -= num_deq;
|
|
}
|
|
|
|
/* Dequeue the last operations */
|
|
while (total_deq_ops < total_ops) {
|
|
if (unlikely(test_data->perf_comp_force_stop))
|
|
goto end;
|
|
|
|
num_deq = rte_compressdev_dequeue_burst(dev_id,
|
|
mem->qp_id,
|
|
deq_ops,
|
|
test_data->burst_sz);
|
|
if (num_deq == 0) {
|
|
struct rte_compressdev_stats stats;
|
|
|
|
rte_compressdev_stats_get(dev_id, &stats);
|
|
if (stats.dequeue_err_count) {
|
|
res = -1;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
total_deq_ops += num_deq;
|
|
|
|
for (i = 0; i < num_deq; i++) {
|
|
struct rte_comp_op *op = deq_ops[i];
|
|
|
|
if (op->status ==
|
|
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED ||
|
|
op->status ==
|
|
RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Out of space error occurred due to uncompressible input data expanding to larger than destination buffer. Increase the EXPANSE_RATIO constant to use this data.\n");
|
|
res = -1;
|
|
goto end;
|
|
} else if (op->status !=
|
|
RTE_COMP_OP_STATUS_SUCCESS) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Some operations were not successful\n");
|
|
goto end;
|
|
}
|
|
const void *read_data_addr =
|
|
rte_pktmbuf_read(op->m_dst,
|
|
op->dst.offset,
|
|
op->produced, output_data_ptr);
|
|
if (read_data_addr == NULL) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Could not copy buffer in destination\n");
|
|
res = -1;
|
|
goto end;
|
|
}
|
|
|
|
if (read_data_addr != output_data_ptr)
|
|
rte_memcpy(output_data_ptr,
|
|
rte_pktmbuf_mtod(
|
|
op->m_dst, uint8_t *),
|
|
op->produced);
|
|
output_data_ptr += op->produced;
|
|
output_size += op->produced;
|
|
|
|
}
|
|
|
|
if (iter == num_iter - 1) {
|
|
for (i = 0; i < num_deq; i++) {
|
|
struct rte_comp_op *op = deq_ops[i];
|
|
struct rte_mbuf *m = op->m_dst;
|
|
|
|
m->pkt_len = op->produced;
|
|
uint32_t remaining_data = op->produced;
|
|
uint16_t data_to_append;
|
|
|
|
while (remaining_data > 0) {
|
|
data_to_append =
|
|
RTE_MIN(remaining_data,
|
|
out_seg_sz);
|
|
m->data_len = data_to_append;
|
|
remaining_data -=
|
|
data_to_append;
|
|
m = m->next;
|
|
}
|
|
}
|
|
}
|
|
rte_mempool_put_bulk(mem->op_pool,
|
|
(void **)deq_ops, num_deq);
|
|
allocated -= num_deq;
|
|
}
|
|
}
|
|
|
|
if (output_data_sz)
|
|
*output_data_sz = output_size;
|
|
end:
|
|
rte_mempool_put_bulk(mem->op_pool, (void **)ops, allocated);
|
|
rte_compressdev_private_xform_free(dev_id, priv_xform);
|
|
rte_free(ops);
|
|
|
|
if (test_data->perf_comp_force_stop) {
|
|
RTE_LOG(ERR, USER1,
|
|
"lcore: %d Perf. test has been aborted by user\n",
|
|
mem->lcore_id);
|
|
res = -1;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
int
|
|
cperf_verify_test_runner(void *test_ctx)
|
|
{
|
|
struct cperf_verify_ctx *ctx = test_ctx;
|
|
struct comp_test_data *test_data = ctx->options;
|
|
int ret = EXIT_SUCCESS;
|
|
static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
|
|
uint32_t lcore = rte_lcore_id();
|
|
|
|
ctx->mem.lcore_id = lcore;
|
|
|
|
test_data->ratio = 0;
|
|
|
|
if (main_loop(ctx, RTE_COMP_COMPRESS) < 0) {
|
|
ret = EXIT_FAILURE;
|
|
goto end;
|
|
}
|
|
|
|
if (main_loop(ctx, RTE_COMP_DECOMPRESS) < 0) {
|
|
ret = EXIT_FAILURE;
|
|
goto end;
|
|
}
|
|
|
|
if (ctx->decomp_data_sz != test_data->input_data_sz) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Decompressed data length not equal to input data length\n");
|
|
RTE_LOG(ERR, USER1,
|
|
"Decompressed size = %zu, expected = %zu\n",
|
|
ctx->decomp_data_sz, test_data->input_data_sz);
|
|
ret = EXIT_FAILURE;
|
|
goto end;
|
|
} else {
|
|
if (memcmp(ctx->mem.decompressed_data,
|
|
test_data->input_data,
|
|
test_data->input_data_sz) != 0) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Decompressed data is not the same as file data\n");
|
|
ret = EXIT_FAILURE;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
ctx->ratio = (double) ctx->comp_data_sz /
|
|
test_data->input_data_sz * 100;
|
|
|
|
if (!ctx->silent) {
|
|
if (rte_atomic16_test_and_set(&display_once)) {
|
|
printf("%12s%6s%12s%17s\n",
|
|
"lcore id", "Level", "Comp size", "Comp ratio [%]");
|
|
}
|
|
printf("%12u%6u%12zu%17.2f\n",
|
|
ctx->mem.lcore_id,
|
|
test_data->level, ctx->comp_data_sz, ctx->ratio);
|
|
}
|
|
|
|
end:
|
|
return ret;
|
|
}
|