e0f4a0ed42
Let's mark as skipped the tests when they are missing some requirements like a number of used cores or specific hardware availability, like compress, crypto or eventdev devices. Signed-off-by: David Marchand <david.marchand@redhat.com>
1236 lines
29 KiB
C
1236 lines
29 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <errno.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_log.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_random.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_malloc.h>
|
|
|
|
#include "test.h"
|
|
|
|
#define MBUF_DATA_SIZE 2048
|
|
#define NB_MBUF 128
|
|
#define MBUF_TEST_DATA_LEN 1464
|
|
#define MBUF_TEST_DATA_LEN2 50
|
|
#define MBUF_TEST_HDR1_LEN 20
|
|
#define MBUF_TEST_HDR2_LEN 30
|
|
#define MBUF_TEST_ALL_HDRS_LEN (MBUF_TEST_HDR1_LEN+MBUF_TEST_HDR2_LEN)
|
|
|
|
/* size of private data for mbuf in pktmbuf_pool2 */
|
|
#define MBUF2_PRIV_SIZE 128
|
|
|
|
#define REFCNT_MAX_ITER 64
|
|
#define REFCNT_MAX_TIMEOUT 10
|
|
#define REFCNT_MAX_REF (RTE_MAX_LCORE)
|
|
#define REFCNT_MBUF_NUM 64
|
|
#define REFCNT_RING_SIZE (REFCNT_MBUF_NUM * REFCNT_MAX_REF)
|
|
|
|
#define MAGIC_DATA 0x42424242
|
|
|
|
#define MAKE_STRING(x) # x
|
|
|
|
#ifdef RTE_MBUF_REFCNT_ATOMIC
|
|
|
|
static volatile uint32_t refcnt_stop_slaves;
|
|
static unsigned refcnt_lcore[RTE_MAX_LCORE];
|
|
|
|
#endif
|
|
|
|
/*
|
|
* MBUF
|
|
* ====
|
|
*
|
|
* #. Allocate a mbuf pool.
|
|
*
|
|
* - The pool contains NB_MBUF elements, where each mbuf is MBUF_SIZE
|
|
* bytes long.
|
|
*
|
|
* #. Test multiple allocations of mbufs from this pool.
|
|
*
|
|
* - Allocate NB_MBUF and store pointers in a table.
|
|
* - If an allocation fails, return an error.
|
|
* - Free all these mbufs.
|
|
* - Repeat the same test to check that mbufs were freed correctly.
|
|
*
|
|
* #. Test data manipulation in pktmbuf.
|
|
*
|
|
* - Alloc an mbuf.
|
|
* - Append data using rte_pktmbuf_append().
|
|
* - Test for error in rte_pktmbuf_append() when len is too large.
|
|
* - Trim data at the end of mbuf using rte_pktmbuf_trim().
|
|
* - Test for error in rte_pktmbuf_trim() when len is too large.
|
|
* - Prepend a header using rte_pktmbuf_prepend().
|
|
* - Test for error in rte_pktmbuf_prepend() when len is too large.
|
|
* - Remove data at the beginning of mbuf using rte_pktmbuf_adj().
|
|
* - Test for error in rte_pktmbuf_adj() when len is too large.
|
|
* - Check that appended data is not corrupt.
|
|
* - Free the mbuf.
|
|
* - Between all these tests, check data_len and pkt_len, and
|
|
* that the mbuf is contiguous.
|
|
* - Repeat the test to check that allocation operations
|
|
* reinitialize the mbuf correctly.
|
|
*
|
|
* #. Test packet cloning
|
|
* - Clone a mbuf and verify the data
|
|
* - Clone the cloned mbuf and verify the data
|
|
* - Attach a mbuf to another that does not have the same priv_size.
|
|
*/
|
|
|
|
#define GOTO_FAIL(str, ...) do { \
|
|
printf("mbuf test FAILED (l.%d): <" str ">\n", \
|
|
__LINE__, ##__VA_ARGS__); \
|
|
goto fail; \
|
|
} while(0)
|
|
|
|
/*
|
|
* test data manipulation in mbuf with non-ascii data
|
|
*/
|
|
static int
|
|
test_pktmbuf_with_non_ascii_data(struct rte_mempool *pktmbuf_pool)
|
|
{
|
|
struct rte_mbuf *m = NULL;
|
|
char *data;
|
|
|
|
m = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if (m == NULL)
|
|
GOTO_FAIL("Cannot allocate mbuf");
|
|
if (rte_pktmbuf_pkt_len(m) != 0)
|
|
GOTO_FAIL("Bad length");
|
|
|
|
data = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN);
|
|
if (data == NULL)
|
|
GOTO_FAIL("Cannot append data");
|
|
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
|
|
GOTO_FAIL("Bad pkt length");
|
|
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
|
|
GOTO_FAIL("Bad data length");
|
|
memset(data, 0xff, rte_pktmbuf_pkt_len(m));
|
|
if (!rte_pktmbuf_is_contiguous(m))
|
|
GOTO_FAIL("Buffer should be continuous");
|
|
rte_pktmbuf_dump(stdout, m, MBUF_TEST_DATA_LEN);
|
|
|
|
rte_pktmbuf_free(m);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
if(m) {
|
|
rte_pktmbuf_free(m);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* test data manipulation in mbuf
|
|
*/
|
|
static int
|
|
test_one_pktmbuf(struct rte_mempool *pktmbuf_pool)
|
|
{
|
|
struct rte_mbuf *m = NULL;
|
|
char *data, *data2, *hdr;
|
|
unsigned i;
|
|
|
|
printf("Test pktmbuf API\n");
|
|
|
|
/* alloc a mbuf */
|
|
|
|
m = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if (m == NULL)
|
|
GOTO_FAIL("Cannot allocate mbuf");
|
|
if (rte_pktmbuf_pkt_len(m) != 0)
|
|
GOTO_FAIL("Bad length");
|
|
|
|
rte_pktmbuf_dump(stdout, m, 0);
|
|
|
|
/* append data */
|
|
|
|
data = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN);
|
|
if (data == NULL)
|
|
GOTO_FAIL("Cannot append data");
|
|
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
|
|
GOTO_FAIL("Bad pkt length");
|
|
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
|
|
GOTO_FAIL("Bad data length");
|
|
memset(data, 0x66, rte_pktmbuf_pkt_len(m));
|
|
if (!rte_pktmbuf_is_contiguous(m))
|
|
GOTO_FAIL("Buffer should be continuous");
|
|
rte_pktmbuf_dump(stdout, m, MBUF_TEST_DATA_LEN);
|
|
rte_pktmbuf_dump(stdout, m, 2*MBUF_TEST_DATA_LEN);
|
|
|
|
/* this append should fail */
|
|
|
|
data2 = rte_pktmbuf_append(m, (uint16_t)(rte_pktmbuf_tailroom(m) + 1));
|
|
if (data2 != NULL)
|
|
GOTO_FAIL("Append should not succeed");
|
|
|
|
/* append some more data */
|
|
|
|
data2 = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN2);
|
|
if (data2 == NULL)
|
|
GOTO_FAIL("Cannot append data");
|
|
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_DATA_LEN2)
|
|
GOTO_FAIL("Bad pkt length");
|
|
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_DATA_LEN2)
|
|
GOTO_FAIL("Bad data length");
|
|
if (!rte_pktmbuf_is_contiguous(m))
|
|
GOTO_FAIL("Buffer should be continuous");
|
|
|
|
/* trim data at the end of mbuf */
|
|
|
|
if (rte_pktmbuf_trim(m, MBUF_TEST_DATA_LEN2) < 0)
|
|
GOTO_FAIL("Cannot trim data");
|
|
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
|
|
GOTO_FAIL("Bad pkt length");
|
|
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
|
|
GOTO_FAIL("Bad data length");
|
|
if (!rte_pktmbuf_is_contiguous(m))
|
|
GOTO_FAIL("Buffer should be continuous");
|
|
|
|
/* this trim should fail */
|
|
|
|
if (rte_pktmbuf_trim(m, (uint16_t)(rte_pktmbuf_data_len(m) + 1)) == 0)
|
|
GOTO_FAIL("trim should not succeed");
|
|
|
|
/* prepend one header */
|
|
|
|
hdr = rte_pktmbuf_prepend(m, MBUF_TEST_HDR1_LEN);
|
|
if (hdr == NULL)
|
|
GOTO_FAIL("Cannot prepend");
|
|
if (data - hdr != MBUF_TEST_HDR1_LEN)
|
|
GOTO_FAIL("Prepend failed");
|
|
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_HDR1_LEN)
|
|
GOTO_FAIL("Bad pkt length");
|
|
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_HDR1_LEN)
|
|
GOTO_FAIL("Bad data length");
|
|
if (!rte_pktmbuf_is_contiguous(m))
|
|
GOTO_FAIL("Buffer should be continuous");
|
|
memset(hdr, 0x55, MBUF_TEST_HDR1_LEN);
|
|
|
|
/* prepend another header */
|
|
|
|
hdr = rte_pktmbuf_prepend(m, MBUF_TEST_HDR2_LEN);
|
|
if (hdr == NULL)
|
|
GOTO_FAIL("Cannot prepend");
|
|
if (data - hdr != MBUF_TEST_ALL_HDRS_LEN)
|
|
GOTO_FAIL("Prepend failed");
|
|
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_ALL_HDRS_LEN)
|
|
GOTO_FAIL("Bad pkt length");
|
|
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_ALL_HDRS_LEN)
|
|
GOTO_FAIL("Bad data length");
|
|
if (!rte_pktmbuf_is_contiguous(m))
|
|
GOTO_FAIL("Buffer should be continuous");
|
|
memset(hdr, 0x55, MBUF_TEST_HDR2_LEN);
|
|
|
|
rte_mbuf_sanity_check(m, 1);
|
|
rte_mbuf_sanity_check(m, 0);
|
|
rte_pktmbuf_dump(stdout, m, 0);
|
|
|
|
/* this prepend should fail */
|
|
|
|
hdr = rte_pktmbuf_prepend(m, (uint16_t)(rte_pktmbuf_headroom(m) + 1));
|
|
if (hdr != NULL)
|
|
GOTO_FAIL("prepend should not succeed");
|
|
|
|
/* remove data at beginning of mbuf (adj) */
|
|
|
|
if (data != rte_pktmbuf_adj(m, MBUF_TEST_ALL_HDRS_LEN))
|
|
GOTO_FAIL("rte_pktmbuf_adj failed");
|
|
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
|
|
GOTO_FAIL("Bad pkt length");
|
|
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
|
|
GOTO_FAIL("Bad data length");
|
|
if (!rte_pktmbuf_is_contiguous(m))
|
|
GOTO_FAIL("Buffer should be continuous");
|
|
|
|
/* this adj should fail */
|
|
|
|
if (rte_pktmbuf_adj(m, (uint16_t)(rte_pktmbuf_data_len(m) + 1)) != NULL)
|
|
GOTO_FAIL("rte_pktmbuf_adj should not succeed");
|
|
|
|
/* check data */
|
|
|
|
if (!rte_pktmbuf_is_contiguous(m))
|
|
GOTO_FAIL("Buffer should be continuous");
|
|
|
|
for (i=0; i<MBUF_TEST_DATA_LEN; i++) {
|
|
if (data[i] != 0x66)
|
|
GOTO_FAIL("Data corrupted at offset %u", i);
|
|
}
|
|
|
|
/* free mbuf */
|
|
|
|
rte_pktmbuf_free(m);
|
|
m = NULL;
|
|
return 0;
|
|
|
|
fail:
|
|
if (m)
|
|
rte_pktmbuf_free(m);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
testclone_testupdate_testdetach(struct rte_mempool *pktmbuf_pool)
|
|
{
|
|
struct rte_mbuf *m = NULL;
|
|
struct rte_mbuf *clone = NULL;
|
|
struct rte_mbuf *clone2 = NULL;
|
|
unaligned_uint32_t *data;
|
|
|
|
/* alloc a mbuf */
|
|
m = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if (m == NULL)
|
|
GOTO_FAIL("ooops not allocating mbuf");
|
|
|
|
if (rte_pktmbuf_pkt_len(m) != 0)
|
|
GOTO_FAIL("Bad length");
|
|
|
|
rte_pktmbuf_append(m, sizeof(uint32_t));
|
|
data = rte_pktmbuf_mtod(m, unaligned_uint32_t *);
|
|
*data = MAGIC_DATA;
|
|
|
|
/* clone the allocated mbuf */
|
|
clone = rte_pktmbuf_clone(m, pktmbuf_pool);
|
|
if (clone == NULL)
|
|
GOTO_FAIL("cannot clone data\n");
|
|
|
|
data = rte_pktmbuf_mtod(clone, unaligned_uint32_t *);
|
|
if (*data != MAGIC_DATA)
|
|
GOTO_FAIL("invalid data in clone\n");
|
|
|
|
if (rte_mbuf_refcnt_read(m) != 2)
|
|
GOTO_FAIL("invalid refcnt in m\n");
|
|
|
|
/* free the clone */
|
|
rte_pktmbuf_free(clone);
|
|
clone = NULL;
|
|
|
|
/* same test with a chained mbuf */
|
|
m->next = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if (m->next == NULL)
|
|
GOTO_FAIL("Next Pkt Null\n");
|
|
|
|
rte_pktmbuf_append(m->next, sizeof(uint32_t));
|
|
data = rte_pktmbuf_mtod(m->next, unaligned_uint32_t *);
|
|
*data = MAGIC_DATA;
|
|
|
|
clone = rte_pktmbuf_clone(m, pktmbuf_pool);
|
|
if (clone == NULL)
|
|
GOTO_FAIL("cannot clone data\n");
|
|
|
|
data = rte_pktmbuf_mtod(clone, unaligned_uint32_t *);
|
|
if (*data != MAGIC_DATA)
|
|
GOTO_FAIL("invalid data in clone\n");
|
|
|
|
data = rte_pktmbuf_mtod(clone->next, unaligned_uint32_t *);
|
|
if (*data != MAGIC_DATA)
|
|
GOTO_FAIL("invalid data in clone->next\n");
|
|
|
|
if (rte_mbuf_refcnt_read(m) != 2)
|
|
GOTO_FAIL("invalid refcnt in m\n");
|
|
|
|
if (rte_mbuf_refcnt_read(m->next) != 2)
|
|
GOTO_FAIL("invalid refcnt in m->next\n");
|
|
|
|
/* try to clone the clone */
|
|
|
|
clone2 = rte_pktmbuf_clone(clone, pktmbuf_pool);
|
|
if (clone2 == NULL)
|
|
GOTO_FAIL("cannot clone the clone\n");
|
|
|
|
data = rte_pktmbuf_mtod(clone2, unaligned_uint32_t *);
|
|
if (*data != MAGIC_DATA)
|
|
GOTO_FAIL("invalid data in clone2\n");
|
|
|
|
data = rte_pktmbuf_mtod(clone2->next, unaligned_uint32_t *);
|
|
if (*data != MAGIC_DATA)
|
|
GOTO_FAIL("invalid data in clone2->next\n");
|
|
|
|
if (rte_mbuf_refcnt_read(m) != 3)
|
|
GOTO_FAIL("invalid refcnt in m\n");
|
|
|
|
if (rte_mbuf_refcnt_read(m->next) != 3)
|
|
GOTO_FAIL("invalid refcnt in m->next\n");
|
|
|
|
/* free mbuf */
|
|
rte_pktmbuf_free(m);
|
|
rte_pktmbuf_free(clone);
|
|
rte_pktmbuf_free(clone2);
|
|
|
|
m = NULL;
|
|
clone = NULL;
|
|
clone2 = NULL;
|
|
printf("%s ok\n", __func__);
|
|
return 0;
|
|
|
|
fail:
|
|
if (m)
|
|
rte_pktmbuf_free(m);
|
|
if (clone)
|
|
rte_pktmbuf_free(clone);
|
|
if (clone2)
|
|
rte_pktmbuf_free(clone2);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
test_attach_from_different_pool(struct rte_mempool *pktmbuf_pool,
|
|
struct rte_mempool *pktmbuf_pool2)
|
|
{
|
|
struct rte_mbuf *m = NULL;
|
|
struct rte_mbuf *clone = NULL;
|
|
struct rte_mbuf *clone2 = NULL;
|
|
char *data, *c_data, *c_data2;
|
|
|
|
/* alloc a mbuf */
|
|
m = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if (m == NULL)
|
|
GOTO_FAIL("cannot allocate mbuf");
|
|
|
|
if (rte_pktmbuf_pkt_len(m) != 0)
|
|
GOTO_FAIL("Bad length");
|
|
|
|
data = rte_pktmbuf_mtod(m, char *);
|
|
|
|
/* allocate a new mbuf from the second pool, and attach it to the first
|
|
* mbuf */
|
|
clone = rte_pktmbuf_alloc(pktmbuf_pool2);
|
|
if (clone == NULL)
|
|
GOTO_FAIL("cannot allocate mbuf from second pool\n");
|
|
|
|
/* check data room size and priv size, and erase priv */
|
|
if (rte_pktmbuf_data_room_size(clone->pool) != 0)
|
|
GOTO_FAIL("data room size should be 0\n");
|
|
if (rte_pktmbuf_priv_size(clone->pool) != MBUF2_PRIV_SIZE)
|
|
GOTO_FAIL("data room size should be %d\n", MBUF2_PRIV_SIZE);
|
|
memset(clone + 1, 0, MBUF2_PRIV_SIZE);
|
|
|
|
/* save data pointer to compare it after detach() */
|
|
c_data = rte_pktmbuf_mtod(clone, char *);
|
|
if (c_data != (char *)clone + sizeof(*clone) + MBUF2_PRIV_SIZE)
|
|
GOTO_FAIL("bad data pointer in clone");
|
|
if (rte_pktmbuf_headroom(clone) != 0)
|
|
GOTO_FAIL("bad headroom in clone");
|
|
|
|
rte_pktmbuf_attach(clone, m);
|
|
|
|
if (rte_pktmbuf_mtod(clone, char *) != data)
|
|
GOTO_FAIL("clone was not attached properly\n");
|
|
if (rte_pktmbuf_headroom(clone) != RTE_PKTMBUF_HEADROOM)
|
|
GOTO_FAIL("bad headroom in clone after attach");
|
|
if (rte_mbuf_refcnt_read(m) != 2)
|
|
GOTO_FAIL("invalid refcnt in m\n");
|
|
|
|
/* allocate a new mbuf from the second pool, and attach it to the first
|
|
* cloned mbuf */
|
|
clone2 = rte_pktmbuf_alloc(pktmbuf_pool2);
|
|
if (clone2 == NULL)
|
|
GOTO_FAIL("cannot allocate clone2 from second pool\n");
|
|
|
|
/* check data room size and priv size, and erase priv */
|
|
if (rte_pktmbuf_data_room_size(clone2->pool) != 0)
|
|
GOTO_FAIL("data room size should be 0\n");
|
|
if (rte_pktmbuf_priv_size(clone2->pool) != MBUF2_PRIV_SIZE)
|
|
GOTO_FAIL("data room size should be %d\n", MBUF2_PRIV_SIZE);
|
|
memset(clone2 + 1, 0, MBUF2_PRIV_SIZE);
|
|
|
|
/* save data pointer to compare it after detach() */
|
|
c_data2 = rte_pktmbuf_mtod(clone2, char *);
|
|
if (c_data2 != (char *)clone2 + sizeof(*clone2) + MBUF2_PRIV_SIZE)
|
|
GOTO_FAIL("bad data pointer in clone2");
|
|
if (rte_pktmbuf_headroom(clone2) != 0)
|
|
GOTO_FAIL("bad headroom in clone2");
|
|
|
|
rte_pktmbuf_attach(clone2, clone);
|
|
|
|
if (rte_pktmbuf_mtod(clone2, char *) != data)
|
|
GOTO_FAIL("clone2 was not attached properly\n");
|
|
if (rte_pktmbuf_headroom(clone2) != RTE_PKTMBUF_HEADROOM)
|
|
GOTO_FAIL("bad headroom in clone2 after attach");
|
|
if (rte_mbuf_refcnt_read(m) != 3)
|
|
GOTO_FAIL("invalid refcnt in m\n");
|
|
|
|
/* detach the clones */
|
|
rte_pktmbuf_detach(clone);
|
|
if (c_data != rte_pktmbuf_mtod(clone, char *))
|
|
GOTO_FAIL("clone was not detached properly\n");
|
|
if (rte_mbuf_refcnt_read(m) != 2)
|
|
GOTO_FAIL("invalid refcnt in m\n");
|
|
|
|
rte_pktmbuf_detach(clone2);
|
|
if (c_data2 != rte_pktmbuf_mtod(clone2, char *))
|
|
GOTO_FAIL("clone2 was not detached properly\n");
|
|
if (rte_mbuf_refcnt_read(m) != 1)
|
|
GOTO_FAIL("invalid refcnt in m\n");
|
|
|
|
/* free the clones and the initial mbuf */
|
|
rte_pktmbuf_free(clone2);
|
|
rte_pktmbuf_free(clone);
|
|
rte_pktmbuf_free(m);
|
|
printf("%s ok\n", __func__);
|
|
return 0;
|
|
|
|
fail:
|
|
if (m)
|
|
rte_pktmbuf_free(m);
|
|
if (clone)
|
|
rte_pktmbuf_free(clone);
|
|
if (clone2)
|
|
rte_pktmbuf_free(clone2);
|
|
return -1;
|
|
}
|
|
#undef GOTO_FAIL
|
|
|
|
/*
|
|
* test allocation and free of mbufs
|
|
*/
|
|
static int
|
|
test_pktmbuf_pool(struct rte_mempool *pktmbuf_pool)
|
|
{
|
|
unsigned i;
|
|
struct rte_mbuf *m[NB_MBUF];
|
|
int ret = 0;
|
|
|
|
for (i=0; i<NB_MBUF; i++)
|
|
m[i] = NULL;
|
|
|
|
/* alloc NB_MBUF mbufs */
|
|
for (i=0; i<NB_MBUF; i++) {
|
|
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if (m[i] == NULL) {
|
|
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
|
|
ret = -1;
|
|
}
|
|
}
|
|
struct rte_mbuf *extra = NULL;
|
|
extra = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if(extra != NULL) {
|
|
printf("Error pool not empty");
|
|
ret = -1;
|
|
}
|
|
extra = rte_pktmbuf_clone(m[0], pktmbuf_pool);
|
|
if(extra != NULL) {
|
|
printf("Error pool not empty");
|
|
ret = -1;
|
|
}
|
|
/* free them */
|
|
for (i=0; i<NB_MBUF; i++) {
|
|
if (m[i] != NULL)
|
|
rte_pktmbuf_free(m[i]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* test that the pointer to the data on a packet mbuf is set properly
|
|
*/
|
|
static int
|
|
test_pktmbuf_pool_ptr(struct rte_mempool *pktmbuf_pool)
|
|
{
|
|
unsigned i;
|
|
struct rte_mbuf *m[NB_MBUF];
|
|
int ret = 0;
|
|
|
|
for (i=0; i<NB_MBUF; i++)
|
|
m[i] = NULL;
|
|
|
|
/* alloc NB_MBUF mbufs */
|
|
for (i=0; i<NB_MBUF; i++) {
|
|
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if (m[i] == NULL) {
|
|
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
m[i]->data_off += 64;
|
|
}
|
|
|
|
/* free them */
|
|
for (i=0; i<NB_MBUF; i++) {
|
|
if (m[i] != NULL)
|
|
rte_pktmbuf_free(m[i]);
|
|
}
|
|
|
|
for (i=0; i<NB_MBUF; i++)
|
|
m[i] = NULL;
|
|
|
|
/* alloc NB_MBUF mbufs */
|
|
for (i=0; i<NB_MBUF; i++) {
|
|
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if (m[i] == NULL) {
|
|
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
if (m[i]->data_off != RTE_PKTMBUF_HEADROOM) {
|
|
printf("invalid data_off\n");
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
/* free them */
|
|
for (i=0; i<NB_MBUF; i++) {
|
|
if (m[i] != NULL)
|
|
rte_pktmbuf_free(m[i]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
test_pktmbuf_free_segment(struct rte_mempool *pktmbuf_pool)
|
|
{
|
|
unsigned i;
|
|
struct rte_mbuf *m[NB_MBUF];
|
|
int ret = 0;
|
|
|
|
for (i=0; i<NB_MBUF; i++)
|
|
m[i] = NULL;
|
|
|
|
/* alloc NB_MBUF mbufs */
|
|
for (i=0; i<NB_MBUF; i++) {
|
|
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if (m[i] == NULL) {
|
|
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
/* free them */
|
|
for (i=0; i<NB_MBUF; i++) {
|
|
if (m[i] != NULL) {
|
|
struct rte_mbuf *mb, *mt;
|
|
|
|
mb = m[i];
|
|
while(mb != NULL) {
|
|
mt = mb;
|
|
mb = mb->next;
|
|
rte_pktmbuf_free_seg(mt);
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Stress test for rte_mbuf atomic refcnt.
|
|
* Implies that RTE_MBUF_REFCNT_ATOMIC is defined.
|
|
* For more efficiency, recommended to run with RTE_LIBRTE_MBUF_DEBUG defined.
|
|
*/
|
|
|
|
#ifdef RTE_MBUF_REFCNT_ATOMIC
|
|
|
|
static int
|
|
test_refcnt_slave(void *arg)
|
|
{
|
|
unsigned lcore, free;
|
|
void *mp = 0;
|
|
struct rte_ring *refcnt_mbuf_ring = arg;
|
|
|
|
lcore = rte_lcore_id();
|
|
printf("%s started at lcore %u\n", __func__, lcore);
|
|
|
|
free = 0;
|
|
while (refcnt_stop_slaves == 0) {
|
|
if (rte_ring_dequeue(refcnt_mbuf_ring, &mp) == 0) {
|
|
free++;
|
|
rte_pktmbuf_free(mp);
|
|
}
|
|
}
|
|
|
|
refcnt_lcore[lcore] += free;
|
|
printf("%s finished at lcore %u, "
|
|
"number of freed mbufs: %u\n",
|
|
__func__, lcore, free);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
test_refcnt_iter(unsigned int lcore, unsigned int iter,
|
|
struct rte_mempool *refcnt_pool,
|
|
struct rte_ring *refcnt_mbuf_ring)
|
|
{
|
|
uint16_t ref;
|
|
unsigned i, n, tref, wn;
|
|
struct rte_mbuf *m;
|
|
|
|
tref = 0;
|
|
|
|
/* For each mbuf in the pool:
|
|
* - allocate mbuf,
|
|
* - increment it's reference up to N+1,
|
|
* - enqueue it N times into the ring for slave cores to free.
|
|
*/
|
|
for (i = 0, n = rte_mempool_avail_count(refcnt_pool);
|
|
i != n && (m = rte_pktmbuf_alloc(refcnt_pool)) != NULL;
|
|
i++) {
|
|
ref = RTE_MAX(rte_rand() % REFCNT_MAX_REF, 1UL);
|
|
tref += ref;
|
|
if ((ref & 1) != 0) {
|
|
rte_pktmbuf_refcnt_update(m, ref);
|
|
while (ref-- != 0)
|
|
rte_ring_enqueue(refcnt_mbuf_ring, m);
|
|
} else {
|
|
while (ref-- != 0) {
|
|
rte_pktmbuf_refcnt_update(m, 1);
|
|
rte_ring_enqueue(refcnt_mbuf_ring, m);
|
|
}
|
|
}
|
|
rte_pktmbuf_free(m);
|
|
}
|
|
|
|
if (i != n)
|
|
rte_panic("(lcore=%u, iter=%u): was able to allocate only "
|
|
"%u from %u mbufs\n", lcore, iter, i, n);
|
|
|
|
/* wait till slave lcores will consume all mbufs */
|
|
while (!rte_ring_empty(refcnt_mbuf_ring))
|
|
;
|
|
|
|
/* check that all mbufs are back into mempool by now */
|
|
for (wn = 0; wn != REFCNT_MAX_TIMEOUT; wn++) {
|
|
if ((i = rte_mempool_avail_count(refcnt_pool)) == n) {
|
|
refcnt_lcore[lcore] += tref;
|
|
printf("%s(lcore=%u, iter=%u) completed, "
|
|
"%u references processed\n",
|
|
__func__, lcore, iter, tref);
|
|
return;
|
|
}
|
|
rte_delay_ms(100);
|
|
}
|
|
|
|
rte_panic("(lcore=%u, iter=%u): after %us only "
|
|
"%u of %u mbufs left free\n", lcore, iter, wn, i, n);
|
|
}
|
|
|
|
static int
|
|
test_refcnt_master(struct rte_mempool *refcnt_pool,
|
|
struct rte_ring *refcnt_mbuf_ring)
|
|
{
|
|
unsigned i, lcore;
|
|
|
|
lcore = rte_lcore_id();
|
|
printf("%s started at lcore %u\n", __func__, lcore);
|
|
|
|
for (i = 0; i != REFCNT_MAX_ITER; i++)
|
|
test_refcnt_iter(lcore, i, refcnt_pool, refcnt_mbuf_ring);
|
|
|
|
refcnt_stop_slaves = 1;
|
|
rte_wmb();
|
|
|
|
printf("%s finished at lcore %u\n", __func__, lcore);
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int
|
|
test_refcnt_mbuf(void)
|
|
{
|
|
#ifdef RTE_MBUF_REFCNT_ATOMIC
|
|
unsigned int master, slave, tref;
|
|
int ret = -1;
|
|
struct rte_mempool *refcnt_pool = NULL;
|
|
struct rte_ring *refcnt_mbuf_ring = NULL;
|
|
|
|
if (rte_lcore_count() < 2) {
|
|
printf("Not enough cores for test_refcnt_mbuf, expecting at least 2\n");
|
|
return TEST_SKIPPED;
|
|
}
|
|
|
|
printf("starting %s, at %u lcores\n", __func__, rte_lcore_count());
|
|
|
|
/* create refcnt pool & ring if they don't exist */
|
|
|
|
refcnt_pool = rte_pktmbuf_pool_create(MAKE_STRING(refcnt_pool),
|
|
REFCNT_MBUF_NUM, 0, 0, 0,
|
|
SOCKET_ID_ANY);
|
|
if (refcnt_pool == NULL) {
|
|
printf("%s: cannot allocate " MAKE_STRING(refcnt_pool) "\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
|
|
refcnt_mbuf_ring = rte_ring_create("refcnt_mbuf_ring",
|
|
rte_align32pow2(REFCNT_RING_SIZE), SOCKET_ID_ANY,
|
|
RING_F_SP_ENQ);
|
|
if (refcnt_mbuf_ring == NULL) {
|
|
printf("%s: cannot allocate " MAKE_STRING(refcnt_mbuf_ring)
|
|
"\n", __func__);
|
|
goto err;
|
|
}
|
|
|
|
refcnt_stop_slaves = 0;
|
|
memset(refcnt_lcore, 0, sizeof (refcnt_lcore));
|
|
|
|
rte_eal_mp_remote_launch(test_refcnt_slave, refcnt_mbuf_ring,
|
|
SKIP_MASTER);
|
|
|
|
test_refcnt_master(refcnt_pool, refcnt_mbuf_ring);
|
|
|
|
rte_eal_mp_wait_lcore();
|
|
|
|
/* check that we porcessed all references */
|
|
tref = 0;
|
|
master = rte_get_master_lcore();
|
|
|
|
RTE_LCORE_FOREACH_SLAVE(slave)
|
|
tref += refcnt_lcore[slave];
|
|
|
|
if (tref != refcnt_lcore[master])
|
|
rte_panic("refernced mbufs: %u, freed mbufs: %u\n",
|
|
tref, refcnt_lcore[master]);
|
|
|
|
rte_mempool_dump(stdout, refcnt_pool);
|
|
rte_ring_dump(stdout, refcnt_mbuf_ring);
|
|
|
|
ret = 0;
|
|
|
|
err:
|
|
rte_mempool_free(refcnt_pool);
|
|
rte_ring_free(refcnt_mbuf_ring);
|
|
return ret;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#include <unistd.h>
|
|
#include <sys/wait.h>
|
|
|
|
/* use fork() to test mbuf errors panic */
|
|
static int
|
|
verify_mbuf_check_panics(struct rte_mbuf *buf)
|
|
{
|
|
int pid;
|
|
int status;
|
|
|
|
pid = fork();
|
|
|
|
if (pid == 0) {
|
|
rte_mbuf_sanity_check(buf, 1); /* should panic */
|
|
exit(0); /* return normally if it doesn't panic */
|
|
} else if (pid < 0){
|
|
printf("Fork Failed\n");
|
|
return -1;
|
|
}
|
|
wait(&status);
|
|
if(status == 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_failing_mbuf_sanity_check(struct rte_mempool *pktmbuf_pool)
|
|
{
|
|
struct rte_mbuf *buf;
|
|
struct rte_mbuf badbuf;
|
|
|
|
printf("Checking rte_mbuf_sanity_check for failure conditions\n");
|
|
|
|
/* get a good mbuf to use to make copies */
|
|
buf = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if (buf == NULL)
|
|
return -1;
|
|
printf("Checking good mbuf initially\n");
|
|
if (verify_mbuf_check_panics(buf) != -1)
|
|
return -1;
|
|
|
|
printf("Now checking for error conditions\n");
|
|
|
|
if (verify_mbuf_check_panics(NULL)) {
|
|
printf("Error with NULL mbuf test\n");
|
|
return -1;
|
|
}
|
|
|
|
badbuf = *buf;
|
|
badbuf.pool = NULL;
|
|
if (verify_mbuf_check_panics(&badbuf)) {
|
|
printf("Error with bad-pool mbuf test\n");
|
|
return -1;
|
|
}
|
|
|
|
badbuf = *buf;
|
|
badbuf.buf_iova = 0;
|
|
if (verify_mbuf_check_panics(&badbuf)) {
|
|
printf("Error with bad-physaddr mbuf test\n");
|
|
return -1;
|
|
}
|
|
|
|
badbuf = *buf;
|
|
badbuf.buf_addr = NULL;
|
|
if (verify_mbuf_check_panics(&badbuf)) {
|
|
printf("Error with bad-addr mbuf test\n");
|
|
return -1;
|
|
}
|
|
|
|
badbuf = *buf;
|
|
badbuf.refcnt = 0;
|
|
if (verify_mbuf_check_panics(&badbuf)) {
|
|
printf("Error with bad-refcnt(0) mbuf test\n");
|
|
return -1;
|
|
}
|
|
|
|
badbuf = *buf;
|
|
badbuf.refcnt = UINT16_MAX;
|
|
if (verify_mbuf_check_panics(&badbuf)) {
|
|
printf("Error with bad-refcnt(MAX) mbuf test\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_mbuf_linearize(struct rte_mempool *pktmbuf_pool, int pkt_len,
|
|
int nb_segs)
|
|
{
|
|
|
|
struct rte_mbuf *m = NULL, *mbuf = NULL;
|
|
uint8_t *data;
|
|
int data_len = 0;
|
|
int remain;
|
|
int seg, seg_len;
|
|
int i;
|
|
|
|
if (pkt_len < 1) {
|
|
printf("Packet size must be 1 or more (is %d)\n", pkt_len);
|
|
return -1;
|
|
}
|
|
|
|
if (nb_segs < 1) {
|
|
printf("Number of segments must be 1 or more (is %d)\n",
|
|
nb_segs);
|
|
return -1;
|
|
}
|
|
|
|
seg_len = pkt_len / nb_segs;
|
|
if (seg_len == 0)
|
|
seg_len = 1;
|
|
|
|
remain = pkt_len;
|
|
|
|
/* Create chained mbuf_src and fill it generated data */
|
|
for (seg = 0; remain > 0; seg++) {
|
|
|
|
m = rte_pktmbuf_alloc(pktmbuf_pool);
|
|
if (m == NULL) {
|
|
printf("Cannot create segment for source mbuf");
|
|
goto fail;
|
|
}
|
|
|
|
/* Make sure if tailroom is zeroed */
|
|
memset(rte_pktmbuf_mtod(m, uint8_t *), 0,
|
|
rte_pktmbuf_tailroom(m));
|
|
|
|
data_len = remain;
|
|
if (data_len > seg_len)
|
|
data_len = seg_len;
|
|
|
|
data = (uint8_t *)rte_pktmbuf_append(m, data_len);
|
|
if (data == NULL) {
|
|
printf("Cannot append %d bytes to the mbuf\n",
|
|
data_len);
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0; i < data_len; i++)
|
|
data[i] = (seg * seg_len + i) % 0x0ff;
|
|
|
|
if (seg == 0)
|
|
mbuf = m;
|
|
else
|
|
rte_pktmbuf_chain(mbuf, m);
|
|
|
|
remain -= data_len;
|
|
}
|
|
|
|
/* Create destination buffer to store coalesced data */
|
|
if (rte_pktmbuf_linearize(mbuf)) {
|
|
printf("Mbuf linearization failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (!rte_pktmbuf_is_contiguous(mbuf)) {
|
|
printf("Source buffer should be contiguous after "
|
|
"linearization\n");
|
|
goto fail;
|
|
}
|
|
|
|
data = rte_pktmbuf_mtod(mbuf, uint8_t *);
|
|
|
|
for (i = 0; i < pkt_len; i++)
|
|
if (data[i] != (i % 0x0ff)) {
|
|
printf("Incorrect data in linearized mbuf\n");
|
|
goto fail;
|
|
}
|
|
|
|
rte_pktmbuf_free(mbuf);
|
|
return 0;
|
|
|
|
fail:
|
|
if (mbuf)
|
|
rte_pktmbuf_free(mbuf);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
test_mbuf_linearize_check(struct rte_mempool *pktmbuf_pool)
|
|
{
|
|
struct test_mbuf_array {
|
|
int size;
|
|
int nb_segs;
|
|
} mbuf_array[] = {
|
|
{ 128, 1 },
|
|
{ 64, 64 },
|
|
{ 512, 10 },
|
|
{ 250, 11 },
|
|
{ 123, 8 },
|
|
};
|
|
unsigned int i;
|
|
|
|
printf("Test mbuf linearize API\n");
|
|
|
|
for (i = 0; i < RTE_DIM(mbuf_array); i++)
|
|
if (test_mbuf_linearize(pktmbuf_pool, mbuf_array[i].size,
|
|
mbuf_array[i].nb_segs)) {
|
|
printf("Test failed for %d, %d\n", mbuf_array[i].size,
|
|
mbuf_array[i].nb_segs);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper function for test_tx_ofload
|
|
*/
|
|
static inline void
|
|
set_tx_offload(struct rte_mbuf *mb, uint64_t il2, uint64_t il3, uint64_t il4,
|
|
uint64_t tso, uint64_t ol3, uint64_t ol2)
|
|
{
|
|
mb->l2_len = il2;
|
|
mb->l3_len = il3;
|
|
mb->l4_len = il4;
|
|
mb->tso_segsz = tso;
|
|
mb->outer_l3_len = ol3;
|
|
mb->outer_l2_len = ol2;
|
|
}
|
|
|
|
static int
|
|
test_tx_offload(void)
|
|
{
|
|
struct rte_mbuf *mb;
|
|
uint64_t tm, v1, v2;
|
|
size_t sz;
|
|
uint32_t i;
|
|
|
|
static volatile struct {
|
|
uint16_t l2;
|
|
uint16_t l3;
|
|
uint16_t l4;
|
|
uint16_t tso;
|
|
} txof;
|
|
|
|
const uint32_t num = 0x10000;
|
|
|
|
txof.l2 = rte_rand() % (1 << RTE_MBUF_L2_LEN_BITS);
|
|
txof.l3 = rte_rand() % (1 << RTE_MBUF_L3_LEN_BITS);
|
|
txof.l4 = rte_rand() % (1 << RTE_MBUF_L4_LEN_BITS);
|
|
txof.tso = rte_rand() % (1 << RTE_MBUF_TSO_SEGSZ_BITS);
|
|
|
|
printf("%s started, tx_offload = {\n"
|
|
"\tl2_len=%#hx,\n"
|
|
"\tl3_len=%#hx,\n"
|
|
"\tl4_len=%#hx,\n"
|
|
"\ttso_segsz=%#hx,\n"
|
|
"\touter_l3_len=%#x,\n"
|
|
"\touter_l2_len=%#x,\n"
|
|
"};\n",
|
|
__func__,
|
|
txof.l2, txof.l3, txof.l4, txof.tso, txof.l3, txof.l2);
|
|
|
|
sz = sizeof(*mb) * num;
|
|
mb = rte_zmalloc(NULL, sz, RTE_CACHE_LINE_SIZE);
|
|
if (mb == NULL) {
|
|
printf("%s failed, out of memory\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset(mb, 0, sz);
|
|
tm = rte_rdtsc_precise();
|
|
|
|
for (i = 0; i != num; i++)
|
|
set_tx_offload(mb + i, txof.l2, txof.l3, txof.l4,
|
|
txof.tso, txof.l3, txof.l2);
|
|
|
|
tm = rte_rdtsc_precise() - tm;
|
|
printf("%s set tx_offload by bit-fields: %u iterations, %"
|
|
PRIu64 " cycles, %#Lf cycles/iter\n",
|
|
__func__, num, tm, (long double)tm / num);
|
|
|
|
v1 = mb[rte_rand() % num].tx_offload;
|
|
|
|
memset(mb, 0, sz);
|
|
tm = rte_rdtsc_precise();
|
|
|
|
for (i = 0; i != num; i++)
|
|
mb[i].tx_offload = rte_mbuf_tx_offload(txof.l2, txof.l3,
|
|
txof.l4, txof.tso, txof.l3, txof.l2, 0);
|
|
|
|
tm = rte_rdtsc_precise() - tm;
|
|
printf("%s set raw tx_offload: %u iterations, %"
|
|
PRIu64 " cycles, %#Lf cycles/iter\n",
|
|
__func__, num, tm, (long double)tm / num);
|
|
|
|
v2 = mb[rte_rand() % num].tx_offload;
|
|
|
|
rte_free(mb);
|
|
|
|
printf("%s finished\n"
|
|
"expected tx_offload value: 0x%" PRIx64 ";\n"
|
|
"rte_mbuf_tx_offload value: 0x%" PRIx64 ";\n",
|
|
__func__, v1, v2);
|
|
|
|
return (v1 == v2) ? 0 : -EINVAL;
|
|
}
|
|
|
|
static int
|
|
test_mbuf(void)
|
|
{
|
|
int ret = -1;
|
|
struct rte_mempool *pktmbuf_pool = NULL;
|
|
struct rte_mempool *pktmbuf_pool2 = NULL;
|
|
|
|
|
|
RTE_BUILD_BUG_ON(sizeof(struct rte_mbuf) != RTE_CACHE_LINE_MIN_SIZE * 2);
|
|
|
|
/* create pktmbuf pool if it does not exist */
|
|
pktmbuf_pool = rte_pktmbuf_pool_create("test_pktmbuf_pool",
|
|
NB_MBUF, 32, 0, MBUF_DATA_SIZE, SOCKET_ID_ANY);
|
|
|
|
if (pktmbuf_pool == NULL) {
|
|
printf("cannot allocate mbuf pool\n");
|
|
goto err;
|
|
}
|
|
|
|
/* create a specific pktmbuf pool with a priv_size != 0 and no data
|
|
* room size */
|
|
pktmbuf_pool2 = rte_pktmbuf_pool_create("test_pktmbuf_pool2",
|
|
NB_MBUF, 32, MBUF2_PRIV_SIZE, 0, SOCKET_ID_ANY);
|
|
|
|
if (pktmbuf_pool2 == NULL) {
|
|
printf("cannot allocate mbuf pool\n");
|
|
goto err;
|
|
}
|
|
|
|
/* test multiple mbuf alloc */
|
|
if (test_pktmbuf_pool(pktmbuf_pool) < 0) {
|
|
printf("test_mbuf_pool() failed\n");
|
|
goto err;
|
|
}
|
|
|
|
/* do it another time to check that all mbufs were freed */
|
|
if (test_pktmbuf_pool(pktmbuf_pool) < 0) {
|
|
printf("test_mbuf_pool() failed (2)\n");
|
|
goto err;
|
|
}
|
|
|
|
/* test that the pointer to the data on a packet mbuf is set properly */
|
|
if (test_pktmbuf_pool_ptr(pktmbuf_pool) < 0) {
|
|
printf("test_pktmbuf_pool_ptr() failed\n");
|
|
goto err;
|
|
}
|
|
|
|
/* test data manipulation in mbuf */
|
|
if (test_one_pktmbuf(pktmbuf_pool) < 0) {
|
|
printf("test_one_mbuf() failed\n");
|
|
goto err;
|
|
}
|
|
|
|
|
|
/*
|
|
* do it another time, to check that allocation reinitialize
|
|
* the mbuf correctly
|
|
*/
|
|
if (test_one_pktmbuf(pktmbuf_pool) < 0) {
|
|
printf("test_one_mbuf() failed (2)\n");
|
|
goto err;
|
|
}
|
|
|
|
if (test_pktmbuf_with_non_ascii_data(pktmbuf_pool) < 0) {
|
|
printf("test_pktmbuf_with_non_ascii_data() failed\n");
|
|
goto err;
|
|
}
|
|
|
|
/* test free pktmbuf segment one by one */
|
|
if (test_pktmbuf_free_segment(pktmbuf_pool) < 0) {
|
|
printf("test_pktmbuf_free_segment() failed.\n");
|
|
goto err;
|
|
}
|
|
|
|
if (testclone_testupdate_testdetach(pktmbuf_pool) < 0) {
|
|
printf("testclone_and_testupdate() failed \n");
|
|
goto err;
|
|
}
|
|
|
|
if (test_attach_from_different_pool(pktmbuf_pool, pktmbuf_pool2) < 0) {
|
|
printf("test_attach_from_different_pool() failed\n");
|
|
goto err;
|
|
}
|
|
|
|
if (test_refcnt_mbuf() < 0) {
|
|
printf("test_refcnt_mbuf() failed \n");
|
|
goto err;
|
|
}
|
|
|
|
if (test_failing_mbuf_sanity_check(pktmbuf_pool) < 0) {
|
|
printf("test_failing_mbuf_sanity_check() failed\n");
|
|
goto err;
|
|
}
|
|
|
|
if (test_mbuf_linearize_check(pktmbuf_pool) < 0) {
|
|
printf("test_mbuf_linearize_check() failed\n");
|
|
goto err;
|
|
}
|
|
|
|
if (test_tx_offload() < 0) {
|
|
printf("test_tx_offload() failed\n");
|
|
goto err;
|
|
}
|
|
|
|
ret = 0;
|
|
err:
|
|
rte_mempool_free(pktmbuf_pool);
|
|
rte_mempool_free(pktmbuf_pool2);
|
|
return ret;
|
|
}
|
|
|
|
REGISTER_TEST_COMMAND(mbuf_autotest, test_mbuf);
|