84e7477e10
During memory initialization calling rte_mem_check_dma_mask leads to a deadlock because memory_hotplug_lock is locked by a writer, the current code in execution, and rte_memseg_walk tries to lock as a reader. This patch adds a thread_unsafe version which will call the final function specifying the memory_hotplug_lock does not need to be acquired. The patch also modified rte_mem_check_dma_mask as a intermediate step which will call the final function as before, implying memory_hotplug_lock will be acquired. PMDs should always use the version acquiring the lock with the thread_unsafe one being just for internal EAL memory code. Fixes: 223b7f1d5ef6 ("mem: add function for checking memseg IOVA") Signed-off-by: Alejandro Lucero <alejandro.lucero@netronome.com> Tested-by: Ferruh Yigit <ferruh.yigit@intel.com>
1299 lines
34 KiB
C
1299 lines
34 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <errno.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_memory.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_common.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_fbarray.h>
|
|
|
|
#include "eal_internal_cfg.h"
|
|
#include "eal_memalloc.h"
|
|
#include "malloc_elem.h"
|
|
#include "malloc_heap.h"
|
|
#include "malloc_mp.h"
|
|
|
|
/* start external socket ID's at a very high number */
|
|
#define CONST_MAX(a, b) (a > b ? a : b) /* RTE_MAX is not a constant */
|
|
#define EXTERNAL_HEAP_MIN_SOCKET_ID (CONST_MAX((1 << 8), RTE_MAX_NUMA_NODES))
|
|
|
|
static unsigned
|
|
check_hugepage_sz(unsigned flags, uint64_t hugepage_sz)
|
|
{
|
|
unsigned check_flag = 0;
|
|
|
|
if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY))
|
|
return 1;
|
|
|
|
switch (hugepage_sz) {
|
|
case RTE_PGSIZE_256K:
|
|
check_flag = RTE_MEMZONE_256KB;
|
|
break;
|
|
case RTE_PGSIZE_2M:
|
|
check_flag = RTE_MEMZONE_2MB;
|
|
break;
|
|
case RTE_PGSIZE_16M:
|
|
check_flag = RTE_MEMZONE_16MB;
|
|
break;
|
|
case RTE_PGSIZE_256M:
|
|
check_flag = RTE_MEMZONE_256MB;
|
|
break;
|
|
case RTE_PGSIZE_512M:
|
|
check_flag = RTE_MEMZONE_512MB;
|
|
break;
|
|
case RTE_PGSIZE_1G:
|
|
check_flag = RTE_MEMZONE_1GB;
|
|
break;
|
|
case RTE_PGSIZE_4G:
|
|
check_flag = RTE_MEMZONE_4GB;
|
|
break;
|
|
case RTE_PGSIZE_16G:
|
|
check_flag = RTE_MEMZONE_16GB;
|
|
}
|
|
|
|
return check_flag & flags;
|
|
}
|
|
|
|
int
|
|
malloc_socket_to_heap_id(unsigned int socket_id)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int i;
|
|
|
|
for (i = 0; i < RTE_MAX_HEAPS; i++) {
|
|
struct malloc_heap *heap = &mcfg->malloc_heaps[i];
|
|
|
|
if (heap->socket_id == socket_id)
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Expand the heap with a memory area.
|
|
*/
|
|
static struct malloc_elem *
|
|
malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl,
|
|
void *start, size_t len)
|
|
{
|
|
struct malloc_elem *elem = start;
|
|
|
|
malloc_elem_init(elem, heap, msl, len);
|
|
|
|
malloc_elem_insert(elem);
|
|
|
|
elem = malloc_elem_join_adjacent_free(elem);
|
|
|
|
malloc_elem_free_list_insert(elem);
|
|
|
|
return elem;
|
|
}
|
|
|
|
static int
|
|
malloc_add_seg(const struct rte_memseg_list *msl,
|
|
const struct rte_memseg *ms, size_t len, void *arg __rte_unused)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *found_msl;
|
|
struct malloc_heap *heap;
|
|
int msl_idx, heap_idx;
|
|
|
|
if (msl->external)
|
|
return 0;
|
|
|
|
heap_idx = malloc_socket_to_heap_id(msl->socket_id);
|
|
if (heap_idx < 0) {
|
|
RTE_LOG(ERR, EAL, "Memseg list has invalid socket id\n");
|
|
return -1;
|
|
}
|
|
heap = &mcfg->malloc_heaps[heap_idx];
|
|
|
|
/* msl is const, so find it */
|
|
msl_idx = msl - mcfg->memsegs;
|
|
|
|
if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
|
|
return -1;
|
|
|
|
found_msl = &mcfg->memsegs[msl_idx];
|
|
|
|
malloc_heap_add_memory(heap, found_msl, ms->addr, len);
|
|
|
|
heap->total_size += len;
|
|
|
|
RTE_LOG(DEBUG, EAL, "Added %zuM to heap on socket %i\n", len >> 20,
|
|
msl->socket_id);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Iterates through the freelist for a heap to find a free element
|
|
* which can store data of the required size and with the requested alignment.
|
|
* If size is 0, find the biggest available elem.
|
|
* Returns null on failure, or pointer to element on success.
|
|
*/
|
|
static struct malloc_elem *
|
|
find_suitable_element(struct malloc_heap *heap, size_t size,
|
|
unsigned int flags, size_t align, size_t bound, bool contig)
|
|
{
|
|
size_t idx;
|
|
struct malloc_elem *elem, *alt_elem = NULL;
|
|
|
|
for (idx = malloc_elem_free_list_index(size);
|
|
idx < RTE_HEAP_NUM_FREELISTS; idx++) {
|
|
for (elem = LIST_FIRST(&heap->free_head[idx]);
|
|
!!elem; elem = LIST_NEXT(elem, free_list)) {
|
|
if (malloc_elem_can_hold(elem, size, align, bound,
|
|
contig)) {
|
|
if (check_hugepage_sz(flags,
|
|
elem->msl->page_sz))
|
|
return elem;
|
|
if (alt_elem == NULL)
|
|
alt_elem = elem;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((alt_elem != NULL) && (flags & RTE_MEMZONE_SIZE_HINT_ONLY))
|
|
return alt_elem;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Iterates through the freelist for a heap to find a free element with the
|
|
* biggest size and requested alignment. Will also set size to whatever element
|
|
* size that was found.
|
|
* Returns null on failure, or pointer to element on success.
|
|
*/
|
|
static struct malloc_elem *
|
|
find_biggest_element(struct malloc_heap *heap, size_t *size,
|
|
unsigned int flags, size_t align, bool contig)
|
|
{
|
|
struct malloc_elem *elem, *max_elem = NULL;
|
|
size_t idx, max_size = 0;
|
|
|
|
for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
|
|
for (elem = LIST_FIRST(&heap->free_head[idx]);
|
|
!!elem; elem = LIST_NEXT(elem, free_list)) {
|
|
size_t cur_size;
|
|
if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY) == 0 &&
|
|
!check_hugepage_sz(flags,
|
|
elem->msl->page_sz))
|
|
continue;
|
|
if (contig) {
|
|
cur_size =
|
|
malloc_elem_find_max_iova_contig(elem,
|
|
align);
|
|
} else {
|
|
void *data_start = RTE_PTR_ADD(elem,
|
|
MALLOC_ELEM_HEADER_LEN);
|
|
void *data_end = RTE_PTR_ADD(elem, elem->size -
|
|
MALLOC_ELEM_TRAILER_LEN);
|
|
void *aligned = RTE_PTR_ALIGN_CEIL(data_start,
|
|
align);
|
|
/* check if aligned data start is beyond end */
|
|
if (aligned >= data_end)
|
|
continue;
|
|
cur_size = RTE_PTR_DIFF(data_end, aligned);
|
|
}
|
|
if (cur_size > max_size) {
|
|
max_size = cur_size;
|
|
max_elem = elem;
|
|
}
|
|
}
|
|
}
|
|
|
|
*size = max_size;
|
|
return max_elem;
|
|
}
|
|
|
|
/*
|
|
* Main function to allocate a block of memory from the heap.
|
|
* It locks the free list, scans it, and adds a new memseg if the
|
|
* scan fails. Once the new memseg is added, it re-scans and should return
|
|
* the new element after releasing the lock.
|
|
*/
|
|
static void *
|
|
heap_alloc(struct malloc_heap *heap, const char *type __rte_unused, size_t size,
|
|
unsigned int flags, size_t align, size_t bound, bool contig)
|
|
{
|
|
struct malloc_elem *elem;
|
|
|
|
size = RTE_CACHE_LINE_ROUNDUP(size);
|
|
align = RTE_CACHE_LINE_ROUNDUP(align);
|
|
|
|
elem = find_suitable_element(heap, size, flags, align, bound, contig);
|
|
if (elem != NULL) {
|
|
elem = malloc_elem_alloc(elem, size, align, bound, contig);
|
|
|
|
/* increase heap's count of allocated elements */
|
|
heap->alloc_count++;
|
|
}
|
|
|
|
return elem == NULL ? NULL : (void *)(&elem[1]);
|
|
}
|
|
|
|
static void *
|
|
heap_alloc_biggest(struct malloc_heap *heap, const char *type __rte_unused,
|
|
unsigned int flags, size_t align, bool contig)
|
|
{
|
|
struct malloc_elem *elem;
|
|
size_t size;
|
|
|
|
align = RTE_CACHE_LINE_ROUNDUP(align);
|
|
|
|
elem = find_biggest_element(heap, &size, flags, align, contig);
|
|
if (elem != NULL) {
|
|
elem = malloc_elem_alloc(elem, size, align, 0, contig);
|
|
|
|
/* increase heap's count of allocated elements */
|
|
heap->alloc_count++;
|
|
}
|
|
|
|
return elem == NULL ? NULL : (void *)(&elem[1]);
|
|
}
|
|
|
|
/* this function is exposed in malloc_mp.h */
|
|
void
|
|
rollback_expand_heap(struct rte_memseg **ms, int n_segs,
|
|
struct malloc_elem *elem, void *map_addr, size_t map_len)
|
|
{
|
|
if (elem != NULL) {
|
|
malloc_elem_free_list_remove(elem);
|
|
malloc_elem_hide_region(elem, map_addr, map_len);
|
|
}
|
|
|
|
eal_memalloc_free_seg_bulk(ms, n_segs);
|
|
}
|
|
|
|
/* this function is exposed in malloc_mp.h */
|
|
struct malloc_elem *
|
|
alloc_pages_on_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
|
|
int socket, unsigned int flags, size_t align, size_t bound,
|
|
bool contig, struct rte_memseg **ms, int n_segs)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *msl;
|
|
struct malloc_elem *elem = NULL;
|
|
size_t alloc_sz;
|
|
int allocd_pages;
|
|
void *ret, *map_addr;
|
|
|
|
alloc_sz = (size_t)pg_sz * n_segs;
|
|
|
|
/* first, check if we're allowed to allocate this memory */
|
|
if (eal_memalloc_mem_alloc_validate(socket,
|
|
heap->total_size + alloc_sz) < 0) {
|
|
RTE_LOG(DEBUG, EAL, "User has disallowed allocation\n");
|
|
return NULL;
|
|
}
|
|
|
|
allocd_pages = eal_memalloc_alloc_seg_bulk(ms, n_segs, pg_sz,
|
|
socket, true);
|
|
|
|
/* make sure we've allocated our pages... */
|
|
if (allocd_pages < 0)
|
|
return NULL;
|
|
|
|
map_addr = ms[0]->addr;
|
|
msl = rte_mem_virt2memseg_list(map_addr);
|
|
|
|
/* check if we wanted contiguous memory but didn't get it */
|
|
if (contig && !eal_memalloc_is_contig(msl, map_addr, alloc_sz)) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): couldn't allocate physically contiguous space\n",
|
|
__func__);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Once we have all the memseg lists configured, if there is a dma mask
|
|
* set, check iova addresses are not out of range. Otherwise the device
|
|
* setting the dma mask could have problems with the mapped memory.
|
|
*
|
|
* There are two situations when this can happen:
|
|
* 1) memory initialization
|
|
* 2) dynamic memory allocation
|
|
*
|
|
* For 1), an error when checking dma mask implies app can not be
|
|
* executed. For 2) implies the new memory can not be added.
|
|
*/
|
|
if (mcfg->dma_maskbits &&
|
|
rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
|
|
/*
|
|
* Currently this can only happen if IOMMU is enabled
|
|
* and the address width supported by the IOMMU hw is
|
|
* not enough for using the memory mapped IOVAs.
|
|
*
|
|
* If IOVA is VA, advice to try with '--iova-mode pa'
|
|
* which could solve some situations when IOVA VA is not
|
|
* really needed.
|
|
*/
|
|
RTE_LOG(ERR, EAL,
|
|
"%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask\n",
|
|
__func__);
|
|
|
|
/*
|
|
* If IOVA is VA and it is possible to run with IOVA PA,
|
|
* because user is root, give and advice for solving the
|
|
* problem.
|
|
*/
|
|
if ((rte_eal_iova_mode() == RTE_IOVA_VA) &&
|
|
rte_eal_using_phys_addrs())
|
|
RTE_LOG(ERR, EAL,
|
|
"%s(): Please try initializing EAL with --iova-mode=pa parameter\n",
|
|
__func__);
|
|
goto fail;
|
|
}
|
|
|
|
/* add newly minted memsegs to malloc heap */
|
|
elem = malloc_heap_add_memory(heap, msl, map_addr, alloc_sz);
|
|
|
|
/* try once more, as now we have allocated new memory */
|
|
ret = find_suitable_element(heap, elt_size, flags, align, bound,
|
|
contig);
|
|
|
|
if (ret == NULL)
|
|
goto fail;
|
|
|
|
return elem;
|
|
|
|
fail:
|
|
rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
try_expand_heap_primary(struct malloc_heap *heap, uint64_t pg_sz,
|
|
size_t elt_size, int socket, unsigned int flags, size_t align,
|
|
size_t bound, bool contig)
|
|
{
|
|
struct malloc_elem *elem;
|
|
struct rte_memseg **ms;
|
|
void *map_addr;
|
|
size_t alloc_sz;
|
|
int n_segs;
|
|
bool callback_triggered = false;
|
|
|
|
alloc_sz = RTE_ALIGN_CEIL(align + elt_size +
|
|
MALLOC_ELEM_TRAILER_LEN, pg_sz);
|
|
n_segs = alloc_sz / pg_sz;
|
|
|
|
/* we can't know in advance how many pages we'll need, so we malloc */
|
|
ms = malloc(sizeof(*ms) * n_segs);
|
|
if (ms == NULL)
|
|
return -1;
|
|
memset(ms, 0, sizeof(*ms) * n_segs);
|
|
|
|
elem = alloc_pages_on_heap(heap, pg_sz, elt_size, socket, flags, align,
|
|
bound, contig, ms, n_segs);
|
|
|
|
if (elem == NULL)
|
|
goto free_ms;
|
|
|
|
map_addr = ms[0]->addr;
|
|
|
|
/* notify user about changes in memory map */
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, map_addr, alloc_sz);
|
|
|
|
/* notify other processes that this has happened */
|
|
if (request_sync()) {
|
|
/* we couldn't ensure all processes have mapped memory,
|
|
* so free it back and notify everyone that it's been
|
|
* freed back.
|
|
*
|
|
* technically, we could've avoided adding memory addresses to
|
|
* the map, but that would've led to inconsistent behavior
|
|
* between primary and secondary processes, as those get
|
|
* callbacks during sync. therefore, force primary process to
|
|
* do alloc-and-rollback syncs as well.
|
|
*/
|
|
callback_triggered = true;
|
|
goto free_elem;
|
|
}
|
|
heap->total_size += alloc_sz;
|
|
|
|
RTE_LOG(DEBUG, EAL, "Heap on socket %d was expanded by %zdMB\n",
|
|
socket, alloc_sz >> 20ULL);
|
|
|
|
free(ms);
|
|
|
|
return 0;
|
|
|
|
free_elem:
|
|
if (callback_triggered)
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
|
|
map_addr, alloc_sz);
|
|
|
|
rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
|
|
|
|
request_sync();
|
|
free_ms:
|
|
free(ms);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
try_expand_heap_secondary(struct malloc_heap *heap, uint64_t pg_sz,
|
|
size_t elt_size, int socket, unsigned int flags, size_t align,
|
|
size_t bound, bool contig)
|
|
{
|
|
struct malloc_mp_req req;
|
|
int req_result;
|
|
|
|
memset(&req, 0, sizeof(req));
|
|
|
|
req.t = REQ_TYPE_ALLOC;
|
|
req.alloc_req.align = align;
|
|
req.alloc_req.bound = bound;
|
|
req.alloc_req.contig = contig;
|
|
req.alloc_req.flags = flags;
|
|
req.alloc_req.elt_size = elt_size;
|
|
req.alloc_req.page_sz = pg_sz;
|
|
req.alloc_req.socket = socket;
|
|
req.alloc_req.heap = heap; /* it's in shared memory */
|
|
|
|
req_result = request_to_primary(&req);
|
|
|
|
if (req_result != 0)
|
|
return -1;
|
|
|
|
if (req.result != REQ_RESULT_SUCCESS)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
try_expand_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
|
|
int socket, unsigned int flags, size_t align, size_t bound,
|
|
bool contig)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int ret;
|
|
|
|
rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
ret = try_expand_heap_primary(heap, pg_sz, elt_size, socket,
|
|
flags, align, bound, contig);
|
|
} else {
|
|
ret = try_expand_heap_secondary(heap, pg_sz, elt_size, socket,
|
|
flags, align, bound, contig);
|
|
}
|
|
|
|
rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
compare_pagesz(const void *a, const void *b)
|
|
{
|
|
const struct rte_memseg_list * const*mpa = a;
|
|
const struct rte_memseg_list * const*mpb = b;
|
|
const struct rte_memseg_list *msla = *mpa;
|
|
const struct rte_memseg_list *mslb = *mpb;
|
|
uint64_t pg_sz_a = msla->page_sz;
|
|
uint64_t pg_sz_b = mslb->page_sz;
|
|
|
|
if (pg_sz_a < pg_sz_b)
|
|
return -1;
|
|
if (pg_sz_a > pg_sz_b)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
alloc_more_mem_on_socket(struct malloc_heap *heap, size_t size, int socket,
|
|
unsigned int flags, size_t align, size_t bound, bool contig)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *requested_msls[RTE_MAX_MEMSEG_LISTS];
|
|
struct rte_memseg_list *other_msls[RTE_MAX_MEMSEG_LISTS];
|
|
uint64_t requested_pg_sz[RTE_MAX_MEMSEG_LISTS];
|
|
uint64_t other_pg_sz[RTE_MAX_MEMSEG_LISTS];
|
|
uint64_t prev_pg_sz;
|
|
int i, n_other_msls, n_other_pg_sz, n_requested_msls, n_requested_pg_sz;
|
|
bool size_hint = (flags & RTE_MEMZONE_SIZE_HINT_ONLY) > 0;
|
|
unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
|
|
void *ret;
|
|
|
|
memset(requested_msls, 0, sizeof(requested_msls));
|
|
memset(other_msls, 0, sizeof(other_msls));
|
|
memset(requested_pg_sz, 0, sizeof(requested_pg_sz));
|
|
memset(other_pg_sz, 0, sizeof(other_pg_sz));
|
|
|
|
/*
|
|
* go through memseg list and take note of all the page sizes available,
|
|
* and if any of them were specifically requested by the user.
|
|
*/
|
|
n_requested_msls = 0;
|
|
n_other_msls = 0;
|
|
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
|
|
struct rte_memseg_list *msl = &mcfg->memsegs[i];
|
|
|
|
if (msl->socket_id != socket)
|
|
continue;
|
|
|
|
if (msl->base_va == NULL)
|
|
continue;
|
|
|
|
/* if pages of specific size were requested */
|
|
if (size_flags != 0 && check_hugepage_sz(size_flags,
|
|
msl->page_sz))
|
|
requested_msls[n_requested_msls++] = msl;
|
|
else if (size_flags == 0 || size_hint)
|
|
other_msls[n_other_msls++] = msl;
|
|
}
|
|
|
|
/* sort the lists, smallest first */
|
|
qsort(requested_msls, n_requested_msls, sizeof(requested_msls[0]),
|
|
compare_pagesz);
|
|
qsort(other_msls, n_other_msls, sizeof(other_msls[0]),
|
|
compare_pagesz);
|
|
|
|
/* now, extract page sizes we are supposed to try */
|
|
prev_pg_sz = 0;
|
|
n_requested_pg_sz = 0;
|
|
for (i = 0; i < n_requested_msls; i++) {
|
|
uint64_t pg_sz = requested_msls[i]->page_sz;
|
|
|
|
if (prev_pg_sz != pg_sz) {
|
|
requested_pg_sz[n_requested_pg_sz++] = pg_sz;
|
|
prev_pg_sz = pg_sz;
|
|
}
|
|
}
|
|
prev_pg_sz = 0;
|
|
n_other_pg_sz = 0;
|
|
for (i = 0; i < n_other_msls; i++) {
|
|
uint64_t pg_sz = other_msls[i]->page_sz;
|
|
|
|
if (prev_pg_sz != pg_sz) {
|
|
other_pg_sz[n_other_pg_sz++] = pg_sz;
|
|
prev_pg_sz = pg_sz;
|
|
}
|
|
}
|
|
|
|
/* finally, try allocating memory of specified page sizes, starting from
|
|
* the smallest sizes
|
|
*/
|
|
for (i = 0; i < n_requested_pg_sz; i++) {
|
|
uint64_t pg_sz = requested_pg_sz[i];
|
|
|
|
/*
|
|
* do not pass the size hint here, as user expects other page
|
|
* sizes first, before resorting to best effort allocation.
|
|
*/
|
|
if (!try_expand_heap(heap, pg_sz, size, socket, size_flags,
|
|
align, bound, contig))
|
|
return 0;
|
|
}
|
|
if (n_other_pg_sz == 0)
|
|
return -1;
|
|
|
|
/* now, check if we can reserve anything with size hint */
|
|
ret = find_suitable_element(heap, size, flags, align, bound, contig);
|
|
if (ret != NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* we still couldn't reserve memory, so try expanding heap with other
|
|
* page sizes, if there are any
|
|
*/
|
|
for (i = 0; i < n_other_pg_sz; i++) {
|
|
uint64_t pg_sz = other_pg_sz[i];
|
|
|
|
if (!try_expand_heap(heap, pg_sz, size, socket, flags,
|
|
align, bound, contig))
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* this will try lower page sizes first */
|
|
static void *
|
|
malloc_heap_alloc_on_heap_id(const char *type, size_t size,
|
|
unsigned int heap_id, unsigned int flags, size_t align,
|
|
size_t bound, bool contig)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
|
|
unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
|
|
int socket_id;
|
|
void *ret;
|
|
|
|
rte_spinlock_lock(&(heap->lock));
|
|
|
|
align = align == 0 ? 1 : align;
|
|
|
|
/* for legacy mode, try once and with all flags */
|
|
if (internal_config.legacy_mem) {
|
|
ret = heap_alloc(heap, type, size, flags, align, bound, contig);
|
|
goto alloc_unlock;
|
|
}
|
|
|
|
/*
|
|
* we do not pass the size hint here, because even if allocation fails,
|
|
* we may still be able to allocate memory from appropriate page sizes,
|
|
* we just need to request more memory first.
|
|
*/
|
|
|
|
socket_id = rte_socket_id_by_idx(heap_id);
|
|
/*
|
|
* if socket ID is negative, we cannot find a socket ID for this heap -
|
|
* which means it's an external heap. those can have unexpected page
|
|
* sizes, so if the user asked to allocate from there - assume user
|
|
* knows what they're doing, and allow allocating from there with any
|
|
* page size flags.
|
|
*/
|
|
if (socket_id < 0)
|
|
size_flags |= RTE_MEMZONE_SIZE_HINT_ONLY;
|
|
|
|
ret = heap_alloc(heap, type, size, size_flags, align, bound, contig);
|
|
if (ret != NULL)
|
|
goto alloc_unlock;
|
|
|
|
/* if socket ID is invalid, this is an external heap */
|
|
if (socket_id < 0)
|
|
goto alloc_unlock;
|
|
|
|
if (!alloc_more_mem_on_socket(heap, size, socket_id, flags, align,
|
|
bound, contig)) {
|
|
ret = heap_alloc(heap, type, size, flags, align, bound, contig);
|
|
|
|
/* this should have succeeded */
|
|
if (ret == NULL)
|
|
RTE_LOG(ERR, EAL, "Error allocating from heap\n");
|
|
}
|
|
alloc_unlock:
|
|
rte_spinlock_unlock(&(heap->lock));
|
|
return ret;
|
|
}
|
|
|
|
void *
|
|
malloc_heap_alloc(const char *type, size_t size, int socket_arg,
|
|
unsigned int flags, size_t align, size_t bound, bool contig)
|
|
{
|
|
int socket, heap_id, i;
|
|
void *ret;
|
|
|
|
/* return NULL if size is 0 or alignment is not power-of-2 */
|
|
if (size == 0 || (align && !rte_is_power_of_2(align)))
|
|
return NULL;
|
|
|
|
if (!rte_eal_has_hugepages() && socket_arg < RTE_MAX_NUMA_NODES)
|
|
socket_arg = SOCKET_ID_ANY;
|
|
|
|
if (socket_arg == SOCKET_ID_ANY)
|
|
socket = malloc_get_numa_socket();
|
|
else
|
|
socket = socket_arg;
|
|
|
|
/* turn socket ID into heap ID */
|
|
heap_id = malloc_socket_to_heap_id(socket);
|
|
/* if heap id is negative, socket ID was invalid */
|
|
if (heap_id < 0)
|
|
return NULL;
|
|
|
|
ret = malloc_heap_alloc_on_heap_id(type, size, heap_id, flags, align,
|
|
bound, contig);
|
|
if (ret != NULL || socket_arg != SOCKET_ID_ANY)
|
|
return ret;
|
|
|
|
/* try other heaps. we are only iterating through native DPDK sockets,
|
|
* so external heaps won't be included.
|
|
*/
|
|
for (i = 0; i < (int) rte_socket_count(); i++) {
|
|
if (i == heap_id)
|
|
continue;
|
|
ret = malloc_heap_alloc_on_heap_id(type, size, i, flags, align,
|
|
bound, contig);
|
|
if (ret != NULL)
|
|
return ret;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void *
|
|
heap_alloc_biggest_on_heap_id(const char *type, unsigned int heap_id,
|
|
unsigned int flags, size_t align, bool contig)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
|
|
void *ret;
|
|
|
|
rte_spinlock_lock(&(heap->lock));
|
|
|
|
align = align == 0 ? 1 : align;
|
|
|
|
ret = heap_alloc_biggest(heap, type, flags, align, contig);
|
|
|
|
rte_spinlock_unlock(&(heap->lock));
|
|
|
|
return ret;
|
|
}
|
|
|
|
void *
|
|
malloc_heap_alloc_biggest(const char *type, int socket_arg, unsigned int flags,
|
|
size_t align, bool contig)
|
|
{
|
|
int socket, i, cur_socket, heap_id;
|
|
void *ret;
|
|
|
|
/* return NULL if align is not power-of-2 */
|
|
if ((align && !rte_is_power_of_2(align)))
|
|
return NULL;
|
|
|
|
if (!rte_eal_has_hugepages())
|
|
socket_arg = SOCKET_ID_ANY;
|
|
|
|
if (socket_arg == SOCKET_ID_ANY)
|
|
socket = malloc_get_numa_socket();
|
|
else
|
|
socket = socket_arg;
|
|
|
|
/* turn socket ID into heap ID */
|
|
heap_id = malloc_socket_to_heap_id(socket);
|
|
/* if heap id is negative, socket ID was invalid */
|
|
if (heap_id < 0)
|
|
return NULL;
|
|
|
|
ret = heap_alloc_biggest_on_heap_id(type, heap_id, flags, align,
|
|
contig);
|
|
if (ret != NULL || socket_arg != SOCKET_ID_ANY)
|
|
return ret;
|
|
|
|
/* try other heaps */
|
|
for (i = 0; i < (int) rte_socket_count(); i++) {
|
|
cur_socket = rte_socket_id_by_idx(i);
|
|
if (cur_socket == socket)
|
|
continue;
|
|
ret = heap_alloc_biggest_on_heap_id(type, i, flags, align,
|
|
contig);
|
|
if (ret != NULL)
|
|
return ret;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* this function is exposed in malloc_mp.h */
|
|
int
|
|
malloc_heap_free_pages(void *aligned_start, size_t aligned_len)
|
|
{
|
|
int n_segs, seg_idx, max_seg_idx;
|
|
struct rte_memseg_list *msl;
|
|
size_t page_sz;
|
|
|
|
msl = rte_mem_virt2memseg_list(aligned_start);
|
|
if (msl == NULL)
|
|
return -1;
|
|
|
|
page_sz = (size_t)msl->page_sz;
|
|
n_segs = aligned_len / page_sz;
|
|
seg_idx = RTE_PTR_DIFF(aligned_start, msl->base_va) / page_sz;
|
|
max_seg_idx = seg_idx + n_segs;
|
|
|
|
for (; seg_idx < max_seg_idx; seg_idx++) {
|
|
struct rte_memseg *ms;
|
|
|
|
ms = rte_fbarray_get(&msl->memseg_arr, seg_idx);
|
|
eal_memalloc_free_seg(ms);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
malloc_heap_free(struct malloc_elem *elem)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct malloc_heap *heap;
|
|
void *start, *aligned_start, *end, *aligned_end;
|
|
size_t len, aligned_len, page_sz;
|
|
struct rte_memseg_list *msl;
|
|
unsigned int i, n_segs, before_space, after_space;
|
|
int ret;
|
|
|
|
if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
|
|
return -1;
|
|
|
|
/* elem may be merged with previous element, so keep heap address */
|
|
heap = elem->heap;
|
|
msl = elem->msl;
|
|
page_sz = (size_t)msl->page_sz;
|
|
|
|
rte_spinlock_lock(&(heap->lock));
|
|
|
|
/* mark element as free */
|
|
elem->state = ELEM_FREE;
|
|
|
|
elem = malloc_elem_free(elem);
|
|
|
|
/* anything after this is a bonus */
|
|
ret = 0;
|
|
|
|
/* ...of which we can't avail if we are in legacy mode, or if this is an
|
|
* externally allocated segment.
|
|
*/
|
|
if (internal_config.legacy_mem || (msl->external > 0))
|
|
goto free_unlock;
|
|
|
|
/* check if we can free any memory back to the system */
|
|
if (elem->size < page_sz)
|
|
goto free_unlock;
|
|
|
|
/* probably, but let's make sure, as we may not be using up full page */
|
|
start = elem;
|
|
len = elem->size;
|
|
aligned_start = RTE_PTR_ALIGN_CEIL(start, page_sz);
|
|
end = RTE_PTR_ADD(elem, len);
|
|
aligned_end = RTE_PTR_ALIGN_FLOOR(end, page_sz);
|
|
|
|
aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
|
|
|
|
/* can't free anything */
|
|
if (aligned_len < page_sz)
|
|
goto free_unlock;
|
|
|
|
/* we can free something. however, some of these pages may be marked as
|
|
* unfreeable, so also check that as well
|
|
*/
|
|
n_segs = aligned_len / page_sz;
|
|
for (i = 0; i < n_segs; i++) {
|
|
const struct rte_memseg *tmp =
|
|
rte_mem_virt2memseg(aligned_start, msl);
|
|
|
|
if (tmp->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
|
|
/* this is an unfreeable segment, so move start */
|
|
aligned_start = RTE_PTR_ADD(tmp->addr, tmp->len);
|
|
}
|
|
}
|
|
|
|
/* recalculate length and number of segments */
|
|
aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
|
|
n_segs = aligned_len / page_sz;
|
|
|
|
/* check if we can still free some pages */
|
|
if (n_segs == 0)
|
|
goto free_unlock;
|
|
|
|
/* We're not done yet. We also have to check if by freeing space we will
|
|
* be leaving free elements that are too small to store new elements.
|
|
* Check if we have enough space in the beginning and at the end, or if
|
|
* start/end are exactly page aligned.
|
|
*/
|
|
before_space = RTE_PTR_DIFF(aligned_start, elem);
|
|
after_space = RTE_PTR_DIFF(end, aligned_end);
|
|
if (before_space != 0 &&
|
|
before_space < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
|
|
/* There is not enough space before start, but we may be able to
|
|
* move the start forward by one page.
|
|
*/
|
|
if (n_segs == 1)
|
|
goto free_unlock;
|
|
|
|
/* move start */
|
|
aligned_start = RTE_PTR_ADD(aligned_start, page_sz);
|
|
aligned_len -= page_sz;
|
|
n_segs--;
|
|
}
|
|
if (after_space != 0 && after_space <
|
|
MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
|
|
/* There is not enough space after end, but we may be able to
|
|
* move the end backwards by one page.
|
|
*/
|
|
if (n_segs == 1)
|
|
goto free_unlock;
|
|
|
|
/* move end */
|
|
aligned_end = RTE_PTR_SUB(aligned_end, page_sz);
|
|
aligned_len -= page_sz;
|
|
n_segs--;
|
|
}
|
|
|
|
/* now we can finally free us some pages */
|
|
|
|
rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
|
|
|
|
/*
|
|
* we allow secondary processes to clear the heap of this allocated
|
|
* memory because it is safe to do so, as even if notifications about
|
|
* unmapped pages don't make it to other processes, heap is shared
|
|
* across all processes, and will become empty of this memory anyway,
|
|
* and nothing can allocate it back unless primary process will be able
|
|
* to deliver allocation message to every single running process.
|
|
*/
|
|
|
|
malloc_elem_free_list_remove(elem);
|
|
|
|
malloc_elem_hide_region(elem, (void *) aligned_start, aligned_len);
|
|
|
|
heap->total_size -= aligned_len;
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
/* notify user about changes in memory map */
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
|
|
aligned_start, aligned_len);
|
|
|
|
/* don't care if any of this fails */
|
|
malloc_heap_free_pages(aligned_start, aligned_len);
|
|
|
|
request_sync();
|
|
} else {
|
|
struct malloc_mp_req req;
|
|
|
|
memset(&req, 0, sizeof(req));
|
|
|
|
req.t = REQ_TYPE_FREE;
|
|
req.free_req.addr = aligned_start;
|
|
req.free_req.len = aligned_len;
|
|
|
|
/*
|
|
* we request primary to deallocate pages, but we don't do it
|
|
* in this thread. instead, we notify primary that we would like
|
|
* to deallocate pages, and this process will receive another
|
|
* request (in parallel) that will do it for us on another
|
|
* thread.
|
|
*
|
|
* we also don't really care if this succeeds - the data is
|
|
* already removed from the heap, so it is, for all intents and
|
|
* purposes, hidden from the rest of DPDK even if some other
|
|
* process (including this one) may have these pages mapped.
|
|
*
|
|
* notifications about deallocated memory happen during sync.
|
|
*/
|
|
request_to_primary(&req);
|
|
}
|
|
|
|
RTE_LOG(DEBUG, EAL, "Heap on socket %d was shrunk by %zdMB\n",
|
|
msl->socket_id, aligned_len >> 20ULL);
|
|
|
|
rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
|
|
free_unlock:
|
|
rte_spinlock_unlock(&(heap->lock));
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
malloc_heap_resize(struct malloc_elem *elem, size_t size)
|
|
{
|
|
int ret;
|
|
|
|
if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
|
|
return -1;
|
|
|
|
rte_spinlock_lock(&(elem->heap->lock));
|
|
|
|
ret = malloc_elem_resize(elem, size);
|
|
|
|
rte_spinlock_unlock(&(elem->heap->lock));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Function to retrieve data for a given heap
|
|
*/
|
|
int
|
|
malloc_heap_get_stats(struct malloc_heap *heap,
|
|
struct rte_malloc_socket_stats *socket_stats)
|
|
{
|
|
size_t idx;
|
|
struct malloc_elem *elem;
|
|
|
|
rte_spinlock_lock(&heap->lock);
|
|
|
|
/* Initialise variables for heap */
|
|
socket_stats->free_count = 0;
|
|
socket_stats->heap_freesz_bytes = 0;
|
|
socket_stats->greatest_free_size = 0;
|
|
|
|
/* Iterate through free list */
|
|
for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
|
|
for (elem = LIST_FIRST(&heap->free_head[idx]);
|
|
!!elem; elem = LIST_NEXT(elem, free_list))
|
|
{
|
|
socket_stats->free_count++;
|
|
socket_stats->heap_freesz_bytes += elem->size;
|
|
if (elem->size > socket_stats->greatest_free_size)
|
|
socket_stats->greatest_free_size = elem->size;
|
|
}
|
|
}
|
|
/* Get stats on overall heap and allocated memory on this heap */
|
|
socket_stats->heap_totalsz_bytes = heap->total_size;
|
|
socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
|
|
socket_stats->heap_freesz_bytes);
|
|
socket_stats->alloc_count = heap->alloc_count;
|
|
|
|
rte_spinlock_unlock(&heap->lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function to retrieve data for a given heap
|
|
*/
|
|
void
|
|
malloc_heap_dump(struct malloc_heap *heap, FILE *f)
|
|
{
|
|
struct malloc_elem *elem;
|
|
|
|
rte_spinlock_lock(&heap->lock);
|
|
|
|
fprintf(f, "Heap size: 0x%zx\n", heap->total_size);
|
|
fprintf(f, "Heap alloc count: %u\n", heap->alloc_count);
|
|
|
|
elem = heap->first;
|
|
while (elem) {
|
|
malloc_elem_dump(elem, f);
|
|
elem = elem->next;
|
|
}
|
|
|
|
rte_spinlock_unlock(&heap->lock);
|
|
}
|
|
|
|
static int
|
|
destroy_seg(struct malloc_elem *elem, size_t len)
|
|
{
|
|
struct malloc_heap *heap = elem->heap;
|
|
struct rte_memseg_list *msl;
|
|
|
|
msl = elem->msl;
|
|
|
|
/* notify all subscribers that a memory area is going to be removed */
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, elem, len);
|
|
|
|
/* this element can be removed */
|
|
malloc_elem_free_list_remove(elem);
|
|
malloc_elem_hide_region(elem, elem, len);
|
|
|
|
heap->total_size -= len;
|
|
|
|
memset(elem, 0, sizeof(*elem));
|
|
|
|
/* destroy the fbarray backing this memory */
|
|
if (rte_fbarray_destroy(&msl->memseg_arr) < 0)
|
|
return -1;
|
|
|
|
/* reset the memseg list */
|
|
memset(msl, 0, sizeof(*msl));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
malloc_heap_add_external_memory(struct malloc_heap *heap, void *va_addr,
|
|
rte_iova_t iova_addrs[], unsigned int n_pages, size_t page_sz)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
char fbarray_name[RTE_FBARRAY_NAME_LEN];
|
|
struct rte_memseg_list *msl = NULL;
|
|
struct rte_fbarray *arr;
|
|
size_t seg_len = n_pages * page_sz;
|
|
unsigned int i;
|
|
|
|
/* first, find a free memseg list */
|
|
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
|
|
struct rte_memseg_list *tmp = &mcfg->memsegs[i];
|
|
if (tmp->base_va == NULL) {
|
|
msl = tmp;
|
|
break;
|
|
}
|
|
}
|
|
if (msl == NULL) {
|
|
RTE_LOG(ERR, EAL, "Couldn't find empty memseg list\n");
|
|
rte_errno = ENOSPC;
|
|
return -1;
|
|
}
|
|
|
|
snprintf(fbarray_name, sizeof(fbarray_name) - 1, "%s_%p",
|
|
heap->name, va_addr);
|
|
|
|
/* create the backing fbarray */
|
|
if (rte_fbarray_init(&msl->memseg_arr, fbarray_name, n_pages,
|
|
sizeof(struct rte_memseg)) < 0) {
|
|
RTE_LOG(ERR, EAL, "Couldn't create fbarray backing the memseg list\n");
|
|
return -1;
|
|
}
|
|
arr = &msl->memseg_arr;
|
|
|
|
/* fbarray created, fill it up */
|
|
for (i = 0; i < n_pages; i++) {
|
|
struct rte_memseg *ms;
|
|
|
|
rte_fbarray_set_used(arr, i);
|
|
ms = rte_fbarray_get(arr, i);
|
|
ms->addr = RTE_PTR_ADD(va_addr, i * page_sz);
|
|
ms->iova = iova_addrs == NULL ? RTE_BAD_IOVA : iova_addrs[i];
|
|
ms->hugepage_sz = page_sz;
|
|
ms->len = page_sz;
|
|
ms->nchannel = rte_memory_get_nchannel();
|
|
ms->nrank = rte_memory_get_nrank();
|
|
ms->socket_id = heap->socket_id;
|
|
}
|
|
|
|
/* set up the memseg list */
|
|
msl->base_va = va_addr;
|
|
msl->page_sz = page_sz;
|
|
msl->socket_id = heap->socket_id;
|
|
msl->len = seg_len;
|
|
msl->version = 0;
|
|
msl->external = 1;
|
|
|
|
/* erase contents of new memory */
|
|
memset(va_addr, 0, seg_len);
|
|
|
|
/* now, add newly minted memory to the malloc heap */
|
|
malloc_heap_add_memory(heap, msl, va_addr, seg_len);
|
|
|
|
heap->total_size += seg_len;
|
|
|
|
/* all done! */
|
|
RTE_LOG(DEBUG, EAL, "Added segment for heap %s starting at %p\n",
|
|
heap->name, va_addr);
|
|
|
|
/* notify all subscribers that a new memory area has been added */
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
|
|
va_addr, seg_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
malloc_heap_remove_external_memory(struct malloc_heap *heap, void *va_addr,
|
|
size_t len)
|
|
{
|
|
struct malloc_elem *elem = heap->first;
|
|
|
|
/* find element with specified va address */
|
|
while (elem != NULL && elem != va_addr) {
|
|
elem = elem->next;
|
|
/* stop if we've blown past our VA */
|
|
if (elem > (struct malloc_elem *)va_addr) {
|
|
rte_errno = ENOENT;
|
|
return -1;
|
|
}
|
|
}
|
|
/* check if element was found */
|
|
if (elem == NULL || elem->msl->len != len) {
|
|
rte_errno = ENOENT;
|
|
return -1;
|
|
}
|
|
/* if element's size is not equal to segment len, segment is busy */
|
|
if (elem->state == ELEM_BUSY || elem->size != len) {
|
|
rte_errno = EBUSY;
|
|
return -1;
|
|
}
|
|
return destroy_seg(elem, len);
|
|
}
|
|
|
|
int
|
|
malloc_heap_create(struct malloc_heap *heap, const char *heap_name)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
uint32_t next_socket_id = mcfg->next_socket_id;
|
|
|
|
/* prevent overflow. did you really create 2 billion heaps??? */
|
|
if (next_socket_id > INT32_MAX) {
|
|
RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
|
|
rte_errno = ENOSPC;
|
|
return -1;
|
|
}
|
|
|
|
/* initialize empty heap */
|
|
heap->alloc_count = 0;
|
|
heap->first = NULL;
|
|
heap->last = NULL;
|
|
LIST_INIT(heap->free_head);
|
|
rte_spinlock_init(&heap->lock);
|
|
heap->total_size = 0;
|
|
heap->socket_id = next_socket_id;
|
|
|
|
/* we hold a global mem hotplug writelock, so it's safe to increment */
|
|
mcfg->next_socket_id++;
|
|
|
|
/* set up name */
|
|
strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
malloc_heap_destroy(struct malloc_heap *heap)
|
|
{
|
|
if (heap->alloc_count != 0) {
|
|
RTE_LOG(ERR, EAL, "Heap is still in use\n");
|
|
rte_errno = EBUSY;
|
|
return -1;
|
|
}
|
|
if (heap->first != NULL || heap->last != NULL) {
|
|
RTE_LOG(ERR, EAL, "Heap still contains memory segments\n");
|
|
rte_errno = EBUSY;
|
|
return -1;
|
|
}
|
|
if (heap->total_size != 0)
|
|
RTE_LOG(ERR, EAL, "Total size not zero, heap is likely corrupt\n");
|
|
|
|
/* after this, the lock will be dropped */
|
|
memset(heap, 0, sizeof(*heap));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_eal_malloc_heap_init(void)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
unsigned int i;
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
/* assign min socket ID to external heaps */
|
|
mcfg->next_socket_id = EXTERNAL_HEAP_MIN_SOCKET_ID;
|
|
|
|
/* assign names to default DPDK heaps */
|
|
for (i = 0; i < rte_socket_count(); i++) {
|
|
struct malloc_heap *heap = &mcfg->malloc_heaps[i];
|
|
char heap_name[RTE_HEAP_NAME_MAX_LEN];
|
|
int socket_id = rte_socket_id_by_idx(i);
|
|
|
|
snprintf(heap_name, sizeof(heap_name) - 1,
|
|
"socket_%i", socket_id);
|
|
strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
|
|
heap->socket_id = socket_id;
|
|
}
|
|
}
|
|
|
|
|
|
if (register_mp_requests()) {
|
|
RTE_LOG(ERR, EAL, "Couldn't register malloc multiprocess actions\n");
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
return -1;
|
|
}
|
|
|
|
/* unlock mem hotplug here. it's safe for primary as no requests can
|
|
* even come before primary itself is fully initialized, and secondaries
|
|
* do not need to initialize the heap.
|
|
*/
|
|
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
|
|
|
|
/* secondary process does not need to initialize anything */
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
|
|
return 0;
|
|
|
|
/* add all IOVA-contiguous areas to the heap */
|
|
return rte_memseg_contig_walk(malloc_add_seg, NULL);
|
|
}
|