71bdd8a178
Use RTE_DIM macro to calculate array size. Suggested-by: David Marchand <david.marchand@redhat.com> Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com> Acked-by: David Marchand <david.marchand@redhat.com>
536 lines
15 KiB
C
536 lines
15 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2013 6WIND S.A.
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <sys/queue.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_arp.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_icmp.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_flow.h>
|
|
|
|
#include "testpmd.h"
|
|
|
|
static const char *
|
|
arp_op_name(uint16_t arp_op)
|
|
{
|
|
switch (arp_op) {
|
|
case RTE_ARP_OP_REQUEST:
|
|
return "ARP Request";
|
|
case RTE_ARP_OP_REPLY:
|
|
return "ARP Reply";
|
|
case RTE_ARP_OP_REVREQUEST:
|
|
return "Reverse ARP Request";
|
|
case RTE_ARP_OP_REVREPLY:
|
|
return "Reverse ARP Reply";
|
|
case RTE_ARP_OP_INVREQUEST:
|
|
return "Peer Identify Request";
|
|
case RTE_ARP_OP_INVREPLY:
|
|
return "Peer Identify Reply";
|
|
default:
|
|
break;
|
|
}
|
|
return "Unkwown ARP op";
|
|
}
|
|
|
|
static const char *
|
|
ip_proto_name(uint16_t ip_proto)
|
|
{
|
|
static const char * ip_proto_names[] = {
|
|
"IP6HOPOPTS", /**< IP6 hop-by-hop options */
|
|
"ICMP", /**< control message protocol */
|
|
"IGMP", /**< group mgmt protocol */
|
|
"GGP", /**< gateway^2 (deprecated) */
|
|
"IPv4", /**< IPv4 encapsulation */
|
|
|
|
"UNASSIGNED",
|
|
"TCP", /**< transport control protocol */
|
|
"ST", /**< Stream protocol II */
|
|
"EGP", /**< exterior gateway protocol */
|
|
"PIGP", /**< private interior gateway */
|
|
|
|
"RCC_MON", /**< BBN RCC Monitoring */
|
|
"NVPII", /**< network voice protocol*/
|
|
"PUP", /**< pup */
|
|
"ARGUS", /**< Argus */
|
|
"EMCON", /**< EMCON */
|
|
|
|
"XNET", /**< Cross Net Debugger */
|
|
"CHAOS", /**< Chaos*/
|
|
"UDP", /**< user datagram protocol */
|
|
"MUX", /**< Multiplexing */
|
|
"DCN_MEAS", /**< DCN Measurement Subsystems */
|
|
|
|
"HMP", /**< Host Monitoring */
|
|
"PRM", /**< Packet Radio Measurement */
|
|
"XNS_IDP", /**< xns idp */
|
|
"TRUNK1", /**< Trunk-1 */
|
|
"TRUNK2", /**< Trunk-2 */
|
|
|
|
"LEAF1", /**< Leaf-1 */
|
|
"LEAF2", /**< Leaf-2 */
|
|
"RDP", /**< Reliable Data */
|
|
"IRTP", /**< Reliable Transaction */
|
|
"TP4", /**< tp-4 w/ class negotiation */
|
|
|
|
"BLT", /**< Bulk Data Transfer */
|
|
"NSP", /**< Network Services */
|
|
"INP", /**< Merit Internodal */
|
|
"SEP", /**< Sequential Exchange */
|
|
"3PC", /**< Third Party Connect */
|
|
|
|
"IDPR", /**< InterDomain Policy Routing */
|
|
"XTP", /**< XTP */
|
|
"DDP", /**< Datagram Delivery */
|
|
"CMTP", /**< Control Message Transport */
|
|
"TPXX", /**< TP++ Transport */
|
|
|
|
"ILTP", /**< IL transport protocol */
|
|
"IPv6_HDR", /**< IP6 header */
|
|
"SDRP", /**< Source Demand Routing */
|
|
"IPv6_RTG", /**< IP6 routing header */
|
|
"IPv6_FRAG", /**< IP6 fragmentation header */
|
|
|
|
"IDRP", /**< InterDomain Routing*/
|
|
"RSVP", /**< resource reservation */
|
|
"GRE", /**< General Routing Encap. */
|
|
"MHRP", /**< Mobile Host Routing */
|
|
"BHA", /**< BHA */
|
|
|
|
"ESP", /**< IP6 Encap Sec. Payload */
|
|
"AH", /**< IP6 Auth Header */
|
|
"INLSP", /**< Integ. Net Layer Security */
|
|
"SWIPE", /**< IP with encryption */
|
|
"NHRP", /**< Next Hop Resolution */
|
|
|
|
"UNASSIGNED",
|
|
"UNASSIGNED",
|
|
"UNASSIGNED",
|
|
"ICMPv6", /**< ICMP6 */
|
|
"IPv6NONEXT", /**< IP6 no next header */
|
|
|
|
"Ipv6DSTOPTS",/**< IP6 destination option */
|
|
"AHIP", /**< any host internal protocol */
|
|
"CFTP", /**< CFTP */
|
|
"HELLO", /**< "hello" routing protocol */
|
|
"SATEXPAK", /**< SATNET/Backroom EXPAK */
|
|
|
|
"KRYPTOLAN", /**< Kryptolan */
|
|
"RVD", /**< Remote Virtual Disk */
|
|
"IPPC", /**< Pluribus Packet Core */
|
|
"ADFS", /**< Any distributed FS */
|
|
"SATMON", /**< Satnet Monitoring */
|
|
|
|
"VISA", /**< VISA Protocol */
|
|
"IPCV", /**< Packet Core Utility */
|
|
"CPNX", /**< Comp. Prot. Net. Executive */
|
|
"CPHB", /**< Comp. Prot. HeartBeat */
|
|
"WSN", /**< Wang Span Network */
|
|
|
|
"PVP", /**< Packet Video Protocol */
|
|
"BRSATMON", /**< BackRoom SATNET Monitoring */
|
|
"ND", /**< Sun net disk proto (temp.) */
|
|
"WBMON", /**< WIDEBAND Monitoring */
|
|
"WBEXPAK", /**< WIDEBAND EXPAK */
|
|
|
|
"EON", /**< ISO cnlp */
|
|
"VMTP", /**< VMTP */
|
|
"SVMTP", /**< Secure VMTP */
|
|
"VINES", /**< Banyon VINES */
|
|
"TTP", /**< TTP */
|
|
|
|
"IGP", /**< NSFNET-IGP */
|
|
"DGP", /**< dissimilar gateway prot. */
|
|
"TCF", /**< TCF */
|
|
"IGRP", /**< Cisco/GXS IGRP */
|
|
"OSPFIGP", /**< OSPFIGP */
|
|
|
|
"SRPC", /**< Strite RPC protocol */
|
|
"LARP", /**< Locus Address Resolution */
|
|
"MTP", /**< Multicast Transport */
|
|
"AX25", /**< AX.25 Frames */
|
|
"4IN4", /**< IP encapsulated in IP */
|
|
|
|
"MICP", /**< Mobile Int.ing control */
|
|
"SCCSP", /**< Semaphore Comm. security */
|
|
"ETHERIP", /**< Ethernet IP encapsulation */
|
|
"ENCAP", /**< encapsulation header */
|
|
"AES", /**< any private encr. scheme */
|
|
|
|
"GMTP", /**< GMTP */
|
|
"IPCOMP", /**< payload compression (IPComp) */
|
|
"UNASSIGNED",
|
|
"UNASSIGNED",
|
|
"PIM", /**< Protocol Independent Mcast */
|
|
};
|
|
|
|
if (ip_proto < RTE_DIM(ip_proto_names))
|
|
return ip_proto_names[ip_proto];
|
|
switch (ip_proto) {
|
|
#ifdef IPPROTO_PGM
|
|
case IPPROTO_PGM: /**< PGM */
|
|
return "PGM";
|
|
#endif
|
|
case IPPROTO_SCTP: /**< Stream Control Transport Protocol */
|
|
return "SCTP";
|
|
#ifdef IPPROTO_DIVERT
|
|
case IPPROTO_DIVERT: /**< divert pseudo-protocol */
|
|
return "DIVERT";
|
|
#endif
|
|
case IPPROTO_RAW: /**< raw IP packet */
|
|
return "RAW";
|
|
default:
|
|
break;
|
|
}
|
|
return "UNASSIGNED";
|
|
}
|
|
|
|
static void
|
|
ipv4_addr_to_dot(uint32_t be_ipv4_addr, char *buf)
|
|
{
|
|
uint32_t ipv4_addr;
|
|
|
|
ipv4_addr = rte_be_to_cpu_32(be_ipv4_addr);
|
|
sprintf(buf, "%d.%d.%d.%d", (ipv4_addr >> 24) & 0xFF,
|
|
(ipv4_addr >> 16) & 0xFF, (ipv4_addr >> 8) & 0xFF,
|
|
ipv4_addr & 0xFF);
|
|
}
|
|
|
|
static void
|
|
ether_addr_dump(const char *what, const struct rte_ether_addr *ea)
|
|
{
|
|
char buf[RTE_ETHER_ADDR_FMT_SIZE];
|
|
|
|
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, ea);
|
|
if (what)
|
|
printf("%s", what);
|
|
printf("%s", buf);
|
|
}
|
|
|
|
static void
|
|
ipv4_addr_dump(const char *what, uint32_t be_ipv4_addr)
|
|
{
|
|
char buf[16];
|
|
|
|
ipv4_addr_to_dot(be_ipv4_addr, buf);
|
|
if (what)
|
|
printf("%s", what);
|
|
printf("%s", buf);
|
|
}
|
|
|
|
static uint16_t
|
|
ipv4_hdr_cksum(struct rte_ipv4_hdr *ip_h)
|
|
{
|
|
uint16_t *v16_h;
|
|
uint32_t ip_cksum;
|
|
|
|
/*
|
|
* Compute the sum of successive 16-bit words of the IPv4 header,
|
|
* skipping the checksum field of the header.
|
|
*/
|
|
v16_h = (unaligned_uint16_t *) ip_h;
|
|
ip_cksum = v16_h[0] + v16_h[1] + v16_h[2] + v16_h[3] +
|
|
v16_h[4] + v16_h[6] + v16_h[7] + v16_h[8] + v16_h[9];
|
|
|
|
/* reduce 32 bit checksum to 16 bits and complement it */
|
|
ip_cksum = (ip_cksum & 0xffff) + (ip_cksum >> 16);
|
|
ip_cksum = (ip_cksum & 0xffff) + (ip_cksum >> 16);
|
|
ip_cksum = (~ip_cksum) & 0x0000FFFF;
|
|
return (ip_cksum == 0) ? 0xFFFF : (uint16_t) ip_cksum;
|
|
}
|
|
|
|
#define is_multicast_ipv4_addr(ipv4_addr) \
|
|
(((rte_be_to_cpu_32((ipv4_addr)) >> 24) & 0x000000FF) == 0xE0)
|
|
|
|
/*
|
|
* Receive a burst of packets, lookup for ICMP echo requests, and, if any,
|
|
* send back ICMP echo replies.
|
|
*/
|
|
static void
|
|
reply_to_icmp_echo_rqsts(struct fwd_stream *fs)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
struct rte_mbuf *pkt;
|
|
struct rte_ether_hdr *eth_h;
|
|
struct rte_vlan_hdr *vlan_h;
|
|
struct rte_arp_hdr *arp_h;
|
|
struct rte_ipv4_hdr *ip_h;
|
|
struct rte_icmp_hdr *icmp_h;
|
|
struct rte_ether_addr eth_addr;
|
|
uint32_t retry;
|
|
uint32_t ip_addr;
|
|
uint16_t nb_rx;
|
|
uint16_t nb_tx;
|
|
uint16_t nb_replies;
|
|
uint16_t eth_type;
|
|
uint16_t vlan_id;
|
|
uint16_t arp_op;
|
|
uint16_t arp_pro;
|
|
uint32_t cksum;
|
|
uint8_t i;
|
|
int l2_len;
|
|
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
|
|
uint64_t start_tsc;
|
|
uint64_t end_tsc;
|
|
uint64_t core_cycles;
|
|
#endif
|
|
|
|
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
|
|
start_tsc = rte_rdtsc();
|
|
#endif
|
|
|
|
/*
|
|
* First, receive a burst of packets.
|
|
*/
|
|
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
|
|
nb_pkt_per_burst);
|
|
if (unlikely(nb_rx == 0))
|
|
return;
|
|
|
|
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
|
|
fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
|
|
#endif
|
|
fs->rx_packets += nb_rx;
|
|
nb_replies = 0;
|
|
for (i = 0; i < nb_rx; i++) {
|
|
if (likely(i < nb_rx - 1))
|
|
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
|
|
void *));
|
|
pkt = pkts_burst[i];
|
|
eth_h = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
|
|
eth_type = RTE_BE_TO_CPU_16(eth_h->ether_type);
|
|
l2_len = sizeof(struct rte_ether_hdr);
|
|
if (verbose_level > 0) {
|
|
printf("\nPort %d pkt-len=%u nb-segs=%u\n",
|
|
fs->rx_port, pkt->pkt_len, pkt->nb_segs);
|
|
ether_addr_dump(" ETH: src=", ð_h->s_addr);
|
|
ether_addr_dump(" dst=", ð_h->d_addr);
|
|
}
|
|
if (eth_type == RTE_ETHER_TYPE_VLAN) {
|
|
vlan_h = (struct rte_vlan_hdr *)
|
|
((char *)eth_h + sizeof(struct rte_ether_hdr));
|
|
l2_len += sizeof(struct rte_vlan_hdr);
|
|
eth_type = rte_be_to_cpu_16(vlan_h->eth_proto);
|
|
if (verbose_level > 0) {
|
|
vlan_id = rte_be_to_cpu_16(vlan_h->vlan_tci)
|
|
& 0xFFF;
|
|
printf(" [vlan id=%u]", vlan_id);
|
|
}
|
|
}
|
|
if (verbose_level > 0) {
|
|
printf(" type=0x%04x\n", eth_type);
|
|
}
|
|
|
|
/* Reply to ARP requests */
|
|
if (eth_type == RTE_ETHER_TYPE_ARP) {
|
|
arp_h = (struct rte_arp_hdr *) ((char *)eth_h + l2_len);
|
|
arp_op = RTE_BE_TO_CPU_16(arp_h->arp_opcode);
|
|
arp_pro = RTE_BE_TO_CPU_16(arp_h->arp_protocol);
|
|
if (verbose_level > 0) {
|
|
printf(" ARP: hrd=%d proto=0x%04x hln=%d "
|
|
"pln=%d op=%u (%s)\n",
|
|
RTE_BE_TO_CPU_16(arp_h->arp_hardware),
|
|
arp_pro, arp_h->arp_hlen,
|
|
arp_h->arp_plen, arp_op,
|
|
arp_op_name(arp_op));
|
|
}
|
|
if ((RTE_BE_TO_CPU_16(arp_h->arp_hardware) !=
|
|
RTE_ARP_HRD_ETHER) ||
|
|
(arp_pro != RTE_ETHER_TYPE_IPV4) ||
|
|
(arp_h->arp_hlen != 6) ||
|
|
(arp_h->arp_plen != 4)
|
|
) {
|
|
rte_pktmbuf_free(pkt);
|
|
if (verbose_level > 0)
|
|
printf("\n");
|
|
continue;
|
|
}
|
|
if (verbose_level > 0) {
|
|
rte_ether_addr_copy(&arp_h->arp_data.arp_sha,
|
|
ð_addr);
|
|
ether_addr_dump(" sha=", ð_addr);
|
|
ip_addr = arp_h->arp_data.arp_sip;
|
|
ipv4_addr_dump(" sip=", ip_addr);
|
|
printf("\n");
|
|
rte_ether_addr_copy(&arp_h->arp_data.arp_tha,
|
|
ð_addr);
|
|
ether_addr_dump(" tha=", ð_addr);
|
|
ip_addr = arp_h->arp_data.arp_tip;
|
|
ipv4_addr_dump(" tip=", ip_addr);
|
|
printf("\n");
|
|
}
|
|
if (arp_op != RTE_ARP_OP_REQUEST) {
|
|
rte_pktmbuf_free(pkt);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Build ARP reply.
|
|
*/
|
|
|
|
/* Use source MAC address as destination MAC address. */
|
|
rte_ether_addr_copy(ð_h->s_addr, ð_h->d_addr);
|
|
/* Set source MAC address with MAC address of TX port */
|
|
rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
|
|
ð_h->s_addr);
|
|
|
|
arp_h->arp_opcode = rte_cpu_to_be_16(RTE_ARP_OP_REPLY);
|
|
rte_ether_addr_copy(&arp_h->arp_data.arp_tha,
|
|
ð_addr);
|
|
rte_ether_addr_copy(&arp_h->arp_data.arp_sha,
|
|
&arp_h->arp_data.arp_tha);
|
|
rte_ether_addr_copy(ð_h->s_addr,
|
|
&arp_h->arp_data.arp_sha);
|
|
|
|
/* Swap IP addresses in ARP payload */
|
|
ip_addr = arp_h->arp_data.arp_sip;
|
|
arp_h->arp_data.arp_sip = arp_h->arp_data.arp_tip;
|
|
arp_h->arp_data.arp_tip = ip_addr;
|
|
pkts_burst[nb_replies++] = pkt;
|
|
continue;
|
|
}
|
|
|
|
if (eth_type != RTE_ETHER_TYPE_IPV4) {
|
|
rte_pktmbuf_free(pkt);
|
|
continue;
|
|
}
|
|
ip_h = (struct rte_ipv4_hdr *) ((char *)eth_h + l2_len);
|
|
if (verbose_level > 0) {
|
|
ipv4_addr_dump(" IPV4: src=", ip_h->src_addr);
|
|
ipv4_addr_dump(" dst=", ip_h->dst_addr);
|
|
printf(" proto=%d (%s)\n",
|
|
ip_h->next_proto_id,
|
|
ip_proto_name(ip_h->next_proto_id));
|
|
}
|
|
|
|
/*
|
|
* Check if packet is a ICMP echo request.
|
|
*/
|
|
icmp_h = (struct rte_icmp_hdr *) ((char *)ip_h +
|
|
sizeof(struct rte_ipv4_hdr));
|
|
if (! ((ip_h->next_proto_id == IPPROTO_ICMP) &&
|
|
(icmp_h->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) &&
|
|
(icmp_h->icmp_code == 0))) {
|
|
rte_pktmbuf_free(pkt);
|
|
continue;
|
|
}
|
|
|
|
if (verbose_level > 0)
|
|
printf(" ICMP: echo request seq id=%d\n",
|
|
rte_be_to_cpu_16(icmp_h->icmp_seq_nb));
|
|
|
|
/*
|
|
* Prepare ICMP echo reply to be sent back.
|
|
* - switch ethernet source and destinations addresses,
|
|
* - use the request IP source address as the reply IP
|
|
* destination address,
|
|
* - if the request IP destination address is a multicast
|
|
* address:
|
|
* - choose a reply IP source address different from the
|
|
* request IP source address,
|
|
* - re-compute the IP header checksum.
|
|
* Otherwise:
|
|
* - switch the request IP source and destination
|
|
* addresses in the reply IP header,
|
|
* - keep the IP header checksum unchanged.
|
|
* - set RTE_IP_ICMP_ECHO_REPLY in ICMP header.
|
|
* ICMP checksum is computed by assuming it is valid in the
|
|
* echo request and not verified.
|
|
*/
|
|
rte_ether_addr_copy(ð_h->s_addr, ð_addr);
|
|
rte_ether_addr_copy(ð_h->d_addr, ð_h->s_addr);
|
|
rte_ether_addr_copy(ð_addr, ð_h->d_addr);
|
|
ip_addr = ip_h->src_addr;
|
|
if (is_multicast_ipv4_addr(ip_h->dst_addr)) {
|
|
uint32_t ip_src;
|
|
|
|
ip_src = rte_be_to_cpu_32(ip_addr);
|
|
if ((ip_src & 0x00000003) == 1)
|
|
ip_src = (ip_src & 0xFFFFFFFC) | 0x00000002;
|
|
else
|
|
ip_src = (ip_src & 0xFFFFFFFC) | 0x00000001;
|
|
ip_h->src_addr = rte_cpu_to_be_32(ip_src);
|
|
ip_h->dst_addr = ip_addr;
|
|
ip_h->hdr_checksum = ipv4_hdr_cksum(ip_h);
|
|
} else {
|
|
ip_h->src_addr = ip_h->dst_addr;
|
|
ip_h->dst_addr = ip_addr;
|
|
}
|
|
icmp_h->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
|
|
cksum = ~icmp_h->icmp_cksum & 0xffff;
|
|
cksum += ~htons(RTE_IP_ICMP_ECHO_REQUEST << 8) & 0xffff;
|
|
cksum += htons(RTE_IP_ICMP_ECHO_REPLY << 8);
|
|
cksum = (cksum & 0xffff) + (cksum >> 16);
|
|
cksum = (cksum & 0xffff) + (cksum >> 16);
|
|
icmp_h->icmp_cksum = ~cksum;
|
|
pkts_burst[nb_replies++] = pkt;
|
|
}
|
|
|
|
/* Send back ICMP echo replies, if any. */
|
|
if (nb_replies > 0) {
|
|
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst,
|
|
nb_replies);
|
|
/*
|
|
* Retry if necessary
|
|
*/
|
|
if (unlikely(nb_tx < nb_replies) && fs->retry_enabled) {
|
|
retry = 0;
|
|
while (nb_tx < nb_replies &&
|
|
retry++ < burst_tx_retry_num) {
|
|
rte_delay_us(burst_tx_delay_time);
|
|
nb_tx += rte_eth_tx_burst(fs->tx_port,
|
|
fs->tx_queue,
|
|
&pkts_burst[nb_tx],
|
|
nb_replies - nb_tx);
|
|
}
|
|
}
|
|
fs->tx_packets += nb_tx;
|
|
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
|
|
fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
|
|
#endif
|
|
if (unlikely(nb_tx < nb_replies)) {
|
|
fs->fwd_dropped += (nb_replies - nb_tx);
|
|
do {
|
|
rte_pktmbuf_free(pkts_burst[nb_tx]);
|
|
} while (++nb_tx < nb_replies);
|
|
}
|
|
}
|
|
|
|
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
|
|
end_tsc = rte_rdtsc();
|
|
core_cycles = (end_tsc - start_tsc);
|
|
fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
|
|
#endif
|
|
}
|
|
|
|
struct fwd_engine icmp_echo_engine = {
|
|
.fwd_mode_name = "icmpecho",
|
|
.port_fwd_begin = NULL,
|
|
.port_fwd_end = NULL,
|
|
.packet_fwd = reply_to_icmp_echo_rqsts,
|
|
};
|