301cc1b4db
rte_pktmbuf_prefree_seg() can return NULL if the mbuf still has remaining references on it. Adding a NULL check to prevent segfault. Fixes:bc4a000f2f
("net/bnxt: implement SSE vector mode") Fixes:3983583414
("net/bnxt: support NEON") Cc: stable@dpdk.org Signed-off-by: Kalesh AP <kalesh-anakkur.purayil@broadcom.com> Reviewed-by: Lance Richardson <lance.richardson@broadcom.com> Reviewed-by: Somnath Kotur <somnath.kotur@broadcom.com> Reviewed-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
477 lines
12 KiB
C
477 lines
12 KiB
C
// SPDX-License-Identifier: BSD-3-Clause
|
|
/* Copyright(c) 2019 Broadcom All rights reserved. */
|
|
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
|
|
#include <rte_bitmap.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_memory.h>
|
|
#if defined(RTE_ARCH_X86)
|
|
#include <tmmintrin.h>
|
|
#else
|
|
#error "bnxt vector pmd: unsupported target."
|
|
#endif
|
|
|
|
#include "bnxt.h"
|
|
#include "bnxt_cpr.h"
|
|
#include "bnxt_ring.h"
|
|
#include "bnxt_rxr.h"
|
|
#include "bnxt_rxq.h"
|
|
#include "hsi_struct_def_dpdk.h"
|
|
#include "bnxt_rxtx_vec_common.h"
|
|
|
|
#include "bnxt_txq.h"
|
|
#include "bnxt_txr.h"
|
|
|
|
/*
|
|
* RX Ring handling
|
|
*/
|
|
|
|
static inline void
|
|
bnxt_rxq_rearm(struct bnxt_rx_queue *rxq, struct bnxt_rx_ring_info *rxr)
|
|
{
|
|
struct rx_prod_pkt_bd *rxbds = &rxr->rx_desc_ring[rxq->rxrearm_start];
|
|
struct bnxt_sw_rx_bd *rx_bufs = &rxr->rx_buf_ring[rxq->rxrearm_start];
|
|
struct rte_mbuf *mb0, *mb1;
|
|
int i;
|
|
|
|
const __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, 0);
|
|
const __m128i addrmask = _mm_set_epi64x(UINT64_MAX, 0);
|
|
|
|
/* Pull RTE_BNXT_RXQ_REARM_THRESH more mbufs into the software ring */
|
|
if (rte_mempool_get_bulk(rxq->mb_pool,
|
|
(void *)rx_bufs,
|
|
RTE_BNXT_RXQ_REARM_THRESH) < 0) {
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
|
|
RTE_BNXT_RXQ_REARM_THRESH;
|
|
|
|
return;
|
|
}
|
|
|
|
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
|
|
for (i = 0; i < RTE_BNXT_RXQ_REARM_THRESH; i += 2, rx_bufs += 2) {
|
|
__m128i buf_addr0, buf_addr1;
|
|
__m128i rxbd0, rxbd1;
|
|
|
|
mb0 = rx_bufs[0].mbuf;
|
|
mb1 = rx_bufs[1].mbuf;
|
|
|
|
/* Load address fields from both mbufs */
|
|
buf_addr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
|
|
buf_addr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
|
|
|
|
/* Load both rx descriptors (preserving some existing fields) */
|
|
rxbd0 = _mm_loadu_si128((__m128i *)(rxbds + 0));
|
|
rxbd1 = _mm_loadu_si128((__m128i *)(rxbds + 1));
|
|
|
|
/* Add default offset to buffer address. */
|
|
buf_addr0 = _mm_add_epi64(buf_addr0, hdr_room);
|
|
buf_addr1 = _mm_add_epi64(buf_addr1, hdr_room);
|
|
|
|
/* Clear all fields except address. */
|
|
buf_addr0 = _mm_and_si128(buf_addr0, addrmask);
|
|
buf_addr1 = _mm_and_si128(buf_addr1, addrmask);
|
|
|
|
/* Clear address field in descriptor. */
|
|
rxbd0 = _mm_andnot_si128(addrmask, rxbd0);
|
|
rxbd1 = _mm_andnot_si128(addrmask, rxbd1);
|
|
|
|
/* Set address field in descriptor. */
|
|
rxbd0 = _mm_add_epi64(rxbd0, buf_addr0);
|
|
rxbd1 = _mm_add_epi64(rxbd1, buf_addr1);
|
|
|
|
/* Store descriptors to memory. */
|
|
_mm_store_si128((__m128i *)(rxbds++), rxbd0);
|
|
_mm_store_si128((__m128i *)(rxbds++), rxbd1);
|
|
}
|
|
|
|
rxq->rxrearm_start += RTE_BNXT_RXQ_REARM_THRESH;
|
|
bnxt_db_write(&rxr->rx_db, rxq->rxrearm_start - 1);
|
|
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
|
|
rxq->rxrearm_start = 0;
|
|
|
|
rxq->rxrearm_nb -= RTE_BNXT_RXQ_REARM_THRESH;
|
|
}
|
|
|
|
static uint32_t
|
|
bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
|
|
{
|
|
uint32_t l3, pkt_type = 0;
|
|
uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
|
|
uint32_t flags_type;
|
|
|
|
vlan = !!(rxcmp1->flags2 &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
|
|
pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
|
|
|
|
t_ipcs = !!(rxcmp1->flags2 &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
|
|
ip6 = !!(rxcmp1->flags2 &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
|
|
|
|
flags_type = rxcmp->flags_type &
|
|
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
|
|
|
|
if (!t_ipcs && !ip6)
|
|
l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
|
|
else if (!t_ipcs && ip6)
|
|
l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
|
|
else if (t_ipcs && !ip6)
|
|
l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
|
|
else
|
|
l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
|
|
|
|
switch (flags_type) {
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
|
|
if (!t_ipcs)
|
|
pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
|
|
else
|
|
pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
|
|
break;
|
|
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
|
|
if (!t_ipcs)
|
|
pkt_type |= l3 | RTE_PTYPE_L4_TCP;
|
|
else
|
|
pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
|
|
break;
|
|
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
|
|
if (!t_ipcs)
|
|
pkt_type |= l3 | RTE_PTYPE_L4_UDP;
|
|
else
|
|
pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
|
|
break;
|
|
|
|
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
|
|
pkt_type |= l3;
|
|
break;
|
|
}
|
|
|
|
return pkt_type;
|
|
}
|
|
|
|
static void
|
|
bnxt_parse_csum(struct rte_mbuf *mbuf, struct rx_pkt_cmpl_hi *rxcmp1)
|
|
{
|
|
uint32_t flags;
|
|
|
|
flags = flags2_0xf(rxcmp1);
|
|
/* IP Checksum */
|
|
if (likely(IS_IP_NONTUNNEL_PKT(flags))) {
|
|
if (unlikely(RX_CMP_IP_CS_ERROR(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
|
|
else
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
} else if (IS_IP_TUNNEL_PKT(flags)) {
|
|
if (unlikely(RX_CMP_IP_OUTER_CS_ERROR(rxcmp1) ||
|
|
RX_CMP_IP_CS_ERROR(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
|
|
else
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
} else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1))) {
|
|
mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
|
|
}
|
|
|
|
/* L4 Checksum */
|
|
if (likely(IS_L4_NONTUNNEL_PKT(flags))) {
|
|
if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
else
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
} else if (IS_L4_TUNNEL_PKT(flags)) {
|
|
if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
else
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
|
|
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
|
|
} else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
|
|
(flags))) {
|
|
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
|
|
} else {
|
|
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
|
|
}
|
|
} else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
|
|
mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
uint16_t
|
|
bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct bnxt_rx_queue *rxq = rx_queue;
|
|
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
|
uint32_t raw_cons = cpr->cp_raw_cons;
|
|
uint32_t cons;
|
|
int nb_rx_pkts = 0;
|
|
struct rx_pkt_cmpl *rxcmp;
|
|
bool evt = false;
|
|
const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
|
|
const __m128i shuf_msk =
|
|
_mm_set_epi8(15, 14, 13, 12, /* rss */
|
|
0xFF, 0xFF, /* vlan_tci (zeroes) */
|
|
3, 2, /* data_len */
|
|
0xFF, 0xFF, 3, 2, /* pkt_len */
|
|
0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */
|
|
|
|
/* If Rx Q was stopped return */
|
|
if (unlikely(!rxq->rx_started))
|
|
return 0;
|
|
|
|
if (rxq->rxrearm_nb >= RTE_BNXT_RXQ_REARM_THRESH)
|
|
bnxt_rxq_rearm(rxq, rxr);
|
|
|
|
/* Return no more than RTE_BNXT_MAX_RX_BURST per call. */
|
|
nb_pkts = RTE_MIN(nb_pkts, RTE_BNXT_MAX_RX_BURST);
|
|
|
|
/*
|
|
* Make nb_pkts an integer multiple of RTE_BNXT_DESCS_PER_LOOP.
|
|
* nb_pkts < RTE_BNXT_DESCS_PER_LOOP, just return no packet
|
|
*/
|
|
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP);
|
|
if (!nb_pkts)
|
|
return 0;
|
|
|
|
/* Handle RX burst request */
|
|
while (1) {
|
|
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
|
|
|
|
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
|
|
|
|
if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
|
|
break;
|
|
|
|
if (likely(CMP_TYPE(rxcmp) == RX_PKT_CMPL_TYPE_RX_L2)) {
|
|
struct rx_pkt_cmpl_hi *rxcmp1;
|
|
uint32_t tmp_raw_cons;
|
|
uint16_t cp_cons;
|
|
struct rte_mbuf *mbuf;
|
|
__m128i mm_rxcmp, pkt_mb;
|
|
|
|
tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
|
|
rxcmp1 = (struct rx_pkt_cmpl_hi *)
|
|
&cpr->cp_desc_ring[cp_cons];
|
|
|
|
if (!CMP_VALID(rxcmp1, tmp_raw_cons,
|
|
cpr->cp_ring_struct))
|
|
break;
|
|
|
|
raw_cons = tmp_raw_cons;
|
|
cons = rxcmp->opaque;
|
|
|
|
mbuf = rxr->rx_buf_ring[cons].mbuf;
|
|
rte_prefetch0(mbuf);
|
|
rxr->rx_buf_ring[cons].mbuf = NULL;
|
|
|
|
/* Set constant fields from mbuf initializer. */
|
|
_mm_store_si128((__m128i *)&mbuf->rearm_data,
|
|
mbuf_init);
|
|
|
|
/* Set mbuf pkt_len, data_len, and rss_hash fields. */
|
|
mm_rxcmp = _mm_load_si128((__m128i *)rxcmp);
|
|
pkt_mb = _mm_shuffle_epi8(mm_rxcmp, shuf_msk);
|
|
_mm_storeu_si128((void *)&mbuf->rx_descriptor_fields1,
|
|
pkt_mb);
|
|
|
|
rte_compiler_barrier();
|
|
|
|
if (rxcmp->flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID)
|
|
mbuf->ol_flags |= PKT_RX_RSS_HASH;
|
|
|
|
if (rxcmp1->flags2 &
|
|
RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
|
|
mbuf->vlan_tci = rxcmp1->metadata &
|
|
(RX_PKT_CMPL_METADATA_VID_MASK |
|
|
RX_PKT_CMPL_METADATA_DE |
|
|
RX_PKT_CMPL_METADATA_PRI_MASK);
|
|
mbuf->ol_flags |=
|
|
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
|
|
}
|
|
|
|
bnxt_parse_csum(mbuf, rxcmp1);
|
|
mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
|
|
|
|
rx_pkts[nb_rx_pkts++] = mbuf;
|
|
} else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
|
|
evt =
|
|
bnxt_event_hwrm_resp_handler(rxq->bp,
|
|
(struct cmpl_base *)rxcmp);
|
|
}
|
|
|
|
raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
if (nb_rx_pkts == nb_pkts || evt)
|
|
break;
|
|
}
|
|
rxr->rx_prod = RING_ADV(rxr->rx_ring_struct, rxr->rx_prod, nb_rx_pkts);
|
|
|
|
rxq->rxrearm_nb += nb_rx_pkts;
|
|
cpr->cp_raw_cons = raw_cons;
|
|
cpr->valid = !!(cpr->cp_raw_cons & cpr->cp_ring_struct->ring_size);
|
|
if (nb_rx_pkts || evt)
|
|
bnxt_db_cq(cpr);
|
|
|
|
return nb_rx_pkts;
|
|
}
|
|
|
|
static void
|
|
bnxt_tx_cmp_vec(struct bnxt_tx_queue *txq, int nr_pkts)
|
|
{
|
|
struct bnxt_tx_ring_info *txr = txq->tx_ring;
|
|
struct rte_mbuf **free = txq->free;
|
|
uint16_t cons = txr->tx_cons;
|
|
unsigned int blk = 0;
|
|
|
|
while (nr_pkts--) {
|
|
struct bnxt_sw_tx_bd *tx_buf;
|
|
struct rte_mbuf *mbuf;
|
|
|
|
tx_buf = &txr->tx_buf_ring[cons];
|
|
cons = RING_NEXT(txr->tx_ring_struct, cons);
|
|
mbuf = rte_pktmbuf_prefree_seg(tx_buf->mbuf);
|
|
if (unlikely(mbuf == NULL))
|
|
continue;
|
|
tx_buf->mbuf = NULL;
|
|
|
|
if (blk && mbuf->pool != free[0]->pool) {
|
|
rte_mempool_put_bulk(free[0]->pool, (void **)free, blk);
|
|
blk = 0;
|
|
}
|
|
free[blk++] = mbuf;
|
|
}
|
|
if (blk)
|
|
rte_mempool_put_bulk(free[0]->pool, (void **)free, blk);
|
|
|
|
txr->tx_cons = cons;
|
|
}
|
|
|
|
static void
|
|
bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = txq->cp_ring;
|
|
uint32_t raw_cons = cpr->cp_raw_cons;
|
|
uint32_t cons;
|
|
uint32_t nb_tx_pkts = 0;
|
|
struct tx_cmpl *txcmp;
|
|
struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
|
|
struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
|
|
uint32_t ring_mask = cp_ring_struct->ring_mask;
|
|
|
|
do {
|
|
cons = RING_CMPL(ring_mask, raw_cons);
|
|
txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
|
|
|
|
if (!CMP_VALID(txcmp, raw_cons, cp_ring_struct))
|
|
break;
|
|
|
|
if (likely(CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2))
|
|
nb_tx_pkts += txcmp->opaque;
|
|
else
|
|
RTE_LOG_DP(ERR, PMD,
|
|
"Unhandled CMP type %02x\n",
|
|
CMP_TYPE(txcmp));
|
|
raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
} while (nb_tx_pkts < ring_mask);
|
|
|
|
cpr->valid = !!(raw_cons & cp_ring_struct->ring_size);
|
|
if (nb_tx_pkts) {
|
|
bnxt_tx_cmp_vec(txq, nb_tx_pkts);
|
|
cpr->cp_raw_cons = raw_cons;
|
|
bnxt_db_cq(cpr);
|
|
}
|
|
}
|
|
|
|
static uint16_t
|
|
bnxt_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct bnxt_tx_queue *txq = tx_queue;
|
|
struct bnxt_tx_ring_info *txr = txq->tx_ring;
|
|
uint16_t prod = txr->tx_prod;
|
|
struct rte_mbuf *tx_mbuf;
|
|
struct tx_bd_long *txbd = NULL;
|
|
struct bnxt_sw_tx_bd *tx_buf;
|
|
uint16_t to_send;
|
|
|
|
nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
|
|
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
/* Handle TX burst request */
|
|
to_send = nb_pkts;
|
|
while (to_send) {
|
|
tx_mbuf = *tx_pkts++;
|
|
rte_prefetch0(tx_mbuf);
|
|
|
|
tx_buf = &txr->tx_buf_ring[prod];
|
|
tx_buf->mbuf = tx_mbuf;
|
|
tx_buf->nr_bds = 1;
|
|
|
|
txbd = &txr->tx_desc_ring[prod];
|
|
txbd->address = tx_mbuf->buf_iova + tx_mbuf->data_off;
|
|
txbd->len = tx_mbuf->data_len;
|
|
txbd->flags_type = bnxt_xmit_flags_len(tx_mbuf->data_len,
|
|
TX_BD_FLAGS_NOCMPL);
|
|
prod = RING_NEXT(txr->tx_ring_struct, prod);
|
|
to_send--;
|
|
}
|
|
|
|
/* Request a completion for last packet in burst */
|
|
if (txbd) {
|
|
txbd->opaque = nb_pkts;
|
|
txbd->flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
|
|
}
|
|
|
|
rte_compiler_barrier();
|
|
bnxt_db_write(&txr->tx_db, prod);
|
|
|
|
txr->tx_prod = prod;
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
uint16_t
|
|
bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
int nb_sent = 0;
|
|
struct bnxt_tx_queue *txq = tx_queue;
|
|
|
|
/* Tx queue was stopped; wait for it to be restarted */
|
|
if (unlikely(!txq->tx_started)) {
|
|
PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Handle TX completions */
|
|
if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
|
|
bnxt_handle_tx_cp_vec(txq);
|
|
|
|
while (nb_pkts) {
|
|
uint16_t ret, num;
|
|
|
|
num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
|
|
ret = bnxt_xmit_fixed_burst_vec(tx_queue,
|
|
&tx_pkts[nb_sent],
|
|
num);
|
|
nb_sent += ret;
|
|
nb_pkts -= ret;
|
|
if (ret < num)
|
|
break;
|
|
}
|
|
|
|
return nb_sent;
|
|
}
|
|
|
|
int __rte_cold
|
|
bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq)
|
|
{
|
|
return bnxt_rxq_vec_setup_common(rxq);
|
|
}
|