numam-dpdk/app/test/test_red.c
Thomas Monjalon 26e09db6cb app/test: rework command registration
The tests are registered with their command name by adding a structure
to a list. The structure of each test was declared in each test file
and passed to the register macro.
This rework generate the structure inside the register macro.

Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com>
Reviewed-by: Jan Viktorin <viktorin@rehivetech.com>
2016-07-15 17:25:02 +02:00

1886 lines
50 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include "test.h"
#include <rte_red.h>
#ifdef __INTEL_COMPILER
#pragma warning(disable:2259) /* conversion may lose significant bits */
#pragma warning(disable:181) /* Arg incompatible with format string */
#endif
#define TEST_HZ_PER_KHZ 1000
#define TEST_NSEC_MARGIN 500 /**< nanosecond margin when calculating clk freq */
#define MAX_QEMPTY_TIME_MSEC 50000
#define MSEC_PER_SEC 1000 /**< Milli-seconds per second */
#define USEC_PER_MSEC 1000 /**< Micro-seconds per milli-second */
#define USEC_PER_SEC 1000000 /**< Micro-seconds per second */
#define NSEC_PER_SEC (USEC_PER_SEC * 1000) /**< Nano-seconds per second */
/**< structures for testing rte_red performance and function */
struct test_rte_red_config { /**< Test structure for RTE_RED config */
struct rte_red_config *rconfig; /**< RTE_RED configuration parameters */
uint8_t num_cfg; /**< Number of RTE_RED configs to test */
uint8_t *wq_log2; /**< Test wq_log2 value to use */
uint32_t min_th; /**< Queue minimum threshold */
uint32_t max_th; /**< Queue maximum threshold */
uint8_t *maxp_inv; /**< Inverse mark probability */
};
struct test_queue { /**< Test structure for RTE_RED Queues */
struct rte_red *rdata; /**< RTE_RED runtime data */
uint32_t num_queues; /**< Number of RTE_RED queues to test */
uint32_t *qconfig; /**< Configuration of RTE_RED queues for test */
uint32_t *q; /**< Queue size */
uint32_t q_ramp_up; /**< Num of enqueues to ramp up the queue */
uint32_t avg_ramp_up; /**< Average num of enqueues to ramp up the queue */
uint32_t avg_tolerance; /**< Tolerance in queue average */
double drop_tolerance; /**< Drop tolerance of packets not enqueued */
};
struct test_var { /**< Test variables used for testing RTE_RED */
uint32_t wait_usec; /**< Micro second wait interval */
uint32_t num_iterations; /**< Number of test iterations */
uint32_t num_ops; /**< Number of test operations */
uint64_t clk_freq; /**< CPU clock frequency */
uint32_t sleep_sec; /**< Seconds to sleep */
uint32_t *dropped; /**< Test operations dropped */
uint32_t *enqueued; /**< Test operations enqueued */
};
struct test_config { /**< Master test structure for RTE_RED */
const char *ifname; /**< Interface name */
const char *msg; /**< Test message for display */
const char *htxt; /**< Header txt display for result output */
struct test_rte_red_config *tconfig; /**< Test structure for RTE_RED config */
struct test_queue *tqueue; /**< Test structure for RTE_RED Queues */
struct test_var *tvar; /**< Test variables used for testing RTE_RED */
uint32_t *tlevel; /**< Queue levels */
};
enum test_result {
FAIL = 0,
PASS
};
/**< Test structure to define tests to run */
struct tests {
struct test_config *testcfg;
enum test_result (*testfn)(struct test_config *);
};
struct rdtsc_prof {
uint64_t clk_start;
uint64_t clk_min; /**< min clocks */
uint64_t clk_max; /**< max clocks */
uint64_t clk_avgc; /**< count to calc average */
double clk_avg; /**< cumulative sum to calc average */
const char *name;
};
static const uint64_t port_speed_bytes = (10ULL*1000ULL*1000ULL*1000ULL)/8ULL;
static double inv_cycles_per_byte = 0;
static double pkt_time_usec = 0;
static void init_port_ts(uint64_t cpu_clock)
{
double cycles_per_byte = (double)(cpu_clock) / (double)(port_speed_bytes);
inv_cycles_per_byte = 1.0 / cycles_per_byte;
pkt_time_usec = 1000000.0 / ((double)port_speed_bytes / (double)RTE_RED_S);
}
static uint64_t get_port_ts(void)
{
return (uint64_t)((double)rte_rdtsc() * inv_cycles_per_byte);
}
static void rdtsc_prof_init(struct rdtsc_prof *p, const char *name)
{
p->clk_min = (uint64_t)(-1LL);
p->clk_max = 0;
p->clk_avg = 0;
p->clk_avgc = 0;
p->name = name;
}
static inline void rdtsc_prof_start(struct rdtsc_prof *p)
{
p->clk_start = rte_rdtsc_precise();
}
static inline void rdtsc_prof_end(struct rdtsc_prof *p)
{
uint64_t clk_start = rte_rdtsc() - p->clk_start;
p->clk_avgc++;
p->clk_avg += (double) clk_start;
if (clk_start > p->clk_max)
p->clk_max = clk_start;
if (clk_start < p->clk_min)
p->clk_min = clk_start;
}
static void rdtsc_prof_print(struct rdtsc_prof *p)
{
if (p->clk_avgc>0) {
printf("RDTSC stats for %s: n=%" PRIu64 ", min=%" PRIu64 ", max=%" PRIu64 ", avg=%.1f\n",
p->name,
p->clk_avgc,
p->clk_min,
p->clk_max,
(p->clk_avg / ((double) p->clk_avgc)));
}
}
static uint32_t rte_red_get_avg_int(const struct rte_red_config *red_cfg,
struct rte_red *red)
{
/**
* scale by 1/n and convert from fixed-point to integer
*/
return red->avg >> (RTE_RED_SCALING + red_cfg->wq_log2);
}
static double rte_red_get_avg_float(const struct rte_red_config *red_cfg,
struct rte_red *red)
{
/**
* scale by 1/n and convert from fixed-point to floating-point
*/
return ldexp((double)red->avg, -(RTE_RED_SCALING + red_cfg->wq_log2));
}
static void rte_red_set_avg_int(const struct rte_red_config *red_cfg,
struct rte_red *red,
uint32_t avg)
{
/**
* scale by n and convert from integer to fixed-point
*/
red->avg = avg << (RTE_RED_SCALING + red_cfg->wq_log2);
}
static double calc_exp_avg_on_empty(double avg, uint32_t n, uint32_t time_diff)
{
return avg * pow((1.0 - 1.0 / (double)n), (double)time_diff / pkt_time_usec);
}
static double calc_drop_rate(uint32_t enqueued, uint32_t dropped)
{
return (double)dropped / ((double)enqueued + (double)dropped);
}
/**
* calculate the drop probability
*/
static double calc_drop_prob(uint32_t min_th, uint32_t max_th,
uint32_t maxp_inv, uint32_t avg)
{
double drop_prob = 0.0;
if (avg < min_th) {
drop_prob = 0.0;
} else if (avg < max_th) {
drop_prob = (1.0 / (double)maxp_inv)
* ((double)(avg - min_th)
/ (double)(max_th - min_th));
} else {
drop_prob = 1.0;
}
return drop_prob;
}
/**
* check if drop rate matches drop probability within tolerance
*/
static int check_drop_rate(double *diff, double drop_rate, double drop_prob, double tolerance)
{
double abs_diff = 0.0;
int ret = 1;
abs_diff = fabs(drop_rate - drop_prob);
if ((int)abs_diff == 0) {
*diff = 0.0;
} else {
*diff = (abs_diff / drop_prob) * 100.0;
if (*diff > tolerance) {
ret = 0;
}
}
return ret;
}
/**
* check if average queue size is within tolerance
*/
static int check_avg(double *diff, double avg, double exp_avg, double tolerance)
{
double abs_diff = 0.0;
int ret = 1;
abs_diff = fabs(avg - exp_avg);
if ((int)abs_diff == 0) {
*diff = 0.0;
} else {
*diff = (abs_diff / exp_avg) * 100.0;
if (*diff > tolerance) {
ret = 0;
}
}
return ret;
}
/**
* initialize the test rte_red config
*/
static enum test_result
test_rte_red_init(struct test_config *tcfg)
{
unsigned i = 0;
tcfg->tvar->clk_freq = rte_get_timer_hz();
init_port_ts( tcfg->tvar->clk_freq );
for (i = 0; i < tcfg->tconfig->num_cfg; i++) {
if (rte_red_config_init(&tcfg->tconfig->rconfig[i],
(uint16_t)tcfg->tconfig->wq_log2[i],
(uint16_t)tcfg->tconfig->min_th,
(uint16_t)tcfg->tconfig->max_th,
(uint16_t)tcfg->tconfig->maxp_inv[i]) != 0) {
return FAIL;
}
}
*tcfg->tqueue->q = 0;
*tcfg->tvar->dropped = 0;
*tcfg->tvar->enqueued = 0;
return PASS;
}
/**
* enqueue until actual queue size reaches target level
*/
static int
increase_actual_qsize(struct rte_red_config *red_cfg,
struct rte_red *red,
uint32_t *q,
uint32_t level,
uint32_t attempts)
{
uint32_t i = 0;
for (i = 0; i < attempts; i++) {
int ret = 0;
/**
* enqueue
*/
ret = rte_red_enqueue(red_cfg, red, *q, get_port_ts() );
if (ret == 0) {
if (++(*q) >= level)
break;
}
}
/**
* check if target actual queue size has been reached
*/
if (*q != level)
return -1;
/**
* success
*/
return 0;
}
/**
* enqueue until average queue size reaches target level
*/
static int
increase_average_qsize(struct rte_red_config *red_cfg,
struct rte_red *red,
uint32_t *q,
uint32_t level,
uint32_t num_ops)
{
uint32_t avg = 0;
uint32_t i = 0;
for (i = 0; i < num_ops; i++) {
/**
* enqueue
*/
rte_red_enqueue(red_cfg, red, *q, get_port_ts());
}
/**
* check if target average queue size has been reached
*/
avg = rte_red_get_avg_int(red_cfg, red);
if (avg != level)
return -1;
/**
* success
*/
return 0;
}
/**
* setup default values for the functional test structures
*/
static struct rte_red_config ft_wrconfig[1];
static struct rte_red ft_rtdata[1];
static uint8_t ft_wq_log2[] = {9};
static uint8_t ft_maxp_inv[] = {10};
static uint32_t ft_qconfig[] = {0, 0, 1, 1};
static uint32_t ft_q[] ={0};
static uint32_t ft_dropped[] ={0};
static uint32_t ft_enqueued[] ={0};
static struct test_rte_red_config ft_tconfig = {
.rconfig = ft_wrconfig,
.num_cfg = RTE_DIM(ft_wrconfig),
.wq_log2 = ft_wq_log2,
.min_th = 32,
.max_th = 128,
.maxp_inv = ft_maxp_inv,
};
static struct test_queue ft_tqueue = {
.rdata = ft_rtdata,
.num_queues = RTE_DIM(ft_rtdata),
.qconfig = ft_qconfig,
.q = ft_q,
.q_ramp_up = 1000000,
.avg_ramp_up = 1000000,
.avg_tolerance = 5, /* 5 percent */
.drop_tolerance = 50, /* 50 percent */
};
static struct test_var ft_tvar = {
.wait_usec = 10000,
.num_iterations = 5,
.num_ops = 10000,
.clk_freq = 0,
.dropped = ft_dropped,
.enqueued = ft_enqueued,
.sleep_sec = (MAX_QEMPTY_TIME_MSEC / MSEC_PER_SEC) + 2,
};
/**
* functional test enqueue/dequeue packets
*/
static void enqueue_dequeue_func(struct rte_red_config *red_cfg,
struct rte_red *red,
uint32_t *q,
uint32_t num_ops,
uint32_t *enqueued,
uint32_t *dropped)
{
uint32_t i = 0;
for (i = 0; i < num_ops; i++) {
int ret = 0;
/**
* enqueue
*/
ret = rte_red_enqueue(red_cfg, red, *q, get_port_ts());
if (ret == 0)
(*enqueued)++;
else
(*dropped)++;
}
}
/**
* Test F1: functional test 1
*/
static uint32_t ft1_tlevels[] = {6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144};
static struct test_config func_test1_config = {
.ifname = "functional test 1 interface",
.msg = "functional test 1 : use one rte_red configuration,\n"
" increase average queue size to various levels,\n"
" compare drop rate to drop probability\n\n",
.htxt = " "
"avg queue size "
"enqueued "
"dropped "
"drop prob % "
"drop rate % "
"diff % "
"tolerance % "
"\n",
.tconfig = &ft_tconfig,
.tqueue = &ft_tqueue,
.tvar = &ft_tvar,
.tlevel = ft1_tlevels,
};
static enum test_result func_test1(struct test_config *tcfg)
{
enum test_result result = PASS;
uint32_t i = 0;
printf("%s", tcfg->msg);
if (test_rte_red_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
printf("%s", tcfg->htxt);
for (i = 0; i < RTE_DIM(ft1_tlevels); i++) {
const char *label = NULL;
uint32_t avg = 0;
double drop_rate = 0.0;
double drop_prob = 0.0;
double diff = 0.0;
/**
* reset rte_red run-time data
*/
rte_red_rt_data_init(tcfg->tqueue->rdata);
*tcfg->tvar->enqueued = 0;
*tcfg->tvar->dropped = 0;
if (increase_actual_qsize(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
tcfg->tqueue->q,
tcfg->tlevel[i],
tcfg->tqueue->q_ramp_up) != 0) {
result = FAIL;
goto out;
}
if (increase_average_qsize(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
tcfg->tqueue->q,
tcfg->tlevel[i],
tcfg->tqueue->avg_ramp_up) != 0) {
result = FAIL;
goto out;
}
enqueue_dequeue_func(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
tcfg->tqueue->q,
tcfg->tvar->num_ops,
tcfg->tvar->enqueued,
tcfg->tvar->dropped);
avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
if (avg != tcfg->tlevel[i]) {
fprintf(stderr, "Fail: avg != level\n");
result = FAIL;
}
drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped);
drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th,
*tcfg->tconfig->maxp_inv, tcfg->tlevel[i]);
if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance))
result = FAIL;
if (tcfg->tlevel[i] == tcfg->tconfig->min_th)
label = "min thresh: ";
else if (tcfg->tlevel[i] == tcfg->tconfig->max_th)
label = "max thresh: ";
else
label = " ";
printf("%s%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n",
label, avg, *tcfg->tvar->enqueued, *tcfg->tvar->dropped,
drop_prob * 100.0, drop_rate * 100.0, diff,
(double)tcfg->tqueue->drop_tolerance);
}
out:
return result;
}
/**
* Test F2: functional test 2
*/
static uint32_t ft2_tlevel[] = {127};
static uint8_t ft2_wq_log2[] = {9, 9, 9, 9, 9, 9, 9, 9, 9, 9};
static uint8_t ft2_maxp_inv[] = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};
static struct rte_red_config ft2_rconfig[10];
static struct test_rte_red_config ft2_tconfig = {
.rconfig = ft2_rconfig,
.num_cfg = RTE_DIM(ft2_rconfig),
.wq_log2 = ft2_wq_log2,
.min_th = 32,
.max_th = 128,
.maxp_inv = ft2_maxp_inv,
};
static struct test_config func_test2_config = {
.ifname = "functional test 2 interface",
.msg = "functional test 2 : use several RED configurations,\n"
" increase average queue size to just below maximum threshold,\n"
" compare drop rate to drop probability\n\n",
.htxt = "RED config "
"avg queue size "
"min threshold "
"max threshold "
"drop prob % "
"drop rate % "
"diff % "
"tolerance % "
"\n",
.tconfig = &ft2_tconfig,
.tqueue = &ft_tqueue,
.tvar = &ft_tvar,
.tlevel = ft2_tlevel,
};
static enum test_result func_test2(struct test_config *tcfg)
{
enum test_result result = PASS;
double prev_drop_rate = 1.0;
uint32_t i = 0;
printf("%s", tcfg->msg);
if (test_rte_red_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
rte_red_rt_data_init(tcfg->tqueue->rdata);
if (increase_actual_qsize(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
tcfg->tqueue->q,
*tcfg->tlevel,
tcfg->tqueue->q_ramp_up) != 0) {
result = FAIL;
goto out;
}
if (increase_average_qsize(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
tcfg->tqueue->q,
*tcfg->tlevel,
tcfg->tqueue->avg_ramp_up) != 0) {
result = FAIL;
goto out;
}
printf("%s", tcfg->htxt);
for (i = 0; i < tcfg->tconfig->num_cfg; i++) {
uint32_t avg = 0;
double drop_rate = 0.0;
double drop_prob = 0.0;
double diff = 0.0;
*tcfg->tvar->dropped = 0;
*tcfg->tvar->enqueued = 0;
enqueue_dequeue_func(&tcfg->tconfig->rconfig[i],
tcfg->tqueue->rdata,
tcfg->tqueue->q,
tcfg->tvar->num_ops,
tcfg->tvar->enqueued,
tcfg->tvar->dropped);
avg = rte_red_get_avg_int(&tcfg->tconfig->rconfig[i], tcfg->tqueue->rdata);
if (avg != *tcfg->tlevel)
result = FAIL;
drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped);
drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th,
tcfg->tconfig->maxp_inv[i], *tcfg->tlevel);
if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance))
result = FAIL;
/**
* drop rate should decrease as maxp_inv increases
*/
if (drop_rate > prev_drop_rate)
result = FAIL;
prev_drop_rate = drop_rate;
printf("%-15u%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n",
i, avg, tcfg->tconfig->min_th, tcfg->tconfig->max_th,
drop_prob * 100.0, drop_rate * 100.0, diff,
(double)tcfg->tqueue->drop_tolerance);
}
out:
return result;
}
/**
* Test F3: functional test 3
*/
static uint32_t ft3_tlevel[] = {1022};
static struct test_rte_red_config ft3_tconfig = {
.rconfig = ft_wrconfig,
.num_cfg = RTE_DIM(ft_wrconfig),
.wq_log2 = ft_wq_log2,
.min_th = 32,
.max_th = 1023,
.maxp_inv = ft_maxp_inv,
};
static struct test_config func_test3_config = {
.ifname = "functional test 3 interface",
.msg = "functional test 3 : use one RED configuration,\n"
" increase average queue size to target level,\n"
" dequeue all packets until queue is empty,\n"
" confirm that average queue size is computed correctly while queue is empty\n\n",
.htxt = "q avg before "
"q avg after "
"expected "
"difference % "
"tolerance % "
"result "
"\n",
.tconfig = &ft3_tconfig,
.tqueue = &ft_tqueue,
.tvar = &ft_tvar,
.tlevel = ft3_tlevel,
};
static enum test_result func_test3(struct test_config *tcfg)
{
enum test_result result = PASS;
uint32_t i = 0;
printf("%s", tcfg->msg);
if (test_rte_red_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
rte_red_rt_data_init(tcfg->tqueue->rdata);
if (increase_actual_qsize(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
tcfg->tqueue->q,
*tcfg->tlevel,
tcfg->tqueue->q_ramp_up) != 0) {
result = FAIL;
goto out;
}
if (increase_average_qsize(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
tcfg->tqueue->q,
*tcfg->tlevel,
tcfg->tqueue->avg_ramp_up) != 0) {
result = FAIL;
goto out;
}
printf("%s", tcfg->htxt);
for (i = 0; i < tcfg->tvar->num_iterations; i++) {
double avg_before = 0;
double avg_after = 0;
double exp_avg = 0;
double diff = 0.0;
avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
/**
* empty the queue
*/
*tcfg->tqueue->q = 0;
rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts());
rte_delay_us(tcfg->tvar->wait_usec);
/**
* enqueue one packet to recalculate average queue size
*/
if (rte_red_enqueue(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
*tcfg->tqueue->q,
get_port_ts()) == 0) {
(*tcfg->tqueue->q)++;
} else {
printf("%s:%d: packet enqueued on empty queue was dropped\n", __func__, __LINE__);
result = FAIL;
}
exp_avg = calc_exp_avg_on_empty(avg_before,
(1 << *tcfg->tconfig->wq_log2),
tcfg->tvar->wait_usec);
avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata);
if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance))
result = FAIL;
printf("%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n",
avg_before, avg_after, exp_avg, diff,
(double)tcfg->tqueue->avg_tolerance,
diff <= (double)tcfg->tqueue->avg_tolerance ? "pass" : "fail");
}
out:
return result;
}
/**
* Test F4: functional test 4
*/
static uint32_t ft4_tlevel[] = {1022};
static uint8_t ft4_wq_log2[] = {11};
static struct test_rte_red_config ft4_tconfig = {
.rconfig = ft_wrconfig,
.num_cfg = RTE_DIM(ft_wrconfig),
.min_th = 32,
.max_th = 1023,
.wq_log2 = ft4_wq_log2,
.maxp_inv = ft_maxp_inv,
};
static struct test_queue ft4_tqueue = {
.rdata = ft_rtdata,
.num_queues = RTE_DIM(ft_rtdata),
.qconfig = ft_qconfig,
.q = ft_q,
.q_ramp_up = 1000000,
.avg_ramp_up = 1000000,
.avg_tolerance = 0, /* 0 percent */
.drop_tolerance = 50, /* 50 percent */
};
static struct test_config func_test4_config = {
.ifname = "functional test 4 interface",
.msg = "functional test 4 : use one RED configuration,\n"
" increase average queue size to target level,\n"
" dequeue all packets until queue is empty,\n"
" confirm that average queue size is computed correctly while\n"
" queue is empty for more than 50 sec,\n"
" (this test takes 52 sec to run)\n\n",
.htxt = "q avg before "
"q avg after "
"expected "
"difference % "
"tolerance % "
"result "
"\n",
.tconfig = &ft4_tconfig,
.tqueue = &ft4_tqueue,
.tvar = &ft_tvar,
.tlevel = ft4_tlevel,
};
static enum test_result func_test4(struct test_config *tcfg)
{
enum test_result result = PASS;
uint64_t time_diff = 0;
uint64_t start = 0;
double avg_before = 0.0;
double avg_after = 0.0;
double exp_avg = 0.0;
double diff = 0.0;
printf("%s", tcfg->msg);
if (test_rte_red_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
rte_red_rt_data_init(tcfg->tqueue->rdata);
if (increase_actual_qsize(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
tcfg->tqueue->q,
*tcfg->tlevel,
tcfg->tqueue->q_ramp_up) != 0) {
result = FAIL;
goto out;
}
if (increase_average_qsize(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
tcfg->tqueue->q,
*tcfg->tlevel,
tcfg->tqueue->avg_ramp_up) != 0) {
result = FAIL;
goto out;
}
printf("%s", tcfg->htxt);
avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
/**
* empty the queue
*/
*tcfg->tqueue->q = 0;
rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts());
/**
* record empty time locally
*/
start = rte_rdtsc();
sleep(tcfg->tvar->sleep_sec);
/**
* enqueue one packet to recalculate average queue size
*/
if (rte_red_enqueue(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
*tcfg->tqueue->q,
get_port_ts()) != 0) {
result = FAIL;
goto out;
}
(*tcfg->tqueue->q)++;
/**
* calculate how long queue has been empty
*/
time_diff = ((rte_rdtsc() - start) / tcfg->tvar->clk_freq)
* MSEC_PER_SEC;
if (time_diff < MAX_QEMPTY_TIME_MSEC) {
/**
* this could happen if sleep was interrupted for some reason
*/
result = FAIL;
goto out;
}
/**
* confirm that average queue size is now at expected level
*/
exp_avg = 0.0;
avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance))
result = FAIL;
printf("%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n",
avg_before, avg_after, exp_avg,
diff, (double)tcfg->tqueue->avg_tolerance,
diff <= (double)tcfg->tqueue->avg_tolerance ? "pass" : "fail");
out:
return result;
}
/**
* Test F5: functional test 5
*/
static uint32_t ft5_tlevel[] = {127};
static uint8_t ft5_wq_log2[] = {9, 8};
static uint8_t ft5_maxp_inv[] = {10, 20};
static struct rte_red_config ft5_config[2];
static struct rte_red ft5_data[4];
static uint32_t ft5_q[4];
static uint32_t ft5_dropped[] = {0, 0, 0, 0};
static uint32_t ft5_enqueued[] = {0, 0, 0, 0};
static struct test_rte_red_config ft5_tconfig = {
.rconfig = ft5_config,
.num_cfg = RTE_DIM(ft5_config),
.min_th = 32,
.max_th = 128,
.wq_log2 = ft5_wq_log2,
.maxp_inv = ft5_maxp_inv,
};
static struct test_queue ft5_tqueue = {
.rdata = ft5_data,
.num_queues = RTE_DIM(ft5_data),
.qconfig = ft_qconfig,
.q = ft5_q,
.q_ramp_up = 1000000,
.avg_ramp_up = 1000000,
.avg_tolerance = 5, /* 10 percent */
.drop_tolerance = 50, /* 50 percent */
};
struct test_var ft5_tvar = {
.wait_usec = 0,
.num_iterations = 15,
.num_ops = 10000,
.clk_freq = 0,
.dropped = ft5_dropped,
.enqueued = ft5_enqueued,
.sleep_sec = 0,
};
static struct test_config func_test5_config = {
.ifname = "functional test 5 interface",
.msg = "functional test 5 : use several queues (each with its own run-time data),\n"
" use several RED configurations (such that each configuration is shared by multiple queues),\n"
" increase average queue size to just below maximum threshold,\n"
" compare drop rate to drop probability,\n"
" (this is a larger scale version of functional test 2)\n\n",
.htxt = "queue "
"config "
"avg queue size "
"min threshold "
"max threshold "
"drop prob % "
"drop rate % "
"diff % "
"tolerance % "
"\n",
.tconfig = &ft5_tconfig,
.tqueue = &ft5_tqueue,
.tvar = &ft5_tvar,
.tlevel = ft5_tlevel,
};
static enum test_result func_test5(struct test_config *tcfg)
{
enum test_result result = PASS;
uint32_t j = 0;
printf("%s", tcfg->msg);
if (test_rte_red_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
printf("%s", tcfg->htxt);
for (j = 0; j < tcfg->tqueue->num_queues; j++) {
rte_red_rt_data_init(&tcfg->tqueue->rdata[j]);
tcfg->tqueue->q[j] = 0;
if (increase_actual_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
&tcfg->tqueue->rdata[j],
&tcfg->tqueue->q[j],
*tcfg->tlevel,
tcfg->tqueue->q_ramp_up) != 0) {
result = FAIL;
goto out;
}
if (increase_average_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
&tcfg->tqueue->rdata[j],
&tcfg->tqueue->q[j],
*tcfg->tlevel,
tcfg->tqueue->avg_ramp_up) != 0) {
result = FAIL;
goto out;
}
}
for (j = 0; j < tcfg->tqueue->num_queues; j++) {
uint32_t avg = 0;
double drop_rate = 0.0;
double drop_prob = 0.0;
double diff = 0.0;
tcfg->tvar->dropped[j] = 0;
tcfg->tvar->enqueued[j] = 0;
enqueue_dequeue_func(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
&tcfg->tqueue->rdata[j],
&tcfg->tqueue->q[j],
tcfg->tvar->num_ops,
&tcfg->tvar->enqueued[j],
&tcfg->tvar->dropped[j]);
avg = rte_red_get_avg_int(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
&tcfg->tqueue->rdata[j]);
if (avg != *tcfg->tlevel)
result = FAIL;
drop_rate = calc_drop_rate(tcfg->tvar->enqueued[j],tcfg->tvar->dropped[j]);
drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th,
tcfg->tconfig->maxp_inv[tcfg->tqueue->qconfig[j]],
*tcfg->tlevel);
if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance))
result = FAIL;
printf("%-15u%-15u%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n",
j, tcfg->tqueue->qconfig[j], avg,
tcfg->tconfig->min_th, tcfg->tconfig->max_th,
drop_prob * 100.0, drop_rate * 100.0,
diff, (double)tcfg->tqueue->drop_tolerance);
}
out:
return result;
}
/**
* Test F6: functional test 6
*/
static uint32_t ft6_tlevel[] = {1022};
static uint8_t ft6_wq_log2[] = {9, 8};
static uint8_t ft6_maxp_inv[] = {10, 20};
static struct rte_red_config ft6_config[2];
static struct rte_red ft6_data[4];
static uint32_t ft6_q[4];
static struct test_rte_red_config ft6_tconfig = {
.rconfig = ft6_config,
.num_cfg = RTE_DIM(ft6_config),
.min_th = 32,
.max_th = 1023,
.wq_log2 = ft6_wq_log2,
.maxp_inv = ft6_maxp_inv,
};
static struct test_queue ft6_tqueue = {
.rdata = ft6_data,
.num_queues = RTE_DIM(ft6_data),
.qconfig = ft_qconfig,
.q = ft6_q,
.q_ramp_up = 1000000,
.avg_ramp_up = 1000000,
.avg_tolerance = 5, /* 10 percent */
.drop_tolerance = 50, /* 50 percent */
};
static struct test_config func_test6_config = {
.ifname = "functional test 6 interface",
.msg = "functional test 6 : use several queues (each with its own run-time data),\n"
" use several RED configurations (such that each configuration is sharte_red by multiple queues),\n"
" increase average queue size to target level,\n"
" dequeue all packets until queue is empty,\n"
" confirm that average queue size is computed correctly while queue is empty\n"
" (this is a larger scale version of functional test 3)\n\n",
.htxt = "queue "
"config "
"q avg before "
"q avg after "
"expected "
"difference % "
"tolerance % "
"result ""\n",
.tconfig = &ft6_tconfig,
.tqueue = &ft6_tqueue,
.tvar = &ft_tvar,
.tlevel = ft6_tlevel,
};
static enum test_result func_test6(struct test_config *tcfg)
{
enum test_result result = PASS;
uint32_t j = 0;
printf("%s", tcfg->msg);
if (test_rte_red_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
printf("%s", tcfg->htxt);
for (j = 0; j < tcfg->tqueue->num_queues; j++) {
rte_red_rt_data_init(&tcfg->tqueue->rdata[j]);
tcfg->tqueue->q[j] = 0;
if (increase_actual_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
&tcfg->tqueue->rdata[j],
&tcfg->tqueue->q[j],
*tcfg->tlevel,
tcfg->tqueue->q_ramp_up) != 0) {
result = FAIL;
goto out;
}
if (increase_average_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
&tcfg->tqueue->rdata[j],
&tcfg->tqueue->q[j],
*tcfg->tlevel,
tcfg->tqueue->avg_ramp_up) != 0) {
result = FAIL;
goto out;
}
}
for (j = 0; j < tcfg->tqueue->num_queues; j++) {
double avg_before = 0;
double avg_after = 0;
double exp_avg = 0;
double diff = 0.0;
avg_before = rte_red_get_avg_float(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
&tcfg->tqueue->rdata[j]);
/**
* empty the queue
*/
tcfg->tqueue->q[j] = 0;
rte_red_mark_queue_empty(&tcfg->tqueue->rdata[j], get_port_ts());
rte_delay_us(tcfg->tvar->wait_usec);
/**
* enqueue one packet to recalculate average queue size
*/
if (rte_red_enqueue(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
&tcfg->tqueue->rdata[j],
tcfg->tqueue->q[j],
get_port_ts()) == 0) {
tcfg->tqueue->q[j]++;
} else {
printf("%s:%d: packet enqueued on empty queue was dropped\n", __func__, __LINE__);
result = FAIL;
}
exp_avg = calc_exp_avg_on_empty(avg_before,
(1 << tcfg->tconfig->wq_log2[tcfg->tqueue->qconfig[j]]),
tcfg->tvar->wait_usec);
avg_after = rte_red_get_avg_float(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
&tcfg->tqueue->rdata[j]);
if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance))
result = FAIL;
printf("%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n",
j, tcfg->tqueue->qconfig[j], avg_before, avg_after,
exp_avg, diff, (double)tcfg->tqueue->avg_tolerance,
diff <= tcfg->tqueue->avg_tolerance ? "pass" : "fail");
}
out:
return result;
}
/**
* setup default values for the performance test structures
*/
static struct rte_red_config pt_wrconfig[1];
static struct rte_red pt_rtdata[1];
static uint8_t pt_wq_log2[] = {9};
static uint8_t pt_maxp_inv[] = {10};
static uint32_t pt_qconfig[] = {0};
static uint32_t pt_q[] = {0};
static uint32_t pt_dropped[] = {0};
static uint32_t pt_enqueued[] = {0};
static struct test_rte_red_config pt_tconfig = {
.rconfig = pt_wrconfig,
.num_cfg = RTE_DIM(pt_wrconfig),
.wq_log2 = pt_wq_log2,
.min_th = 32,
.max_th = 128,
.maxp_inv = pt_maxp_inv,
};
static struct test_queue pt_tqueue = {
.rdata = pt_rtdata,
.num_queues = RTE_DIM(pt_rtdata),
.qconfig = pt_qconfig,
.q = pt_q,
.q_ramp_up = 1000000,
.avg_ramp_up = 1000000,
.avg_tolerance = 5, /* 10 percent */
.drop_tolerance = 50, /* 50 percent */
};
/**
* enqueue/dequeue packets
*/
static void enqueue_dequeue_perf(struct rte_red_config *red_cfg,
struct rte_red *red,
uint32_t *q,
uint32_t num_ops,
uint32_t *enqueued,
uint32_t *dropped,
struct rdtsc_prof *prof)
{
uint32_t i = 0;
for (i = 0; i < num_ops; i++) {
uint64_t ts = 0;
int ret = 0;
/**
* enqueue
*/
ts = get_port_ts();
rdtsc_prof_start(prof);
ret = rte_red_enqueue(red_cfg, red, *q, ts );
rdtsc_prof_end(prof);
if (ret == 0)
(*enqueued)++;
else
(*dropped)++;
}
}
/**
* Setup test structures for tests P1, P2, P3
* performance tests 1, 2 and 3
*/
static uint32_t pt1_tlevel[] = {16};
static uint32_t pt2_tlevel[] = {80};
static uint32_t pt3_tlevel[] = {144};
static struct test_var perf1_tvar = {
.wait_usec = 0,
.num_iterations = 15,
.num_ops = 50000000,
.clk_freq = 0,
.dropped = pt_dropped,
.enqueued = pt_enqueued,
.sleep_sec = 0
};
static struct test_config perf1_test1_config = {
.ifname = "performance test 1 interface",
.msg = "performance test 1 : use one RED configuration,\n"
" set actual and average queue sizes to level below min threshold,\n"
" measure enqueue performance\n\n",
.tconfig = &pt_tconfig,
.tqueue = &pt_tqueue,
.tvar = &perf1_tvar,
.tlevel = pt1_tlevel,
};
static struct test_config perf1_test2_config = {
.ifname = "performance test 2 interface",
.msg = "performance test 2 : use one RED configuration,\n"
" set actual and average queue sizes to level in between min and max thresholds,\n"
" measure enqueue performance\n\n",
.tconfig = &pt_tconfig,
.tqueue = &pt_tqueue,
.tvar = &perf1_tvar,
.tlevel = pt2_tlevel,
};
static struct test_config perf1_test3_config = {
.ifname = "performance test 3 interface",
.msg = "performance test 3 : use one RED configuration,\n"
" set actual and average queue sizes to level above max threshold,\n"
" measure enqueue performance\n\n",
.tconfig = &pt_tconfig,
.tqueue = &pt_tqueue,
.tvar = &perf1_tvar,
.tlevel = pt3_tlevel,
};
/**
* Performance test function to measure enqueue performance.
* This runs performance tests 1, 2 and 3
*/
static enum test_result perf1_test(struct test_config *tcfg)
{
enum test_result result = PASS;
struct rdtsc_prof prof = {0, 0, 0, 0, 0.0, NULL};
uint32_t total = 0;
printf("%s", tcfg->msg);
rdtsc_prof_init(&prof, "enqueue");
if (test_rte_red_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
/**
* set average queue size to target level
*/
*tcfg->tqueue->q = *tcfg->tlevel;
/**
* initialize the rte_red run time data structure
*/
rte_red_rt_data_init(tcfg->tqueue->rdata);
/**
* set the queue average
*/
rte_red_set_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tlevel);
if (rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata)
!= *tcfg->tlevel) {
result = FAIL;
goto out;
}
enqueue_dequeue_perf(tcfg->tconfig->rconfig,
tcfg->tqueue->rdata,
tcfg->tqueue->q,
tcfg->tvar->num_ops,
tcfg->tvar->enqueued,
tcfg->tvar->dropped,
&prof);
total = *tcfg->tvar->enqueued + *tcfg->tvar->dropped;
printf("\ntotal: %u, enqueued: %u (%.2lf%%), dropped: %u (%.2lf%%)\n", total,
*tcfg->tvar->enqueued, ((double)(*tcfg->tvar->enqueued) / (double)total) * 100.0,
*tcfg->tvar->dropped, ((double)(*tcfg->tvar->dropped) / (double)total) * 100.0);
rdtsc_prof_print(&prof);
out:
return result;
}
/**
* Setup test structures for tests P4, P5, P6
* performance tests 4, 5 and 6
*/
static uint32_t pt4_tlevel[] = {16};
static uint32_t pt5_tlevel[] = {80};
static uint32_t pt6_tlevel[] = {144};
static struct test_var perf2_tvar = {
.wait_usec = 500,
.num_iterations = 10000,
.num_ops = 10000,
.dropped = pt_dropped,
.enqueued = pt_enqueued,
.sleep_sec = 0
};
static struct test_config perf2_test4_config = {
.ifname = "performance test 4 interface",
.msg = "performance test 4 : use one RED configuration,\n"
" set actual and average queue sizes to level below min threshold,\n"
" dequeue all packets until queue is empty,\n"
" measure enqueue performance when queue is empty\n\n",
.htxt = "iteration "
"q avg before "
"q avg after "
"expected "
"difference % "
"tolerance % "
"result ""\n",
.tconfig = &pt_tconfig,
.tqueue = &pt_tqueue,
.tvar = &perf2_tvar,
.tlevel = pt4_tlevel,
};
static struct test_config perf2_test5_config = {
.ifname = "performance test 5 interface",
.msg = "performance test 5 : use one RED configuration,\n"
" set actual and average queue sizes to level in between min and max thresholds,\n"
" dequeue all packets until queue is empty,\n"
" measure enqueue performance when queue is empty\n\n",
.htxt = "iteration "
"q avg before "
"q avg after "
"expected "
"difference "
"tolerance "
"result ""\n",
.tconfig = &pt_tconfig,
.tqueue = &pt_tqueue,
.tvar = &perf2_tvar,
.tlevel = pt5_tlevel,
};
static struct test_config perf2_test6_config = {
.ifname = "performance test 6 interface",
.msg = "performance test 6 : use one RED configuration,\n"
" set actual and average queue sizes to level above max threshold,\n"
" dequeue all packets until queue is empty,\n"
" measure enqueue performance when queue is empty\n\n",
.htxt = "iteration "
"q avg before "
"q avg after "
"expected "
"difference % "
"tolerance % "
"result ""\n",
.tconfig = &pt_tconfig,
.tqueue = &pt_tqueue,
.tvar = &perf2_tvar,
.tlevel = pt6_tlevel,
};
/**
* Performance test function to measure enqueue performance when the
* queue is empty. This runs performance tests 4, 5 and 6
*/
static enum test_result perf2_test(struct test_config *tcfg)
{
enum test_result result = PASS;
struct rdtsc_prof prof = {0, 0, 0, 0, 0.0, NULL};
uint32_t total = 0;
uint32_t i = 0;
printf("%s", tcfg->msg);
rdtsc_prof_init(&prof, "enqueue");
if (test_rte_red_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
printf("%s", tcfg->htxt);
for (i = 0; i < tcfg->tvar->num_iterations; i++) {
uint32_t count = 0;
uint64_t ts = 0;
double avg_before = 0;
int ret = 0;
/**
* set average queue size to target level
*/
*tcfg->tqueue->q = *tcfg->tlevel;
count = (*tcfg->tqueue->rdata).count;
/**
* initialize the rte_red run time data structure
*/
rte_red_rt_data_init(tcfg->tqueue->rdata);
(*tcfg->tqueue->rdata).count = count;
/**
* set the queue average
*/
rte_red_set_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tlevel);
avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
if ((avg_before < *tcfg->tlevel) || (avg_before > *tcfg->tlevel)) {
result = FAIL;
goto out;
}
/**
* empty the queue
*/
*tcfg->tqueue->q = 0;
rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts());
/**
* wait for specified period of time
*/
rte_delay_us(tcfg->tvar->wait_usec);
/**
* measure performance of enqueue operation while queue is empty
*/
ts = get_port_ts();
rdtsc_prof_start(&prof);
ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata,
*tcfg->tqueue->q, ts );
rdtsc_prof_end(&prof);
/**
* gather enqueued/dropped statistics
*/
if (ret == 0)
(*tcfg->tvar->enqueued)++;
else
(*tcfg->tvar->dropped)++;
/**
* on first and last iteration, confirm that
* average queue size was computed correctly
*/
if ((i == 0) || (i == tcfg->tvar->num_iterations - 1)) {
double avg_after = 0;
double exp_avg = 0;
double diff = 0.0;
int ok = 0;
avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
exp_avg = calc_exp_avg_on_empty(avg_before,
(1 << *tcfg->tconfig->wq_log2),
tcfg->tvar->wait_usec);
if (check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance))
ok = 1;
printf("%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n",
i, avg_before, avg_after, exp_avg, diff,
(double)tcfg->tqueue->avg_tolerance, ok ? "pass" : "fail");
if (!ok) {
result = FAIL;
goto out;
}
}
}
total = *tcfg->tvar->enqueued + *tcfg->tvar->dropped;
printf("\ntotal: %u, enqueued: %u (%.2lf%%), dropped: %u (%.2lf%%)\n", total,
*tcfg->tvar->enqueued, ((double)(*tcfg->tvar->enqueued) / (double)total) * 100.0,
*tcfg->tvar->dropped, ((double)(*tcfg->tvar->dropped) / (double)total) * 100.0);
rdtsc_prof_print(&prof);
out:
return result;
}
/**
* setup default values for overflow test structures
*/
static uint32_t avg_max = 0;
static uint32_t avg_max_bits = 0;
static struct rte_red_config ovfl_wrconfig[1];
static struct rte_red ovfl_rtdata[1];
static uint8_t ovfl_maxp_inv[] = {10};
static uint32_t ovfl_qconfig[] = {0, 0, 1, 1};
static uint32_t ovfl_q[] ={0};
static uint32_t ovfl_dropped[] ={0};
static uint32_t ovfl_enqueued[] ={0};
static uint32_t ovfl_tlevel[] = {1023};
static uint8_t ovfl_wq_log2[] = {12};
static struct test_rte_red_config ovfl_tconfig = {
.rconfig = ovfl_wrconfig,
.num_cfg = RTE_DIM(ovfl_wrconfig),
.wq_log2 = ovfl_wq_log2,
.min_th = 32,
.max_th = 1023,
.maxp_inv = ovfl_maxp_inv,
};
static struct test_queue ovfl_tqueue = {
.rdata = ovfl_rtdata,
.num_queues = RTE_DIM(ovfl_rtdata),
.qconfig = ovfl_qconfig,
.q = ovfl_q,
.q_ramp_up = 1000000,
.avg_ramp_up = 1000000,
.avg_tolerance = 5, /* 10 percent */
.drop_tolerance = 50, /* 50 percent */
};
static struct test_var ovfl_tvar = {
.wait_usec = 10000,
.num_iterations = 1,
.num_ops = 10000,
.clk_freq = 0,
.dropped = ovfl_dropped,
.enqueued = ovfl_enqueued,
.sleep_sec = 0
};
static void ovfl_check_avg(uint32_t avg)
{
if (avg > avg_max) {
double avg_log = 0;
uint32_t bits = 0;
avg_max = avg;
avg_log = log(((double)avg_max));
avg_log = avg_log / log(2.0);
bits = (uint32_t)ceil(avg_log);
if (bits > avg_max_bits)
avg_max_bits = bits;
}
}
static struct test_config ovfl_test1_config = {
.ifname = "queue avergage overflow test interface",
.msg = "overflow test 1 : use one RED configuration,\n"
" increase average queue size to target level,\n"
" check maximum number of bits requirte_red to represent avg_s\n\n",
.htxt = "avg queue size "
"wq_log2 "
"fraction bits "
"max queue avg "
"num bits "
"enqueued "
"dropped "
"drop prob % "
"drop rate % "
"\n",
.tconfig = &ovfl_tconfig,
.tqueue = &ovfl_tqueue,
.tvar = &ovfl_tvar,
.tlevel = ovfl_tlevel,
};
static enum test_result ovfl_test1(struct test_config *tcfg)
{
enum test_result result = PASS;
uint32_t avg = 0;
uint32_t i = 0;
double drop_rate = 0.0;
double drop_prob = 0.0;
double diff = 0.0;
int ret = 0;
printf("%s", tcfg->msg);
if (test_rte_red_init(tcfg) != PASS) {
result = FAIL;
goto out;
}
/**
* reset rte_red run-time data
*/
rte_red_rt_data_init(tcfg->tqueue->rdata);
/**
* increase actual queue size
*/
for (i = 0; i < tcfg->tqueue->q_ramp_up; i++) {
ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata,
*tcfg->tqueue->q, get_port_ts());
if (ret == 0) {
if (++(*tcfg->tqueue->q) >= *tcfg->tlevel)
break;
}
}
/**
* enqueue
*/
for (i = 0; i < tcfg->tqueue->avg_ramp_up; i++) {
ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata,
*tcfg->tqueue->q, get_port_ts());
ovfl_check_avg((*tcfg->tqueue->rdata).avg);
avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
if (avg == *tcfg->tlevel) {
if (ret == 0)
(*tcfg->tvar->enqueued)++;
else
(*tcfg->tvar->dropped)++;
}
}
/**
* check if target average queue size has been reached
*/
avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
if (avg != *tcfg->tlevel) {
result = FAIL;
goto out;
}
/**
* check drop rate against drop probability
*/
drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped);
drop_prob = calc_drop_prob(tcfg->tconfig->min_th,
tcfg->tconfig->max_th,
*tcfg->tconfig->maxp_inv,
*tcfg->tlevel);
if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance))
result = FAIL;
printf("%s", tcfg->htxt);
printf("%-16u%-9u%-15u0x%08x %-10u%-10u%-10u%-13.2lf%-13.2lf\n",
avg, *tcfg->tconfig->wq_log2, RTE_RED_SCALING,
avg_max, avg_max_bits,
*tcfg->tvar->enqueued, *tcfg->tvar->dropped,
drop_prob * 100.0, drop_rate * 100.0);
out:
return result;
}
/**
* define the functional and performance tests to be executed
*/
struct tests func_tests[] = {
{ &func_test1_config, func_test1 },
{ &func_test2_config, func_test2 },
{ &func_test3_config, func_test3 },
{ &func_test4_config, func_test4 },
{ &func_test5_config, func_test5 },
{ &func_test6_config, func_test6 },
{ &ovfl_test1_config, ovfl_test1 },
};
struct tests func_tests_quick[] = {
{ &func_test1_config, func_test1 },
{ &func_test2_config, func_test2 },
{ &func_test3_config, func_test3 },
/* no test 4 as it takes a lot of time */
{ &func_test5_config, func_test5 },
{ &func_test6_config, func_test6 },
{ &ovfl_test1_config, ovfl_test1 },
};
struct tests perf_tests[] = {
{ &perf1_test1_config, perf1_test },
{ &perf1_test2_config, perf1_test },
{ &perf1_test3_config, perf1_test },
{ &perf2_test4_config, perf2_test },
{ &perf2_test5_config, perf2_test },
{ &perf2_test6_config, perf2_test },
};
/**
* function to execute the required_red tests
*/
static void run_tests(struct tests *test_type, uint32_t test_count, uint32_t *num_tests, uint32_t *num_pass)
{
enum test_result result = PASS;
uint32_t i = 0;
for (i = 0; i < test_count; i++) {
printf("\n--------------------------------------------------------------------------------\n");
result = test_type[i].testfn(test_type[i].testcfg);
(*num_tests)++;
if (result == PASS) {
(*num_pass)++;
printf("-------------------------------------<pass>-------------------------------------\n");
} else {
printf("-------------------------------------<fail>-------------------------------------\n");
}
}
return;
}
/**
* check if functions accept invalid parameters
*
* First, all functions will be called without initialized RED
* Then, all of them will be called with NULL/invalid parameters
*
* Some functions are not tested as they are performance-critical and thus
* don't do any parameter checking.
*/
static int
test_invalid_parameters(void)
{
struct rte_red_config config;
if (rte_red_rt_data_init(NULL) == 0) {
printf("rte_red_rt_data_init should have failed!\n");
return -1;
}
if (rte_red_config_init(NULL, 0, 0, 0, 0) == 0) {
printf("rte_red_config_init should have failed!\n");
return -1;
}
if (rte_red_rt_data_init(NULL) == 0) {
printf("rte_red_rt_data_init should have failed!\n");
return -1;
}
/* NULL config */
if (rte_red_config_init(NULL, 0, 0, 0, 0) == 0) {
printf("%i: rte_red_config_init should have failed!\n", __LINE__);
return -1;
}
/* min_treshold == max_treshold */
if (rte_red_config_init(&config, 0, 1, 1, 0) == 0) {
printf("%i: rte_red_config_init should have failed!\n", __LINE__);
return -1;
}
/* min_treshold > max_treshold */
if (rte_red_config_init(&config, 0, 2, 1, 0) == 0) {
printf("%i: rte_red_config_init should have failed!\n", __LINE__);
return -1;
}
/* wq_log2 > RTE_RED_WQ_LOG2_MAX */
if (rte_red_config_init(&config,
RTE_RED_WQ_LOG2_MAX + 1, 1, 2, 0) == 0) {
printf("%i: rte_red_config_init should have failed!\n", __LINE__);
return -1;
}
/* wq_log2 < RTE_RED_WQ_LOG2_MIN */
if (rte_red_config_init(&config,
RTE_RED_WQ_LOG2_MIN - 1, 1, 2, 0) == 0) {
printf("%i: rte_red_config_init should have failed!\n", __LINE__);
return -1;
}
/* maxp_inv > RTE_RED_MAXP_INV_MAX */
if (rte_red_config_init(&config,
RTE_RED_WQ_LOG2_MIN, 1, 2, RTE_RED_MAXP_INV_MAX + 1) == 0) {
printf("%i: rte_red_config_init should have failed!\n", __LINE__);
return -1;
}
/* maxp_inv < RTE_RED_MAXP_INV_MIN */
if (rte_red_config_init(&config,
RTE_RED_WQ_LOG2_MIN, 1, 2, RTE_RED_MAXP_INV_MIN - 1) == 0) {
printf("%i: rte_red_config_init should have failed!\n", __LINE__);
return -1;
}
return 0;
}
static void
show_stats(const uint32_t num_tests, const uint32_t num_pass)
{
if (num_pass == num_tests)
printf("[total: %u, pass: %u]\n", num_tests, num_pass);
else
printf("[total: %u, pass: %u, fail: %u]\n", num_tests, num_pass,
num_tests - num_pass);
}
static int
tell_the_result(const uint32_t num_tests, const uint32_t num_pass)
{
return (num_pass == num_tests) ? 0 : 1;
}
static int
test_red(void)
{
uint32_t num_tests = 0;
uint32_t num_pass = 0;
if (test_invalid_parameters() < 0)
return -1;
run_tests(func_tests_quick, RTE_DIM(func_tests_quick),
&num_tests, &num_pass);
show_stats(num_tests, num_pass);
return tell_the_result(num_tests, num_pass);
}
static int
test_red_perf(void)
{
uint32_t num_tests = 0;
uint32_t num_pass = 0;
run_tests(perf_tests, RTE_DIM(perf_tests), &num_tests, &num_pass);
show_stats(num_tests, num_pass);
return tell_the_result(num_tests, num_pass);
}
static int
test_red_all(void)
{
uint32_t num_tests = 0;
uint32_t num_pass = 0;
if (test_invalid_parameters() < 0)
return -1;
run_tests(func_tests, RTE_DIM(func_tests), &num_tests, &num_pass);
run_tests(perf_tests, RTE_DIM(perf_tests), &num_tests, &num_pass);
show_stats(num_tests, num_pass);
return tell_the_result(num_tests, num_pass);
}
REGISTER_TEST_COMMAND(red_autotest, test_red);
REGISTER_TEST_COMMAND(red_perf, test_red_perf);
REGISTER_TEST_COMMAND(red_all, test_red_all);