Olivier Matz ea672a8b16 mbuf: remove the rte_pktmbuf structure
The rte_pktmbuf structure was initially included in the rte_mbuf
structure. This was needed when there was 2 types of mbuf (ctrl and
packet). As the control mbuf has been removed, we can merge the
rte_pktmbuf into the rte_mbuf structure.

Advantages of doing this:
  - the access to mbuf fields is easier (ex: m->data instead of m->pkt.data)
  - make the structure more consistent: for instance, there was no reason
    to have the ol_flags field in rte_mbuf
  - it will allow a deeper reorganization of the rte_mbuf structure in the
    next commits, allowing to gain several bytes in it

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
[Bruce: updated for latest code and new example apps]
Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2014-09-17 11:27:51 +02:00

946 lines
28 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <string.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_ether.h>
#include <rte_malloc.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_string_fns.h>
#define CPA_CY_SYM_DP_TMP_WORKAROUND 1
#include "cpa.h"
#include "cpa_types.h"
#include "cpa_cy_sym_dp.h"
#include "cpa_cy_common.h"
#include "cpa_cy_im.h"
#include "icp_sal_user.h"
#include "icp_sal_poll.h"
#include "crypto.h"
/* CIPHER KEY LENGTHS */
#define KEY_SIZE_64_IN_BYTES (64 / 8)
#define KEY_SIZE_56_IN_BYTES (56 / 8)
#define KEY_SIZE_128_IN_BYTES (128 / 8)
#define KEY_SIZE_168_IN_BYTES (168 / 8)
#define KEY_SIZE_192_IN_BYTES (192 / 8)
#define KEY_SIZE_256_IN_BYTES (256 / 8)
/* HMAC AUTH KEY LENGTHS */
#define AES_XCBC_AUTH_KEY_LENGTH_IN_BYTES (128 / 8)
#define SHA1_AUTH_KEY_LENGTH_IN_BYTES (160 / 8)
#define SHA224_AUTH_KEY_LENGTH_IN_BYTES (224 / 8)
#define SHA256_AUTH_KEY_LENGTH_IN_BYTES (256 / 8)
#define SHA384_AUTH_KEY_LENGTH_IN_BYTES (384 / 8)
#define SHA512_AUTH_KEY_LENGTH_IN_BYTES (512 / 8)
#define MD5_AUTH_KEY_LENGTH_IN_BYTES (128 / 8)
#define KASUMI_AUTH_KEY_LENGTH_IN_BYTES (128 / 8)
/* HASH DIGEST LENGHTS */
#define AES_XCBC_DIGEST_LENGTH_IN_BYTES (128 / 8)
#define AES_XCBC_96_DIGEST_LENGTH_IN_BYTES (96 / 8)
#define MD5_DIGEST_LENGTH_IN_BYTES (128 / 8)
#define SHA1_DIGEST_LENGTH_IN_BYTES (160 / 8)
#define SHA1_96_DIGEST_LENGTH_IN_BYTES (96 / 8)
#define SHA224_DIGEST_LENGTH_IN_BYTES (224 / 8)
#define SHA256_DIGEST_LENGTH_IN_BYTES (256 / 8)
#define SHA384_DIGEST_LENGTH_IN_BYTES (384 / 8)
#define SHA512_DIGEST_LENGTH_IN_BYTES (512 / 8)
#define KASUMI_DIGEST_LENGTH_IN_BYTES (32 / 8)
#define IV_LENGTH_16_BYTES (16)
#define IV_LENGTH_8_BYTES (8)
/*
* rte_memzone is used to allocate physically contiguous virtual memory.
* In this application we allocate a single block and divide between variables
* which require a virtual to physical mapping for use by the QAT driver.
* Virt2phys is only performed during initialisation and not on the data-path.
*/
#define LCORE_MEMZONE_SIZE (1 << 22)
struct lcore_memzone
{
const struct rte_memzone *memzone;
void *next_free_address;
};
/*
* Size the qa software response queue.
* Note: Head and Tail are 8 bit, therefore, the queue is
* fixed to 256 entries.
*/
#define CRYPTO_SOFTWARE_QUEUE_SIZE 256
struct qa_callbackQueue {
uint8_t head;
uint8_t tail;
uint16_t numEntries;
struct rte_mbuf *qaCallbackRing[CRYPTO_SOFTWARE_QUEUE_SIZE];
};
struct qa_core_conf {
CpaCySymDpSessionCtx *encryptSessionHandleTbl[NUM_CRYPTO][NUM_HMAC];
CpaCySymDpSessionCtx *decryptSessionHandleTbl[NUM_CRYPTO][NUM_HMAC];
CpaInstanceHandle instanceHandle;
struct qa_callbackQueue callbackQueue;
uint64_t qaOutstandingRequests;
uint64_t numResponseAttempts;
uint8_t kickFreq;
void *pPacketIV;
CpaPhysicalAddr packetIVPhy;
struct lcore_memzone lcoreMemzone;
} __rte_cache_aligned;
#define MAX_CORES (RTE_MAX_LCORE)
static struct qa_core_conf qaCoreConf[MAX_CORES];
/*
*Create maximum possible key size,
*One for cipher and one for hash
*/
struct glob_keys {
uint8_t cipher_key[32];
uint8_t hash_key[64];
uint8_t iv[16];
};
struct glob_keys g_crypto_hash_keys = {
.cipher_key = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,
0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,
0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,
0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,0x20},
.hash_key = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,
0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,
0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,
0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,0x20,
0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,
0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,0x30,
0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,
0x39,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,0x50},
.iv = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,
0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10}
};
/*
* Offsets from the start of the packet.
*
*/
#define PACKET_DATA_START_PHYS(p) \
((p)->buf_physaddr + ((char *)p->data - (char *)p->buf_addr))
/*
* A fixed offset to where the crypto is to be performed, which is the first
* byte after the Ethernet(14 bytes) and IPv4 headers(20 bytes)
*/
#define CRYPTO_START_OFFSET (14+20)
#define HASH_START_OFFSET (14+20)
#define CIPHER_BLOCK_DEFAULT_SIZE (16)
#define HASH_BLOCK_DEFAULT_SIZE (16)
/*
* Offset to the opdata from the start of the data portion of packet.
* Assumption: The buffer is physically contiguous.
* +18 takes this to the next cache line.
*/
#define CRYPTO_OFFSET_TO_OPDATA (ETHER_MAX_LEN+18)
/*
* Default number of requests to place on the hardware ring before kicking the
* ring pointers.
*/
#define CRYPTO_BURST_TX (16)
/*
* Only call the qa poll function when the number responses in the software
* queue drops below this number.
*/
#define CRYPTO_QUEUED_RESP_POLL_THRESHOLD (32)
/*
* Limit the number of polls per call to get_next_response.
*/
#define GET_NEXT_RESPONSE_FREQ (32)
/*
* Max number of responses to pull from the qa in one poll.
*/
#define CRYPTO_MAX_RESPONSE_QUOTA \
(CRYPTO_SOFTWARE_QUEUE_SIZE-CRYPTO_QUEUED_RESP_POLL_THRESHOLD-1)
#if (CRYPTO_QUEUED_RESP_POLL_THRESHOLD + CRYPTO_MAX_RESPONSE_QUOTA >= \
CRYPTO_SOFTWARE_QUEUE_SIZE)
#error Its possible to overflow the qa response Q with current poll and \
response quota.
#endif
static void
crypto_callback(CpaCySymDpOpData *pOpData,
__rte_unused CpaStatus status,
__rte_unused CpaBoolean verifyResult)
{
uint32_t lcore_id;
lcore_id = rte_lcore_id();
struct qa_callbackQueue *callbackQ = &(qaCoreConf[lcore_id].callbackQueue);
/*
* Received a completion from the QA hardware.
* Place the response on the return queue.
*/
callbackQ->qaCallbackRing[callbackQ->head] = pOpData->pCallbackTag;
callbackQ->head++;
callbackQ->numEntries++;
qaCoreConf[lcore_id].qaOutstandingRequests--;
}
static void
qa_crypto_callback(CpaCySymDpOpData *pOpData, CpaStatus status,
CpaBoolean verifyResult)
{
crypto_callback(pOpData, status, verifyResult);
}
/*
* Each allocation from a particular memzone lasts for the life-time of
* the application. No freeing of previous allocations will occur.
*/
static void *
alloc_memzone_region(uint32_t length, uint32_t lcore_id)
{
char *current_free_addr_ptr = NULL;
struct lcore_memzone *lcore_memzone = &(qaCoreConf[lcore_id].lcoreMemzone);
current_free_addr_ptr = lcore_memzone->next_free_address;
if (current_free_addr_ptr + length >=
(char *)lcore_memzone->memzone->addr + lcore_memzone->memzone->len) {
printf("Crypto: No memory available in memzone\n");
return NULL;
}
lcore_memzone->next_free_address = current_free_addr_ptr + length;
return (void *)current_free_addr_ptr;
}
/*
* Virtual to Physical Address translation is only executed during initialization
* and not on the data-path.
*/
static CpaPhysicalAddr
qa_v2p(void *ptr)
{
const struct rte_memzone *memzone = NULL;
uint32_t lcore_id = 0;
RTE_LCORE_FOREACH(lcore_id) {
memzone = qaCoreConf[lcore_id].lcoreMemzone.memzone;
if ((char*) ptr >= (char *) memzone->addr &&
(char*) ptr < ((char*) memzone->addr + memzone->len)) {
return (CpaPhysicalAddr)
(memzone->phys_addr + ((char *) ptr - (char*) memzone->addr));
}
}
printf("Crypto: Corresponding physical address not found in memzone\n");
return (CpaPhysicalAddr) 0;
}
static CpaStatus
getCoreAffinity(Cpa32U *coreAffinity, const CpaInstanceHandle instanceHandle)
{
CpaInstanceInfo2 info;
Cpa16U i = 0;
CpaStatus status = CPA_STATUS_SUCCESS;
bzero(&info, sizeof(CpaInstanceInfo2));
status = cpaCyInstanceGetInfo2(instanceHandle, &info);
if (CPA_STATUS_SUCCESS != status) {
printf("Crypto: Error getting instance info\n");
return CPA_STATUS_FAIL;
}
for (i = 0; i < MAX_CORES; i++) {
if (CPA_BITMAP_BIT_TEST(info.coreAffinity, i)) {
*coreAffinity = i;
return CPA_STATUS_SUCCESS;
}
}
return CPA_STATUS_FAIL;
}
static CpaStatus
get_crypto_instance_on_core(CpaInstanceHandle *pInstanceHandle,
uint32_t lcore_id)
{
Cpa16U numInstances = 0, i = 0;
CpaStatus status = CPA_STATUS_FAIL;
CpaInstanceHandle *pLocalInstanceHandles = NULL;
Cpa32U coreAffinity = 0;
status = cpaCyGetNumInstances(&numInstances);
if (CPA_STATUS_SUCCESS != status || numInstances == 0) {
return CPA_STATUS_FAIL;
}
pLocalInstanceHandles = rte_malloc("pLocalInstanceHandles",
sizeof(CpaInstanceHandle) * numInstances, CACHE_LINE_SIZE);
if (NULL == pLocalInstanceHandles) {
return CPA_STATUS_FAIL;
}
status = cpaCyGetInstances(numInstances, pLocalInstanceHandles);
if (CPA_STATUS_SUCCESS != status) {
printf("Crypto: cpaCyGetInstances failed with status: %"PRId32"\n", status);
rte_free((void *) pLocalInstanceHandles);
return CPA_STATUS_FAIL;
}
for (i = 0; i < numInstances; i++) {
status = getCoreAffinity(&coreAffinity, pLocalInstanceHandles[i]);
if (CPA_STATUS_SUCCESS != status) {
rte_free((void *) pLocalInstanceHandles);
return CPA_STATUS_FAIL;
}
if (coreAffinity == lcore_id) {
printf("Crypto: instance found on core %d\n", i);
*pInstanceHandle = pLocalInstanceHandles[i];
return CPA_STATUS_SUCCESS;
}
}
/* core affinity not found */
rte_free((void *) pLocalInstanceHandles);
return CPA_STATUS_FAIL;
}
static CpaStatus
initCySymSession(const int pkt_cipher_alg,
const int pkt_hash_alg, const CpaCySymHashMode hashMode,
const CpaCySymCipherDirection crypto_direction,
CpaCySymSessionCtx **ppSessionCtx,
const CpaInstanceHandle cyInstanceHandle,
const uint32_t lcore_id)
{
Cpa32U sessionCtxSizeInBytes = 0;
CpaStatus status = CPA_STATUS_FAIL;
CpaBoolean isCrypto = CPA_TRUE, isHmac = CPA_TRUE;
CpaCySymSessionSetupData sessionSetupData;
bzero(&sessionSetupData, sizeof(CpaCySymSessionSetupData));
/* Assumption: key length is set to each algorithm's max length */
switch (pkt_cipher_alg) {
case NO_CIPHER:
isCrypto = CPA_FALSE;
break;
case CIPHER_DES:
sessionSetupData.cipherSetupData.cipherAlgorithm =
CPA_CY_SYM_CIPHER_DES_ECB;
sessionSetupData.cipherSetupData.cipherKeyLenInBytes =
KEY_SIZE_64_IN_BYTES;
break;
case CIPHER_DES_CBC:
sessionSetupData.cipherSetupData.cipherAlgorithm =
CPA_CY_SYM_CIPHER_DES_CBC;
sessionSetupData.cipherSetupData.cipherKeyLenInBytes =
KEY_SIZE_64_IN_BYTES;
break;
case CIPHER_DES3:
sessionSetupData.cipherSetupData.cipherAlgorithm =
CPA_CY_SYM_CIPHER_3DES_ECB;
sessionSetupData.cipherSetupData.cipherKeyLenInBytes =
KEY_SIZE_192_IN_BYTES;
break;
case CIPHER_DES3_CBC:
sessionSetupData.cipherSetupData.cipherAlgorithm =
CPA_CY_SYM_CIPHER_3DES_CBC;
sessionSetupData.cipherSetupData.cipherKeyLenInBytes =
KEY_SIZE_192_IN_BYTES;
break;
case CIPHER_AES:
sessionSetupData.cipherSetupData.cipherAlgorithm =
CPA_CY_SYM_CIPHER_AES_ECB;
sessionSetupData.cipherSetupData.cipherKeyLenInBytes =
KEY_SIZE_128_IN_BYTES;
break;
case CIPHER_AES_CBC_128:
sessionSetupData.cipherSetupData.cipherAlgorithm =
CPA_CY_SYM_CIPHER_AES_CBC;
sessionSetupData.cipherSetupData.cipherKeyLenInBytes =
KEY_SIZE_128_IN_BYTES;
break;
case CIPHER_KASUMI_F8:
sessionSetupData.cipherSetupData.cipherAlgorithm =
CPA_CY_SYM_CIPHER_KASUMI_F8;
sessionSetupData.cipherSetupData.cipherKeyLenInBytes =
KEY_SIZE_128_IN_BYTES;
break;
default:
printf("Crypto: Undefined Cipher specified\n");
break;
}
/* Set the cipher direction */
if (isCrypto) {
sessionSetupData.cipherSetupData.cipherDirection = crypto_direction;
sessionSetupData.cipherSetupData.pCipherKey =
g_crypto_hash_keys.cipher_key;
sessionSetupData.symOperation = CPA_CY_SYM_OP_CIPHER;
}
/* Setup Hash common fields */
switch (pkt_hash_alg) {
case NO_HASH:
isHmac = CPA_FALSE;
break;
case HASH_AES_XCBC:
sessionSetupData.hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_AES_XCBC;
sessionSetupData.hashSetupData.digestResultLenInBytes =
AES_XCBC_DIGEST_LENGTH_IN_BYTES;
break;
case HASH_AES_XCBC_96:
sessionSetupData.hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_AES_XCBC;
sessionSetupData.hashSetupData.digestResultLenInBytes =
AES_XCBC_96_DIGEST_LENGTH_IN_BYTES;
break;
case HASH_MD5:
sessionSetupData.hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_MD5;
sessionSetupData.hashSetupData.digestResultLenInBytes =
MD5_DIGEST_LENGTH_IN_BYTES;
break;
case HASH_SHA1:
sessionSetupData.hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA1;
sessionSetupData.hashSetupData.digestResultLenInBytes =
SHA1_DIGEST_LENGTH_IN_BYTES;
break;
case HASH_SHA1_96:
sessionSetupData.hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA1;
sessionSetupData.hashSetupData.digestResultLenInBytes =
SHA1_96_DIGEST_LENGTH_IN_BYTES;
break;
case HASH_SHA224:
sessionSetupData.hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA224;
sessionSetupData.hashSetupData.digestResultLenInBytes =
SHA224_DIGEST_LENGTH_IN_BYTES;
break;
case HASH_SHA256:
sessionSetupData.hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA256;
sessionSetupData.hashSetupData.digestResultLenInBytes =
SHA256_DIGEST_LENGTH_IN_BYTES;
break;
case HASH_SHA384:
sessionSetupData.hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA384;
sessionSetupData.hashSetupData.digestResultLenInBytes =
SHA384_DIGEST_LENGTH_IN_BYTES;
break;
case HASH_SHA512:
sessionSetupData.hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA512;
sessionSetupData.hashSetupData.digestResultLenInBytes =
SHA512_DIGEST_LENGTH_IN_BYTES;
break;
case HASH_KASUMI_F9:
sessionSetupData.hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_KASUMI_F9;
sessionSetupData.hashSetupData.digestResultLenInBytes =
KASUMI_DIGEST_LENGTH_IN_BYTES;
break;
default:
printf("Crypto: Undefined Hash specified\n");
break;
}
if (isHmac) {
sessionSetupData.hashSetupData.hashMode = hashMode;
sessionSetupData.symOperation = CPA_CY_SYM_OP_HASH;
/* If using authenticated hash setup key lengths */
if (CPA_CY_SYM_HASH_MODE_AUTH == hashMode) {
/* Use a common max length key */
sessionSetupData.hashSetupData.authModeSetupData.authKey =
g_crypto_hash_keys.hash_key;
switch (pkt_hash_alg) {
case HASH_AES_XCBC:
case HASH_AES_XCBC_96:
sessionSetupData.hashSetupData.authModeSetupData.authKeyLenInBytes =
AES_XCBC_AUTH_KEY_LENGTH_IN_BYTES;
break;
case HASH_MD5:
sessionSetupData.hashSetupData.authModeSetupData.authKeyLenInBytes =
SHA1_AUTH_KEY_LENGTH_IN_BYTES;
break;
case HASH_SHA1:
case HASH_SHA1_96:
sessionSetupData.hashSetupData.authModeSetupData.authKeyLenInBytes =
SHA1_AUTH_KEY_LENGTH_IN_BYTES;
break;
case HASH_SHA224:
sessionSetupData.hashSetupData.authModeSetupData.authKeyLenInBytes =
SHA224_AUTH_KEY_LENGTH_IN_BYTES;
break;
case HASH_SHA256:
sessionSetupData.hashSetupData.authModeSetupData.authKeyLenInBytes =
SHA256_AUTH_KEY_LENGTH_IN_BYTES;
break;
case HASH_SHA384:
sessionSetupData.hashSetupData.authModeSetupData.authKeyLenInBytes =
SHA384_AUTH_KEY_LENGTH_IN_BYTES;
break;
case HASH_SHA512:
sessionSetupData.hashSetupData.authModeSetupData.authKeyLenInBytes =
SHA512_AUTH_KEY_LENGTH_IN_BYTES;
break;
case HASH_KASUMI_F9:
sessionSetupData.hashSetupData.authModeSetupData.authKeyLenInBytes =
KASUMI_AUTH_KEY_LENGTH_IN_BYTES;
break;
default:
printf("Crypto: Undefined Hash specified\n");
return CPA_STATUS_FAIL;
}
}
}
/* Only high priority supported */
sessionSetupData.sessionPriority = CPA_CY_PRIORITY_HIGH;
/* If chaining algorithms */
if (isCrypto && isHmac) {
sessionSetupData.symOperation = CPA_CY_SYM_OP_ALGORITHM_CHAINING;
/* @assumption Alg Chain order is cipher then hash for encrypt
* and hash then cipher then has for decrypt*/
if (CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT == crypto_direction) {
sessionSetupData.algChainOrder =
CPA_CY_SYM_ALG_CHAIN_ORDER_CIPHER_THEN_HASH;
} else {
sessionSetupData.algChainOrder =
CPA_CY_SYM_ALG_CHAIN_ORDER_HASH_THEN_CIPHER;
}
}
if (!isCrypto && !isHmac) {
*ppSessionCtx = NULL;
return CPA_STATUS_SUCCESS;
}
/* Set flags for digest operations */
sessionSetupData.digestIsAppended = CPA_FALSE;
sessionSetupData.verifyDigest = CPA_TRUE;
/* Get the session context size based on the crypto and/or hash operations*/
status = cpaCySymDpSessionCtxGetSize(cyInstanceHandle, &sessionSetupData,
&sessionCtxSizeInBytes);
if (CPA_STATUS_SUCCESS != status) {
printf("Crypto: cpaCySymDpSessionCtxGetSize error, status: %"PRId32"\n",
status);
return CPA_STATUS_FAIL;
}
*ppSessionCtx = alloc_memzone_region(sessionCtxSizeInBytes, lcore_id);
if (NULL == *ppSessionCtx) {
printf("Crypto: Failed to allocate memory for Session Context\n");
return CPA_STATUS_FAIL;
}
status = cpaCySymDpInitSession(cyInstanceHandle, &sessionSetupData,
*ppSessionCtx);
if (CPA_STATUS_SUCCESS != status) {
printf("Crypto: cpaCySymDpInitSession failed with status %"PRId32"\n", status);
return CPA_STATUS_FAIL;
}
return CPA_STATUS_SUCCESS;
}
static CpaStatus
initSessionDataTables(struct qa_core_conf *qaCoreConf,uint32_t lcore_id)
{
Cpa32U i = 0, j = 0;
CpaStatus status = CPA_STATUS_FAIL;
for (i = 0; i < NUM_CRYPTO; i++) {
for (j = 0; j < NUM_HMAC; j++) {
if (((i == CIPHER_KASUMI_F8) && (j != NO_HASH) && (j != HASH_KASUMI_F9)) ||
((i != NO_CIPHER) && (i != CIPHER_KASUMI_F8) && (j == HASH_KASUMI_F9)))
continue;
status = initCySymSession(i, j, CPA_CY_SYM_HASH_MODE_AUTH,
CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT,
&qaCoreConf->encryptSessionHandleTbl[i][j],
qaCoreConf->instanceHandle,
lcore_id);
if (CPA_STATUS_SUCCESS != status) {
printf("Crypto: Failed to initialize Encrypt sessions\n");
return CPA_STATUS_FAIL;
}
status = initCySymSession(i, j, CPA_CY_SYM_HASH_MODE_AUTH,
CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT,
&qaCoreConf->decryptSessionHandleTbl[i][j],
qaCoreConf->instanceHandle,
lcore_id);
if (CPA_STATUS_SUCCESS != status) {
printf("Crypto: Failed to initialize Decrypt sessions\n");
return CPA_STATUS_FAIL;
}
}
}
return CPA_STATUS_SUCCESS;
}
int
crypto_init(void)
{
if (CPA_STATUS_SUCCESS != icp_sal_userStartMultiProcess("SSL",CPA_FALSE)) {
printf("Crypto: Could not start sal for user space\n");
return CPA_STATUS_FAIL;
}
printf("Crypto: icp_sal_userStartMultiProcess(\"SSL\",CPA_FALSE)\n");
return 0;
}
/*
* Per core initialisation
*/
int
per_core_crypto_init(uint32_t lcore_id)
{
CpaStatus status = CPA_STATUS_FAIL;
char memzone_name[RTE_MEMZONE_NAMESIZE];
int socketID = rte_lcore_to_socket_id(lcore_id);
/* Allocate software ring for response messages. */
qaCoreConf[lcore_id].callbackQueue.head = 0;
qaCoreConf[lcore_id].callbackQueue.tail = 0;
qaCoreConf[lcore_id].callbackQueue.numEntries = 0;
qaCoreConf[lcore_id].kickFreq = 0;
qaCoreConf[lcore_id].qaOutstandingRequests = 0;
qaCoreConf[lcore_id].numResponseAttempts = 0;
/* Initialise and reserve lcore memzone for virt2phys translation */
snprintf(memzone_name,
RTE_MEMZONE_NAMESIZE,
"lcore_%u",
lcore_id);
qaCoreConf[lcore_id].lcoreMemzone.memzone = rte_memzone_reserve(
memzone_name,
LCORE_MEMZONE_SIZE,
socketID,
0);
if (NULL == qaCoreConf[lcore_id].lcoreMemzone.memzone) {
printf("Crypto: Error allocating memzone on lcore %u\n",lcore_id);
return -1;
}
qaCoreConf[lcore_id].lcoreMemzone.next_free_address =
qaCoreConf[lcore_id].lcoreMemzone.memzone->addr;
qaCoreConf[lcore_id].pPacketIV = alloc_memzone_region(IV_LENGTH_16_BYTES,
lcore_id);
if (NULL == qaCoreConf[lcore_id].pPacketIV ) {
printf("Crypto: Failed to allocate memory for Initialization Vector\n");
return -1;
}
memcpy(qaCoreConf[lcore_id].pPacketIV, &g_crypto_hash_keys.iv,
IV_LENGTH_16_BYTES);
qaCoreConf[lcore_id].packetIVPhy = qa_v2p(qaCoreConf[lcore_id].pPacketIV);
if (0 == qaCoreConf[lcore_id].packetIVPhy) {
printf("Crypto: Invalid physical address for Initialization Vector\n");
return -1;
}
/*
* Obtain the instance handle that is mapped to the current lcore.
* This can fail if an instance is not mapped to a bank which has been
* affinitized to the current lcore.
*/
status = get_crypto_instance_on_core(&(qaCoreConf[lcore_id].instanceHandle),
lcore_id);
if (CPA_STATUS_SUCCESS != status) {
printf("Crypto: get_crypto_instance_on_core failed with status: %"PRId32"\n",
status);
return -1;
}
status = cpaCySymDpRegCbFunc(qaCoreConf[lcore_id].instanceHandle,
(CpaCySymDpCbFunc) qa_crypto_callback);
if (CPA_STATUS_SUCCESS != status) {
printf("Crypto: cpaCySymDpRegCbFunc failed with status: %"PRId32"\n", status);
return -1;
}
/*
* Set the address translation callback for virtual to physcial address
* mapping. This will be called by the QAT driver during initialisation only.
*/
status = cpaCySetAddressTranslation(qaCoreConf[lcore_id].instanceHandle,
(CpaVirtualToPhysical) qa_v2p);
if (CPA_STATUS_SUCCESS != status) {
printf("Crypto: cpaCySetAddressTranslation failed with status: %"PRId32"\n",
status);
return -1;
}
status = initSessionDataTables(&qaCoreConf[lcore_id],lcore_id);
if (CPA_STATUS_SUCCESS != status) {
printf("Crypto: Failed to allocate all session tables.");
return -1;
}
return 0;
}
static CpaStatus
enqueueOp(CpaCySymDpOpData *opData, uint32_t lcore_id)
{
CpaStatus status;
/*
* Assumption is there is no requirement to do load balancing between
* acceleration units - that is one acceleration unit is tied to a core.
*/
opData->instanceHandle = qaCoreConf[lcore_id].instanceHandle;
if ((++qaCoreConf[lcore_id].kickFreq) % CRYPTO_BURST_TX == 0) {
status = cpaCySymDpEnqueueOp(opData, CPA_TRUE);
} else {
status = cpaCySymDpEnqueueOp(opData, CPA_FALSE);
}
qaCoreConf[lcore_id].qaOutstandingRequests++;
return status;
}
void
crypto_flush_tx_queue(uint32_t lcore_id)
{
cpaCySymDpPerformOpNow(qaCoreConf[lcore_id].instanceHandle);
}
enum crypto_result
crypto_encrypt(struct rte_mbuf *rte_buff, enum cipher_alg c, enum hash_alg h)
{
CpaCySymDpOpData *opData =
(CpaCySymDpOpData *) ((char *) (rte_buff->data)
+ CRYPTO_OFFSET_TO_OPDATA);
uint32_t lcore_id;
if (unlikely(c >= NUM_CRYPTO || h >= NUM_HMAC))
return CRYPTO_RESULT_FAIL;
lcore_id = rte_lcore_id();
bzero(opData, sizeof(CpaCySymDpOpData));
opData->srcBuffer = opData->dstBuffer = PACKET_DATA_START_PHYS(rte_buff);
opData->srcBufferLen = opData->dstBufferLen = rte_buff->data_len;
opData->sessionCtx = qaCoreConf[lcore_id].encryptSessionHandleTbl[c][h];
opData->thisPhys = PACKET_DATA_START_PHYS(rte_buff)
+ CRYPTO_OFFSET_TO_OPDATA;
opData->pCallbackTag = rte_buff;
/* if no crypto or hash operations are specified return fail */
if (NO_CIPHER == c && NO_HASH == h)
return CRYPTO_RESULT_FAIL;
if (NO_CIPHER != c) {
opData->pIv = qaCoreConf[lcore_id].pPacketIV;
opData->iv = qaCoreConf[lcore_id].packetIVPhy;
if (CIPHER_AES_CBC_128 == c)
opData->ivLenInBytes = IV_LENGTH_16_BYTES;
else
opData->ivLenInBytes = IV_LENGTH_8_BYTES;
opData->cryptoStartSrcOffsetInBytes = CRYPTO_START_OFFSET;
opData->messageLenToCipherInBytes = rte_buff->data_len
- CRYPTO_START_OFFSET;
/*
* Work around for padding, message length has to be a multiple of
* block size.
*/
opData->messageLenToCipherInBytes -= opData->messageLenToCipherInBytes
% CIPHER_BLOCK_DEFAULT_SIZE;
}
if (NO_HASH != h) {
opData->hashStartSrcOffsetInBytes = HASH_START_OFFSET;
opData->messageLenToHashInBytes = rte_buff->data_len
- HASH_START_OFFSET;
/*
* Work around for padding, message length has to be a multiple of block
* size.
*/
opData->messageLenToHashInBytes -= opData->messageLenToHashInBytes
% HASH_BLOCK_DEFAULT_SIZE;
/*
* Assumption: Ok ignore the passed digest pointer and place HMAC at end
* of packet.
*/
opData->digestResult = rte_buff->buf_physaddr + rte_buff->data_len;
}
if (CPA_STATUS_SUCCESS != enqueueOp(opData, lcore_id)) {
/*
* Failed to place a packet on the hardware queue.
* Most likely because the QA hardware is busy.
*/
return CRYPTO_RESULT_FAIL;
}
return CRYPTO_RESULT_IN_PROGRESS;
}
enum crypto_result
crypto_decrypt(struct rte_mbuf *rte_buff, enum cipher_alg c, enum hash_alg h)
{
CpaCySymDpOpData *opData = (void*) (((char *) rte_buff->data)
+ CRYPTO_OFFSET_TO_OPDATA);
uint32_t lcore_id;
if (unlikely(c >= NUM_CRYPTO || h >= NUM_HMAC))
return CRYPTO_RESULT_FAIL;
lcore_id = rte_lcore_id();
bzero(opData, sizeof(CpaCySymDpOpData));
opData->dstBuffer = opData->srcBuffer = PACKET_DATA_START_PHYS(rte_buff);
opData->dstBufferLen = opData->srcBufferLen = rte_buff->data_len;
opData->thisPhys = PACKET_DATA_START_PHYS(rte_buff)
+ CRYPTO_OFFSET_TO_OPDATA;
opData->sessionCtx = qaCoreConf[lcore_id].decryptSessionHandleTbl[c][h];
opData->pCallbackTag = rte_buff;
/* if no crypto or hmac operations are specified return fail */
if (NO_CIPHER == c && NO_HASH == h)
return CRYPTO_RESULT_FAIL;
if (NO_CIPHER != c) {
opData->pIv = qaCoreConf[lcore_id].pPacketIV;
opData->iv = qaCoreConf[lcore_id].packetIVPhy;
if (CIPHER_AES_CBC_128 == c)
opData->ivLenInBytes = IV_LENGTH_16_BYTES;
else
opData->ivLenInBytes = IV_LENGTH_8_BYTES;
opData->cryptoStartSrcOffsetInBytes = CRYPTO_START_OFFSET;
opData->messageLenToCipherInBytes = rte_buff->data_len
- CRYPTO_START_OFFSET;
/*
* Work around for padding, message length has to be a multiple of block
* size.
*/
opData->messageLenToCipherInBytes -= opData->messageLenToCipherInBytes
% CIPHER_BLOCK_DEFAULT_SIZE;
}
if (NO_HASH != h) {
opData->hashStartSrcOffsetInBytes = HASH_START_OFFSET;
opData->messageLenToHashInBytes = rte_buff->data_len
- HASH_START_OFFSET;
/*
* Work around for padding, message length has to be a multiple of block
* size.
*/
opData->messageLenToHashInBytes -= opData->messageLenToHashInBytes
% HASH_BLOCK_DEFAULT_SIZE;
opData->digestResult = rte_buff->buf_physaddr + rte_buff->data_len;
}
if (CPA_STATUS_SUCCESS != enqueueOp(opData, lcore_id)) {
/*
* Failed to place a packet on the hardware queue.
* Most likely because the QA hardware is busy.
*/
return CRYPTO_RESULT_FAIL;
}
return CRYPTO_RESULT_IN_PROGRESS;
}
void *
crypto_get_next_response(void)
{
uint32_t lcore_id;
lcore_id = rte_lcore_id();
struct qa_callbackQueue *callbackQ = &(qaCoreConf[lcore_id].callbackQueue);
void *entry = NULL;
if (callbackQ->numEntries) {
entry = callbackQ->qaCallbackRing[callbackQ->tail];
callbackQ->tail++;
callbackQ->numEntries--;
}
/* If there are no outstanding requests no need to poll, return entry */
if (qaCoreConf[lcore_id].qaOutstandingRequests == 0)
return entry;
if (callbackQ->numEntries < CRYPTO_QUEUED_RESP_POLL_THRESHOLD
&& qaCoreConf[lcore_id].numResponseAttempts++
% GET_NEXT_RESPONSE_FREQ == 0) {
/*
* Only poll the hardware when there is less than
* CRYPTO_QUEUED_RESP_POLL_THRESHOLD elements in the software queue
*/
icp_sal_CyPollDpInstance(qaCoreConf[lcore_id].instanceHandle,
CRYPTO_MAX_RESPONSE_QUOTA);
}
return entry;
}