b883c0644a
This patch adds a new function eth_igb_fw_version_get. Signed-off-by: Qiming Yang <qiming.yang@intel.com> Acked-by: Remy Horton <remy.horton@intel.com>
5318 lines
150 KiB
C
5318 lines
150 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/queue.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_dev.h>
|
|
|
|
#include "e1000_logs.h"
|
|
#include "base/e1000_api.h"
|
|
#include "e1000_ethdev.h"
|
|
#include "igb_regs.h"
|
|
|
|
/*
|
|
* Default values for port configuration
|
|
*/
|
|
#define IGB_DEFAULT_RX_FREE_THRESH 32
|
|
|
|
#define IGB_DEFAULT_RX_PTHRESH ((hw->mac.type == e1000_i354) ? 12 : 8)
|
|
#define IGB_DEFAULT_RX_HTHRESH 8
|
|
#define IGB_DEFAULT_RX_WTHRESH ((hw->mac.type == e1000_82576) ? 1 : 4)
|
|
|
|
#define IGB_DEFAULT_TX_PTHRESH ((hw->mac.type == e1000_i354) ? 20 : 8)
|
|
#define IGB_DEFAULT_TX_HTHRESH 1
|
|
#define IGB_DEFAULT_TX_WTHRESH ((hw->mac.type == e1000_82576) ? 1 : 16)
|
|
|
|
#define IGB_HKEY_MAX_INDEX 10
|
|
|
|
/* Bit shift and mask */
|
|
#define IGB_4_BIT_WIDTH (CHAR_BIT / 2)
|
|
#define IGB_4_BIT_MASK RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
|
|
#define IGB_8_BIT_WIDTH CHAR_BIT
|
|
#define IGB_8_BIT_MASK UINT8_MAX
|
|
|
|
/* Additional timesync values. */
|
|
#define E1000_CYCLECOUNTER_MASK 0xffffffffffffffffULL
|
|
#define E1000_ETQF_FILTER_1588 3
|
|
#define IGB_82576_TSYNC_SHIFT 16
|
|
#define E1000_INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
|
|
#define E1000_INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
|
|
#define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
|
|
|
|
#define E1000_VTIVAR_MISC 0x01740
|
|
#define E1000_VTIVAR_MISC_MASK 0xFF
|
|
#define E1000_VTIVAR_VALID 0x80
|
|
#define E1000_VTIVAR_MISC_MAILBOX 0
|
|
#define E1000_VTIVAR_MISC_INTR_MASK 0x3
|
|
|
|
/* External VLAN Enable bit mask */
|
|
#define E1000_CTRL_EXT_EXT_VLAN (1 << 26)
|
|
|
|
/* External VLAN Ether Type bit mask and shift */
|
|
#define E1000_VET_VET_EXT 0xFFFF0000
|
|
#define E1000_VET_VET_EXT_SHIFT 16
|
|
|
|
static int eth_igb_configure(struct rte_eth_dev *dev);
|
|
static int eth_igb_start(struct rte_eth_dev *dev);
|
|
static void eth_igb_stop(struct rte_eth_dev *dev);
|
|
static int eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
|
|
static int eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
|
|
static void eth_igb_close(struct rte_eth_dev *dev);
|
|
static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
|
|
static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
|
|
static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
|
|
static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
|
|
static int eth_igb_link_update(struct rte_eth_dev *dev,
|
|
int wait_to_complete);
|
|
static void eth_igb_stats_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_stats *rte_stats);
|
|
static int eth_igb_xstats_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_xstat *xstats, unsigned n);
|
|
static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
|
|
struct rte_eth_xstat_name *xstats_names,
|
|
unsigned limit);
|
|
static void eth_igb_stats_reset(struct rte_eth_dev *dev);
|
|
static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
|
|
static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
|
|
char *fw_version, size_t fw_size);
|
|
static void eth_igb_infos_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_dev_info *dev_info);
|
|
static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
|
|
static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_dev_info *dev_info);
|
|
static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_fc_conf *fc_conf);
|
|
static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
|
|
struct rte_eth_fc_conf *fc_conf);
|
|
static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
|
|
static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
|
|
static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
|
|
static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
|
|
struct rte_intr_handle *handle);
|
|
static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
|
|
void *param);
|
|
static int igb_hardware_init(struct e1000_hw *hw);
|
|
static void igb_hw_control_acquire(struct e1000_hw *hw);
|
|
static void igb_hw_control_release(struct e1000_hw *hw);
|
|
static void igb_init_manageability(struct e1000_hw *hw);
|
|
static void igb_release_manageability(struct e1000_hw *hw);
|
|
|
|
static int eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
|
|
|
|
static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
|
|
uint16_t vlan_id, int on);
|
|
static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
|
|
enum rte_vlan_type vlan_type,
|
|
uint16_t tpid_id);
|
|
static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
|
|
|
|
static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
|
|
static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
|
|
static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
|
|
static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
|
|
static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
|
|
static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
|
|
|
|
static int eth_igb_led_on(struct rte_eth_dev *dev);
|
|
static int eth_igb_led_off(struct rte_eth_dev *dev);
|
|
|
|
static void igb_intr_disable(struct e1000_hw *hw);
|
|
static int igb_get_rx_buffer_size(struct e1000_hw *hw);
|
|
static void eth_igb_rar_set(struct rte_eth_dev *dev,
|
|
struct ether_addr *mac_addr,
|
|
uint32_t index, uint32_t pool);
|
|
static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
|
|
static void eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
|
|
struct ether_addr *addr);
|
|
|
|
static void igbvf_intr_disable(struct e1000_hw *hw);
|
|
static int igbvf_dev_configure(struct rte_eth_dev *dev);
|
|
static int igbvf_dev_start(struct rte_eth_dev *dev);
|
|
static void igbvf_dev_stop(struct rte_eth_dev *dev);
|
|
static void igbvf_dev_close(struct rte_eth_dev *dev);
|
|
static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
|
|
static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
|
|
static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
|
|
static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
|
|
static int eth_igbvf_link_update(struct e1000_hw *hw);
|
|
static void eth_igbvf_stats_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_stats *rte_stats);
|
|
static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_xstat *xstats, unsigned n);
|
|
static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
|
|
struct rte_eth_xstat_name *xstats_names,
|
|
unsigned limit);
|
|
static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
|
|
static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
|
|
uint16_t vlan_id, int on);
|
|
static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
|
|
static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
|
|
static void igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
|
|
struct ether_addr *addr);
|
|
static int igbvf_get_reg_length(struct rte_eth_dev *dev);
|
|
static int igbvf_get_regs(struct rte_eth_dev *dev,
|
|
struct rte_dev_reg_info *regs);
|
|
|
|
static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta_entry64 *reta_conf,
|
|
uint16_t reta_size);
|
|
static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta_entry64 *reta_conf,
|
|
uint16_t reta_size);
|
|
|
|
static int eth_igb_syn_filter_set(struct rte_eth_dev *dev,
|
|
struct rte_eth_syn_filter *filter,
|
|
bool add);
|
|
static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_syn_filter *filter);
|
|
static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
|
|
enum rte_filter_op filter_op,
|
|
void *arg);
|
|
static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *ntuple_filter);
|
|
static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *ntuple_filter);
|
|
static int eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_flex_filter *filter,
|
|
bool add);
|
|
static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_flex_filter *filter);
|
|
static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
|
|
enum rte_filter_op filter_op,
|
|
void *arg);
|
|
static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *ntuple_filter);
|
|
static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *ntuple_filter);
|
|
static int igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *filter,
|
|
bool add);
|
|
static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *filter);
|
|
static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
|
|
enum rte_filter_op filter_op,
|
|
void *arg);
|
|
static int igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ethertype_filter *filter,
|
|
bool add);
|
|
static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
|
|
enum rte_filter_op filter_op,
|
|
void *arg);
|
|
static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ethertype_filter *filter);
|
|
static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
|
|
enum rte_filter_type filter_type,
|
|
enum rte_filter_op filter_op,
|
|
void *arg);
|
|
static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
|
|
static int eth_igb_get_regs(struct rte_eth_dev *dev,
|
|
struct rte_dev_reg_info *regs);
|
|
static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
|
|
static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
|
|
struct rte_dev_eeprom_info *eeprom);
|
|
static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
|
|
struct rte_dev_eeprom_info *eeprom);
|
|
static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
|
|
struct ether_addr *mc_addr_set,
|
|
uint32_t nb_mc_addr);
|
|
static int igb_timesync_enable(struct rte_eth_dev *dev);
|
|
static int igb_timesync_disable(struct rte_eth_dev *dev);
|
|
static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
|
|
struct timespec *timestamp,
|
|
uint32_t flags);
|
|
static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
|
|
struct timespec *timestamp);
|
|
static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
|
|
static int igb_timesync_read_time(struct rte_eth_dev *dev,
|
|
struct timespec *timestamp);
|
|
static int igb_timesync_write_time(struct rte_eth_dev *dev,
|
|
const struct timespec *timestamp);
|
|
static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
|
|
uint16_t queue_id);
|
|
static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
|
|
uint16_t queue_id);
|
|
static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
|
|
uint8_t queue, uint8_t msix_vector);
|
|
static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
|
|
uint8_t index, uint8_t offset);
|
|
static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
|
|
static void eth_igbvf_interrupt_handler(struct rte_intr_handle *handle,
|
|
void *param);
|
|
static void igbvf_mbx_process(struct rte_eth_dev *dev);
|
|
|
|
/*
|
|
* Define VF Stats MACRO for Non "cleared on read" register
|
|
*/
|
|
#define UPDATE_VF_STAT(reg, last, cur) \
|
|
{ \
|
|
u32 latest = E1000_READ_REG(hw, reg); \
|
|
cur += (latest - last) & UINT_MAX; \
|
|
last = latest; \
|
|
}
|
|
|
|
#define IGB_FC_PAUSE_TIME 0x0680
|
|
#define IGB_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
|
|
#define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
|
|
|
|
#define IGBVF_PMD_NAME "rte_igbvf_pmd" /* PMD name */
|
|
|
|
static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
|
|
|
|
/*
|
|
* The set of PCI devices this driver supports
|
|
*/
|
|
static const struct rte_pci_id pci_id_igb_map[] = {
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
|
|
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
|
|
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
|
|
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
|
|
{ .vendor_id = 0, /* sentinel */ },
|
|
};
|
|
|
|
/*
|
|
* The set of PCI devices this driver supports (for 82576&I350 VF)
|
|
*/
|
|
static const struct rte_pci_id pci_id_igbvf_map[] = {
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
|
|
{ .vendor_id = 0, /* sentinel */ },
|
|
};
|
|
|
|
static const struct rte_eth_desc_lim rx_desc_lim = {
|
|
.nb_max = E1000_MAX_RING_DESC,
|
|
.nb_min = E1000_MIN_RING_DESC,
|
|
.nb_align = IGB_RXD_ALIGN,
|
|
};
|
|
|
|
static const struct rte_eth_desc_lim tx_desc_lim = {
|
|
.nb_max = E1000_MAX_RING_DESC,
|
|
.nb_min = E1000_MIN_RING_DESC,
|
|
.nb_align = IGB_RXD_ALIGN,
|
|
.nb_seg_max = IGB_TX_MAX_SEG,
|
|
.nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
|
|
};
|
|
|
|
static const struct eth_dev_ops eth_igb_ops = {
|
|
.dev_configure = eth_igb_configure,
|
|
.dev_start = eth_igb_start,
|
|
.dev_stop = eth_igb_stop,
|
|
.dev_set_link_up = eth_igb_dev_set_link_up,
|
|
.dev_set_link_down = eth_igb_dev_set_link_down,
|
|
.dev_close = eth_igb_close,
|
|
.promiscuous_enable = eth_igb_promiscuous_enable,
|
|
.promiscuous_disable = eth_igb_promiscuous_disable,
|
|
.allmulticast_enable = eth_igb_allmulticast_enable,
|
|
.allmulticast_disable = eth_igb_allmulticast_disable,
|
|
.link_update = eth_igb_link_update,
|
|
.stats_get = eth_igb_stats_get,
|
|
.xstats_get = eth_igb_xstats_get,
|
|
.xstats_get_names = eth_igb_xstats_get_names,
|
|
.stats_reset = eth_igb_stats_reset,
|
|
.xstats_reset = eth_igb_xstats_reset,
|
|
.fw_version_get = eth_igb_fw_version_get,
|
|
.dev_infos_get = eth_igb_infos_get,
|
|
.dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
|
|
.mtu_set = eth_igb_mtu_set,
|
|
.vlan_filter_set = eth_igb_vlan_filter_set,
|
|
.vlan_tpid_set = eth_igb_vlan_tpid_set,
|
|
.vlan_offload_set = eth_igb_vlan_offload_set,
|
|
.rx_queue_setup = eth_igb_rx_queue_setup,
|
|
.rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
|
|
.rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
|
|
.rx_queue_release = eth_igb_rx_queue_release,
|
|
.rx_queue_count = eth_igb_rx_queue_count,
|
|
.rx_descriptor_done = eth_igb_rx_descriptor_done,
|
|
.tx_queue_setup = eth_igb_tx_queue_setup,
|
|
.tx_queue_release = eth_igb_tx_queue_release,
|
|
.dev_led_on = eth_igb_led_on,
|
|
.dev_led_off = eth_igb_led_off,
|
|
.flow_ctrl_get = eth_igb_flow_ctrl_get,
|
|
.flow_ctrl_set = eth_igb_flow_ctrl_set,
|
|
.mac_addr_add = eth_igb_rar_set,
|
|
.mac_addr_remove = eth_igb_rar_clear,
|
|
.mac_addr_set = eth_igb_default_mac_addr_set,
|
|
.reta_update = eth_igb_rss_reta_update,
|
|
.reta_query = eth_igb_rss_reta_query,
|
|
.rss_hash_update = eth_igb_rss_hash_update,
|
|
.rss_hash_conf_get = eth_igb_rss_hash_conf_get,
|
|
.filter_ctrl = eth_igb_filter_ctrl,
|
|
.set_mc_addr_list = eth_igb_set_mc_addr_list,
|
|
.rxq_info_get = igb_rxq_info_get,
|
|
.txq_info_get = igb_txq_info_get,
|
|
.timesync_enable = igb_timesync_enable,
|
|
.timesync_disable = igb_timesync_disable,
|
|
.timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
|
|
.timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
|
|
.get_reg = eth_igb_get_regs,
|
|
.get_eeprom_length = eth_igb_get_eeprom_length,
|
|
.get_eeprom = eth_igb_get_eeprom,
|
|
.set_eeprom = eth_igb_set_eeprom,
|
|
.timesync_adjust_time = igb_timesync_adjust_time,
|
|
.timesync_read_time = igb_timesync_read_time,
|
|
.timesync_write_time = igb_timesync_write_time,
|
|
};
|
|
|
|
/*
|
|
* dev_ops for virtual function, bare necessities for basic vf
|
|
* operation have been implemented
|
|
*/
|
|
static const struct eth_dev_ops igbvf_eth_dev_ops = {
|
|
.dev_configure = igbvf_dev_configure,
|
|
.dev_start = igbvf_dev_start,
|
|
.dev_stop = igbvf_dev_stop,
|
|
.dev_close = igbvf_dev_close,
|
|
.promiscuous_enable = igbvf_promiscuous_enable,
|
|
.promiscuous_disable = igbvf_promiscuous_disable,
|
|
.allmulticast_enable = igbvf_allmulticast_enable,
|
|
.allmulticast_disable = igbvf_allmulticast_disable,
|
|
.link_update = eth_igb_link_update,
|
|
.stats_get = eth_igbvf_stats_get,
|
|
.xstats_get = eth_igbvf_xstats_get,
|
|
.xstats_get_names = eth_igbvf_xstats_get_names,
|
|
.stats_reset = eth_igbvf_stats_reset,
|
|
.xstats_reset = eth_igbvf_stats_reset,
|
|
.vlan_filter_set = igbvf_vlan_filter_set,
|
|
.dev_infos_get = eth_igbvf_infos_get,
|
|
.dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
|
|
.rx_queue_setup = eth_igb_rx_queue_setup,
|
|
.rx_queue_release = eth_igb_rx_queue_release,
|
|
.tx_queue_setup = eth_igb_tx_queue_setup,
|
|
.tx_queue_release = eth_igb_tx_queue_release,
|
|
.set_mc_addr_list = eth_igb_set_mc_addr_list,
|
|
.rxq_info_get = igb_rxq_info_get,
|
|
.txq_info_get = igb_txq_info_get,
|
|
.mac_addr_set = igbvf_default_mac_addr_set,
|
|
.get_reg = igbvf_get_regs,
|
|
};
|
|
|
|
/* store statistics names and its offset in stats structure */
|
|
struct rte_igb_xstats_name_off {
|
|
char name[RTE_ETH_XSTATS_NAME_SIZE];
|
|
unsigned offset;
|
|
};
|
|
|
|
static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
|
|
{"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
|
|
{"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
|
|
{"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
|
|
{"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
|
|
{"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
|
|
{"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
|
|
{"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
|
|
ecol)},
|
|
{"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
|
|
{"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
|
|
{"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
|
|
{"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
|
|
{"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
|
|
{"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
|
|
{"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
|
|
{"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
|
|
{"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
|
|
{"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
|
|
{"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
|
|
fcruc)},
|
|
{"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
|
|
{"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
|
|
{"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
|
|
{"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
|
|
{"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
|
|
prc1023)},
|
|
{"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
|
|
prc1522)},
|
|
{"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
|
|
{"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
|
|
{"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
|
|
{"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
|
|
{"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
|
|
{"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
|
|
{"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
|
|
{"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
|
|
{"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
|
|
{"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
|
|
{"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
|
|
{"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
|
|
{"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
|
|
{"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
|
|
{"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
|
|
{"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
|
|
{"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
|
|
{"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
|
|
ptc1023)},
|
|
{"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
|
|
ptc1522)},
|
|
{"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
|
|
{"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
|
|
{"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
|
|
{"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
|
|
{"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
|
|
{"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
|
|
{"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
|
|
|
|
{"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
|
|
};
|
|
|
|
#define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
|
|
sizeof(rte_igb_stats_strings[0]))
|
|
|
|
static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
|
|
{"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
|
|
{"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
|
|
{"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
|
|
{"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
|
|
{"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
|
|
};
|
|
|
|
#define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
|
|
sizeof(rte_igbvf_stats_strings[0]))
|
|
|
|
/**
|
|
* Atomically reads the link status information from global
|
|
* structure rte_eth_dev.
|
|
*
|
|
* @param dev
|
|
* - Pointer to the structure rte_eth_dev to read from.
|
|
* - Pointer to the buffer to be saved with the link status.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, negative value.
|
|
*/
|
|
static inline int
|
|
rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
|
|
struct rte_eth_link *link)
|
|
{
|
|
struct rte_eth_link *dst = link;
|
|
struct rte_eth_link *src = &(dev->data->dev_link);
|
|
|
|
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
|
|
*(uint64_t *)src) == 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Atomically writes the link status information into global
|
|
* structure rte_eth_dev.
|
|
*
|
|
* @param dev
|
|
* - Pointer to the structure rte_eth_dev to read from.
|
|
* - Pointer to the buffer to be saved with the link status.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, negative value.
|
|
*/
|
|
static inline int
|
|
rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
|
|
struct rte_eth_link *link)
|
|
{
|
|
struct rte_eth_link *dst = &(dev->data->dev_link);
|
|
struct rte_eth_link *src = link;
|
|
|
|
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
|
|
*(uint64_t *)src) == 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
igb_intr_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
static void
|
|
igb_intr_disable(struct e1000_hw *hw)
|
|
{
|
|
E1000_WRITE_REG(hw, E1000_IMC, ~0);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
static inline void
|
|
igbvf_intr_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* only for mailbox */
|
|
E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
|
|
E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
|
|
E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/* only for mailbox now. If RX/TX needed, should extend this function. */
|
|
static void
|
|
igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
|
|
{
|
|
uint32_t tmp = 0;
|
|
|
|
/* mailbox */
|
|
tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
|
|
tmp |= E1000_VTIVAR_VALID;
|
|
E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
|
|
}
|
|
|
|
static void
|
|
eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* Configure VF other cause ivar */
|
|
igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
|
|
}
|
|
|
|
static inline int32_t
|
|
igb_pf_reset_hw(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl_ext;
|
|
int32_t status;
|
|
|
|
status = e1000_reset_hw(hw);
|
|
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
/* Set PF Reset Done bit so PF/VF Mail Ops can work */
|
|
ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
|
|
hw->vendor_id = pci_dev->id.vendor_id;
|
|
hw->device_id = pci_dev->id.device_id;
|
|
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
|
|
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
|
|
|
|
e1000_set_mac_type(hw);
|
|
|
|
/* need to check if it is a vf device below */
|
|
}
|
|
|
|
static int
|
|
igb_reset_swfw_lock(struct e1000_hw *hw)
|
|
{
|
|
int ret_val;
|
|
|
|
/*
|
|
* Do mac ops initialization manually here, since we will need
|
|
* some function pointers set by this call.
|
|
*/
|
|
ret_val = e1000_init_mac_params(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/*
|
|
* SMBI lock should not fail in this early stage. If this is the case,
|
|
* it is due to an improper exit of the application.
|
|
* So force the release of the faulty lock.
|
|
*/
|
|
if (e1000_get_hw_semaphore_generic(hw) < 0) {
|
|
PMD_DRV_LOG(DEBUG, "SMBI lock released");
|
|
}
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
|
|
if (hw->mac.ops.acquire_swfw_sync != NULL) {
|
|
uint16_t mask;
|
|
|
|
/*
|
|
* Phy lock should not fail in this early stage. If this is the case,
|
|
* it is due to an improper exit of the application.
|
|
* So force the release of the faulty lock.
|
|
*/
|
|
mask = E1000_SWFW_PHY0_SM << hw->bus.func;
|
|
if (hw->bus.func > E1000_FUNC_1)
|
|
mask <<= 2;
|
|
if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
|
|
PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
|
|
hw->bus.func);
|
|
}
|
|
hw->mac.ops.release_swfw_sync(hw, mask);
|
|
|
|
/*
|
|
* This one is more tricky since it is common to all ports; but
|
|
* swfw_sync retries last long enough (1s) to be almost sure that if
|
|
* lock can not be taken it is due to an improper lock of the
|
|
* semaphore.
|
|
*/
|
|
mask = E1000_SWFW_EEP_SM;
|
|
if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
|
|
PMD_DRV_LOG(DEBUG, "SWFW common locks released");
|
|
}
|
|
hw->mac.ops.release_swfw_sync(hw, mask);
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
static int
|
|
eth_igb_dev_init(struct rte_eth_dev *eth_dev)
|
|
{
|
|
int error = 0;
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(eth_dev);
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
|
|
struct e1000_filter_info *filter_info =
|
|
E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
|
|
|
|
uint32_t ctrl_ext;
|
|
|
|
eth_dev->dev_ops = ð_igb_ops;
|
|
eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
|
|
eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
|
|
eth_dev->tx_pkt_prepare = ð_igb_prep_pkts;
|
|
|
|
/* for secondary processes, we don't initialise any further as primary
|
|
* has already done this work. Only check we don't need a different
|
|
* RX function */
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
|
|
if (eth_dev->data->scattered_rx)
|
|
eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
|
|
return 0;
|
|
}
|
|
|
|
rte_eth_copy_pci_info(eth_dev, pci_dev);
|
|
eth_dev->data->dev_flags = RTE_ETH_DEV_DETACHABLE;
|
|
|
|
hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
|
|
|
|
igb_identify_hardware(eth_dev, pci_dev);
|
|
if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
|
|
error = -EIO;
|
|
goto err_late;
|
|
}
|
|
|
|
e1000_get_bus_info(hw);
|
|
|
|
/* Reset any pending lock */
|
|
if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
|
|
error = -EIO;
|
|
goto err_late;
|
|
}
|
|
|
|
/* Finish initialization */
|
|
if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
|
|
error = -EIO;
|
|
goto err_late;
|
|
}
|
|
|
|
hw->mac.autoneg = 1;
|
|
hw->phy.autoneg_wait_to_complete = 0;
|
|
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
|
|
|
|
/* Copper options */
|
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
|
hw->phy.mdix = 0; /* AUTO_ALL_MODES */
|
|
hw->phy.disable_polarity_correction = 0;
|
|
hw->phy.ms_type = e1000_ms_hw_default;
|
|
}
|
|
|
|
/*
|
|
* Start from a known state, this is important in reading the nvm
|
|
* and mac from that.
|
|
*/
|
|
igb_pf_reset_hw(hw);
|
|
|
|
/* Make sure we have a good EEPROM before we read from it */
|
|
if (e1000_validate_nvm_checksum(hw) < 0) {
|
|
/*
|
|
* Some PCI-E parts fail the first check due to
|
|
* the link being in sleep state, call it again,
|
|
* if it fails a second time its a real issue.
|
|
*/
|
|
if (e1000_validate_nvm_checksum(hw) < 0) {
|
|
PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
|
|
error = -EIO;
|
|
goto err_late;
|
|
}
|
|
}
|
|
|
|
/* Read the permanent MAC address out of the EEPROM */
|
|
if (e1000_read_mac_addr(hw) != 0) {
|
|
PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
|
|
error = -EIO;
|
|
goto err_late;
|
|
}
|
|
|
|
/* Allocate memory for storing MAC addresses */
|
|
eth_dev->data->mac_addrs = rte_zmalloc("e1000",
|
|
ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
|
|
if (eth_dev->data->mac_addrs == NULL) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
|
|
"store MAC addresses",
|
|
ETHER_ADDR_LEN * hw->mac.rar_entry_count);
|
|
error = -ENOMEM;
|
|
goto err_late;
|
|
}
|
|
|
|
/* Copy the permanent MAC address */
|
|
ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]);
|
|
|
|
/* initialize the vfta */
|
|
memset(shadow_vfta, 0, sizeof(*shadow_vfta));
|
|
|
|
/* Now initialize the hardware */
|
|
if (igb_hardware_init(hw) != 0) {
|
|
PMD_INIT_LOG(ERR, "Hardware initialization failed");
|
|
rte_free(eth_dev->data->mac_addrs);
|
|
eth_dev->data->mac_addrs = NULL;
|
|
error = -ENODEV;
|
|
goto err_late;
|
|
}
|
|
hw->mac.get_link_status = 1;
|
|
adapter->stopped = 0;
|
|
|
|
/* Indicate SOL/IDER usage */
|
|
if (e1000_check_reset_block(hw) < 0) {
|
|
PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
|
|
"SOL/IDER session");
|
|
}
|
|
|
|
/* initialize PF if max_vfs not zero */
|
|
igb_pf_host_init(eth_dev);
|
|
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
/* Set PF Reset Done bit so PF/VF Mail Ops can work */
|
|
ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
|
|
eth_dev->data->port_id, pci_dev->id.vendor_id,
|
|
pci_dev->id.device_id);
|
|
|
|
rte_intr_callback_register(&pci_dev->intr_handle,
|
|
eth_igb_interrupt_handler,
|
|
(void *)eth_dev);
|
|
|
|
/* enable uio/vfio intr/eventfd mapping */
|
|
rte_intr_enable(&pci_dev->intr_handle);
|
|
|
|
/* enable support intr */
|
|
igb_intr_enable(eth_dev);
|
|
|
|
TAILQ_INIT(&filter_info->flex_list);
|
|
filter_info->flex_mask = 0;
|
|
TAILQ_INIT(&filter_info->twotuple_list);
|
|
filter_info->twotuple_mask = 0;
|
|
TAILQ_INIT(&filter_info->fivetuple_list);
|
|
filter_info->fivetuple_mask = 0;
|
|
|
|
return 0;
|
|
|
|
err_late:
|
|
igb_hw_control_release(hw);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev;
|
|
struct rte_intr_handle *intr_handle;
|
|
struct e1000_hw *hw;
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
|
|
return -EPERM;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
pci_dev = E1000_DEV_TO_PCI(eth_dev);
|
|
intr_handle = &pci_dev->intr_handle;
|
|
|
|
if (adapter->stopped == 0)
|
|
eth_igb_close(eth_dev);
|
|
|
|
eth_dev->dev_ops = NULL;
|
|
eth_dev->rx_pkt_burst = NULL;
|
|
eth_dev->tx_pkt_burst = NULL;
|
|
|
|
/* Reset any pending lock */
|
|
igb_reset_swfw_lock(hw);
|
|
|
|
rte_free(eth_dev->data->mac_addrs);
|
|
eth_dev->data->mac_addrs = NULL;
|
|
|
|
/* uninitialize PF if max_vfs not zero */
|
|
igb_pf_host_uninit(eth_dev);
|
|
|
|
/* disable uio intr before callback unregister */
|
|
rte_intr_disable(intr_handle);
|
|
rte_intr_callback_unregister(intr_handle,
|
|
eth_igb_interrupt_handler, eth_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Virtual Function device init
|
|
*/
|
|
static int
|
|
eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev;
|
|
struct rte_intr_handle *intr_handle;
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
int diag;
|
|
struct ether_addr *perm_addr = (struct ether_addr *)hw->mac.perm_addr;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
eth_dev->dev_ops = &igbvf_eth_dev_ops;
|
|
eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
|
|
eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
|
|
eth_dev->tx_pkt_prepare = ð_igb_prep_pkts;
|
|
|
|
/* for secondary processes, we don't initialise any further as primary
|
|
* has already done this work. Only check we don't need a different
|
|
* RX function */
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
|
|
if (eth_dev->data->scattered_rx)
|
|
eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
|
|
return 0;
|
|
}
|
|
|
|
pci_dev = E1000_DEV_TO_PCI(eth_dev);
|
|
rte_eth_copy_pci_info(eth_dev, pci_dev);
|
|
eth_dev->data->dev_flags = RTE_ETH_DEV_DETACHABLE;
|
|
|
|
hw->device_id = pci_dev->id.device_id;
|
|
hw->vendor_id = pci_dev->id.vendor_id;
|
|
hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
|
|
adapter->stopped = 0;
|
|
|
|
/* Initialize the shared code (base driver) */
|
|
diag = e1000_setup_init_funcs(hw, TRUE);
|
|
if (diag != 0) {
|
|
PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
|
|
diag);
|
|
return -EIO;
|
|
}
|
|
|
|
/* init_mailbox_params */
|
|
hw->mbx.ops.init_params(hw);
|
|
|
|
/* Disable the interrupts for VF */
|
|
igbvf_intr_disable(hw);
|
|
|
|
diag = hw->mac.ops.reset_hw(hw);
|
|
|
|
/* Allocate memory for storing MAC addresses */
|
|
eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
|
|
hw->mac.rar_entry_count, 0);
|
|
if (eth_dev->data->mac_addrs == NULL) {
|
|
PMD_INIT_LOG(ERR,
|
|
"Failed to allocate %d bytes needed to store MAC "
|
|
"addresses",
|
|
ETHER_ADDR_LEN * hw->mac.rar_entry_count);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Generate a random MAC address, if none was assigned by PF. */
|
|
if (is_zero_ether_addr(perm_addr)) {
|
|
eth_random_addr(perm_addr->addr_bytes);
|
|
diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
|
|
if (diag) {
|
|
rte_free(eth_dev->data->mac_addrs);
|
|
eth_dev->data->mac_addrs = NULL;
|
|
return diag;
|
|
}
|
|
PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
|
|
PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
|
|
"%02x:%02x:%02x:%02x:%02x:%02x",
|
|
perm_addr->addr_bytes[0],
|
|
perm_addr->addr_bytes[1],
|
|
perm_addr->addr_bytes[2],
|
|
perm_addr->addr_bytes[3],
|
|
perm_addr->addr_bytes[4],
|
|
perm_addr->addr_bytes[5]);
|
|
}
|
|
|
|
/* Copy the permanent MAC address */
|
|
ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
|
|
ð_dev->data->mac_addrs[0]);
|
|
|
|
PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
|
|
"mac.type=%s",
|
|
eth_dev->data->port_id, pci_dev->id.vendor_id,
|
|
pci_dev->id.device_id, "igb_mac_82576_vf");
|
|
|
|
intr_handle = &pci_dev->intr_handle;
|
|
rte_intr_callback_register(intr_handle,
|
|
eth_igbvf_interrupt_handler, eth_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(eth_dev);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
|
|
return -EPERM;
|
|
|
|
if (adapter->stopped == 0)
|
|
igbvf_dev_close(eth_dev);
|
|
|
|
eth_dev->dev_ops = NULL;
|
|
eth_dev->rx_pkt_burst = NULL;
|
|
eth_dev->tx_pkt_burst = NULL;
|
|
|
|
rte_free(eth_dev->data->mac_addrs);
|
|
eth_dev->data->mac_addrs = NULL;
|
|
|
|
/* disable uio intr before callback unregister */
|
|
rte_intr_disable(&pci_dev->intr_handle);
|
|
rte_intr_callback_unregister(&pci_dev->intr_handle,
|
|
eth_igbvf_interrupt_handler,
|
|
(void *)eth_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct eth_driver rte_igb_pmd = {
|
|
.pci_drv = {
|
|
.id_table = pci_id_igb_map,
|
|
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
|
|
.probe = rte_eth_dev_pci_probe,
|
|
.remove = rte_eth_dev_pci_remove,
|
|
},
|
|
.eth_dev_init = eth_igb_dev_init,
|
|
.eth_dev_uninit = eth_igb_dev_uninit,
|
|
.dev_private_size = sizeof(struct e1000_adapter),
|
|
};
|
|
|
|
/*
|
|
* virtual function driver struct
|
|
*/
|
|
static struct eth_driver rte_igbvf_pmd = {
|
|
.pci_drv = {
|
|
.id_table = pci_id_igbvf_map,
|
|
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
|
|
.probe = rte_eth_dev_pci_probe,
|
|
.remove = rte_eth_dev_pci_remove,
|
|
},
|
|
.eth_dev_init = eth_igbvf_dev_init,
|
|
.eth_dev_uninit = eth_igbvf_dev_uninit,
|
|
.dev_private_size = sizeof(struct e1000_adapter),
|
|
};
|
|
|
|
static void
|
|
igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
/* RCTL: enable VLAN filter since VMDq always use VLAN filter */
|
|
uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl |= E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static int
|
|
igb_check_mq_mode(struct rte_eth_dev *dev)
|
|
{
|
|
enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
|
|
enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
|
|
uint16_t nb_rx_q = dev->data->nb_rx_queues;
|
|
uint16_t nb_tx_q = dev->data->nb_rx_queues;
|
|
|
|
if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
|
|
tx_mq_mode == ETH_MQ_TX_DCB ||
|
|
tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
|
|
PMD_INIT_LOG(ERR, "DCB mode is not supported.");
|
|
return -EINVAL;
|
|
}
|
|
if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
|
|
/* Check multi-queue mode.
|
|
* To no break software we accept ETH_MQ_RX_NONE as this might
|
|
* be used to turn off VLAN filter.
|
|
*/
|
|
|
|
if (rx_mq_mode == ETH_MQ_RX_NONE ||
|
|
rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
|
|
dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
|
|
RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
|
|
} else {
|
|
/* Only support one queue on VFs.
|
|
* RSS together with SRIOV is not supported.
|
|
*/
|
|
PMD_INIT_LOG(ERR, "SRIOV is active,"
|
|
" wrong mq_mode rx %d.",
|
|
rx_mq_mode);
|
|
return -EINVAL;
|
|
}
|
|
/* TX mode is not used here, so mode might be ignored.*/
|
|
if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
|
|
/* SRIOV only works in VMDq enable mode */
|
|
PMD_INIT_LOG(WARNING, "SRIOV is active,"
|
|
" TX mode %d is not supported. "
|
|
" Driver will behave as %d mode.",
|
|
tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
|
|
}
|
|
|
|
/* check valid queue number */
|
|
if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
|
|
PMD_INIT_LOG(ERR, "SRIOV is active,"
|
|
" only support one queue on VFs.");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
/* To no break software that set invalid mode, only display
|
|
* warning if invalid mode is used.
|
|
*/
|
|
if (rx_mq_mode != ETH_MQ_RX_NONE &&
|
|
rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
|
|
rx_mq_mode != ETH_MQ_RX_RSS) {
|
|
/* RSS together with VMDq not supported*/
|
|
PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
|
|
rx_mq_mode);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (tx_mq_mode != ETH_MQ_TX_NONE &&
|
|
tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
|
|
PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
|
|
" Due to txmode is meaningless in this"
|
|
" driver, just ignore.",
|
|
tx_mq_mode);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
int ret;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/* multipe queue mode checking */
|
|
ret = igb_check_mq_mode(dev);
|
|
if (ret != 0) {
|
|
PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(dev->data->dev_private);
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
int ret, mask;
|
|
uint32_t intr_vector = 0;
|
|
uint32_t ctrl_ext;
|
|
uint32_t *speeds;
|
|
int num_speeds;
|
|
bool autoneg;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/* disable uio/vfio intr/eventfd mapping */
|
|
rte_intr_disable(intr_handle);
|
|
|
|
/* Power up the phy. Needed to make the link go Up */
|
|
eth_igb_dev_set_link_up(dev);
|
|
|
|
/*
|
|
* Packet Buffer Allocation (PBA)
|
|
* Writing PBA sets the receive portion of the buffer
|
|
* the remainder is used for the transmit buffer.
|
|
*/
|
|
if (hw->mac.type == e1000_82575) {
|
|
uint32_t pba;
|
|
|
|
pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
|
|
E1000_WRITE_REG(hw, E1000_PBA, pba);
|
|
}
|
|
|
|
/* Put the address into the Receive Address Array */
|
|
e1000_rar_set(hw, hw->mac.addr, 0);
|
|
|
|
/* Initialize the hardware */
|
|
if (igb_hardware_init(hw)) {
|
|
PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
|
|
return -EIO;
|
|
}
|
|
adapter->stopped = 0;
|
|
|
|
E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
|
|
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
/* Set PF Reset Done bit so PF/VF Mail Ops can work */
|
|
ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
/* configure PF module if SRIOV enabled */
|
|
igb_pf_host_configure(dev);
|
|
|
|
/* check and configure queue intr-vector mapping */
|
|
if ((rte_intr_cap_multiple(intr_handle) ||
|
|
!RTE_ETH_DEV_SRIOV(dev).active) &&
|
|
dev->data->dev_conf.intr_conf.rxq != 0) {
|
|
intr_vector = dev->data->nb_rx_queues;
|
|
if (rte_intr_efd_enable(intr_handle, intr_vector))
|
|
return -1;
|
|
}
|
|
|
|
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
|
|
intr_handle->intr_vec =
|
|
rte_zmalloc("intr_vec",
|
|
dev->data->nb_rx_queues * sizeof(int), 0);
|
|
if (intr_handle->intr_vec == NULL) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
|
|
" intr_vec\n", dev->data->nb_rx_queues);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
/* confiugre msix for rx interrupt */
|
|
eth_igb_configure_msix_intr(dev);
|
|
|
|
/* Configure for OS presence */
|
|
igb_init_manageability(hw);
|
|
|
|
eth_igb_tx_init(dev);
|
|
|
|
/* This can fail when allocating mbufs for descriptor rings */
|
|
ret = eth_igb_rx_init(dev);
|
|
if (ret) {
|
|
PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
|
|
igb_dev_clear_queues(dev);
|
|
return ret;
|
|
}
|
|
|
|
e1000_clear_hw_cntrs_base_generic(hw);
|
|
|
|
/*
|
|
* VLAN Offload Settings
|
|
*/
|
|
mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
|
|
ETH_VLAN_EXTEND_MASK;
|
|
eth_igb_vlan_offload_set(dev, mask);
|
|
|
|
if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
|
|
/* Enable VLAN filter since VMDq always use VLAN filter */
|
|
igb_vmdq_vlan_hw_filter_enable(dev);
|
|
}
|
|
|
|
if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
|
|
(hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
|
|
(hw->mac.type == e1000_i211)) {
|
|
/* Configure EITR with the maximum possible value (0xFFFF) */
|
|
E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
|
|
}
|
|
|
|
/* Setup link speed and duplex */
|
|
speeds = &dev->data->dev_conf.link_speeds;
|
|
if (*speeds == ETH_LINK_SPEED_AUTONEG) {
|
|
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
|
|
hw->mac.autoneg = 1;
|
|
} else {
|
|
num_speeds = 0;
|
|
autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
|
|
|
|
/* Reset */
|
|
hw->phy.autoneg_advertised = 0;
|
|
|
|
if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
|
|
ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
|
|
ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
|
|
num_speeds = -1;
|
|
goto error_invalid_config;
|
|
}
|
|
if (*speeds & ETH_LINK_SPEED_10M_HD) {
|
|
hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
|
|
num_speeds++;
|
|
}
|
|
if (*speeds & ETH_LINK_SPEED_10M) {
|
|
hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
|
|
num_speeds++;
|
|
}
|
|
if (*speeds & ETH_LINK_SPEED_100M_HD) {
|
|
hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
|
|
num_speeds++;
|
|
}
|
|
if (*speeds & ETH_LINK_SPEED_100M) {
|
|
hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
|
|
num_speeds++;
|
|
}
|
|
if (*speeds & ETH_LINK_SPEED_1G) {
|
|
hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
|
|
num_speeds++;
|
|
}
|
|
if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
|
|
goto error_invalid_config;
|
|
|
|
/* Set/reset the mac.autoneg based on the link speed,
|
|
* fixed or not
|
|
*/
|
|
if (!autoneg) {
|
|
hw->mac.autoneg = 0;
|
|
hw->mac.forced_speed_duplex =
|
|
hw->phy.autoneg_advertised;
|
|
} else {
|
|
hw->mac.autoneg = 1;
|
|
}
|
|
}
|
|
|
|
e1000_setup_link(hw);
|
|
|
|
if (rte_intr_allow_others(intr_handle)) {
|
|
/* check if lsc interrupt is enabled */
|
|
if (dev->data->dev_conf.intr_conf.lsc != 0)
|
|
eth_igb_lsc_interrupt_setup(dev);
|
|
} else {
|
|
rte_intr_callback_unregister(intr_handle,
|
|
eth_igb_interrupt_handler,
|
|
(void *)dev);
|
|
if (dev->data->dev_conf.intr_conf.lsc != 0)
|
|
PMD_INIT_LOG(INFO, "lsc won't enable because of"
|
|
" no intr multiplex\n");
|
|
}
|
|
|
|
/* check if rxq interrupt is enabled */
|
|
if (dev->data->dev_conf.intr_conf.rxq != 0 &&
|
|
rte_intr_dp_is_en(intr_handle))
|
|
eth_igb_rxq_interrupt_setup(dev);
|
|
|
|
/* enable uio/vfio intr/eventfd mapping */
|
|
rte_intr_enable(intr_handle);
|
|
|
|
/* resume enabled intr since hw reset */
|
|
igb_intr_enable(dev);
|
|
|
|
PMD_INIT_LOG(DEBUG, "<<");
|
|
|
|
return 0;
|
|
|
|
error_invalid_config:
|
|
PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
|
|
dev->data->dev_conf.link_speeds, dev->data->port_id);
|
|
igb_dev_clear_queues(dev);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine disables all traffic on the adapter by issuing a
|
|
* global reset on the MAC.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
eth_igb_stop(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_filter_info *filter_info =
|
|
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
|
|
struct rte_eth_link link;
|
|
struct e1000_flex_filter *p_flex;
|
|
struct e1000_5tuple_filter *p_5tuple, *p_5tuple_next;
|
|
struct e1000_2tuple_filter *p_2tuple, *p_2tuple_next;
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
|
|
igb_intr_disable(hw);
|
|
|
|
/* disable intr eventfd mapping */
|
|
rte_intr_disable(intr_handle);
|
|
|
|
igb_pf_reset_hw(hw);
|
|
E1000_WRITE_REG(hw, E1000_WUC, 0);
|
|
|
|
/* Set bit for Go Link disconnect */
|
|
if (hw->mac.type >= e1000_82580) {
|
|
uint32_t phpm_reg;
|
|
|
|
phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
|
|
phpm_reg |= E1000_82580_PM_GO_LINKD;
|
|
E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
|
|
}
|
|
|
|
/* Power down the phy. Needed to make the link go Down */
|
|
eth_igb_dev_set_link_down(dev);
|
|
|
|
igb_dev_clear_queues(dev);
|
|
|
|
/* clear the recorded link status */
|
|
memset(&link, 0, sizeof(link));
|
|
rte_igb_dev_atomic_write_link_status(dev, &link);
|
|
|
|
/* Remove all flex filters of the device */
|
|
while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
|
|
TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
|
|
rte_free(p_flex);
|
|
}
|
|
filter_info->flex_mask = 0;
|
|
|
|
/* Remove all ntuple filters of the device */
|
|
for (p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list);
|
|
p_5tuple != NULL; p_5tuple = p_5tuple_next) {
|
|
p_5tuple_next = TAILQ_NEXT(p_5tuple, entries);
|
|
TAILQ_REMOVE(&filter_info->fivetuple_list,
|
|
p_5tuple, entries);
|
|
rte_free(p_5tuple);
|
|
}
|
|
filter_info->fivetuple_mask = 0;
|
|
for (p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list);
|
|
p_2tuple != NULL; p_2tuple = p_2tuple_next) {
|
|
p_2tuple_next = TAILQ_NEXT(p_2tuple, entries);
|
|
TAILQ_REMOVE(&filter_info->twotuple_list,
|
|
p_2tuple, entries);
|
|
rte_free(p_2tuple);
|
|
}
|
|
filter_info->twotuple_mask = 0;
|
|
|
|
if (!rte_intr_allow_others(intr_handle))
|
|
/* resume to the default handler */
|
|
rte_intr_callback_register(intr_handle,
|
|
eth_igb_interrupt_handler,
|
|
(void *)dev);
|
|
|
|
/* Clean datapath event and queue/vec mapping */
|
|
rte_intr_efd_disable(intr_handle);
|
|
if (intr_handle->intr_vec != NULL) {
|
|
rte_free(intr_handle->intr_vec);
|
|
intr_handle->intr_vec = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (hw->phy.media_type == e1000_media_type_copper)
|
|
e1000_power_up_phy(hw);
|
|
else
|
|
e1000_power_up_fiber_serdes_link(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (hw->phy.media_type == e1000_media_type_copper)
|
|
e1000_power_down_phy(hw);
|
|
else
|
|
e1000_shutdown_fiber_serdes_link(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
eth_igb_close(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(dev->data->dev_private);
|
|
struct rte_eth_link link;
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
|
|
eth_igb_stop(dev);
|
|
adapter->stopped = 1;
|
|
|
|
e1000_phy_hw_reset(hw);
|
|
igb_release_manageability(hw);
|
|
igb_hw_control_release(hw);
|
|
|
|
/* Clear bit for Go Link disconnect */
|
|
if (hw->mac.type >= e1000_82580) {
|
|
uint32_t phpm_reg;
|
|
|
|
phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
|
|
phpm_reg &= ~E1000_82580_PM_GO_LINKD;
|
|
E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
|
|
}
|
|
|
|
igb_dev_free_queues(dev);
|
|
|
|
if (intr_handle->intr_vec) {
|
|
rte_free(intr_handle->intr_vec);
|
|
intr_handle->intr_vec = NULL;
|
|
}
|
|
|
|
memset(&link, 0, sizeof(link));
|
|
rte_igb_dev_atomic_write_link_status(dev, &link);
|
|
}
|
|
|
|
static int
|
|
igb_get_rx_buffer_size(struct e1000_hw *hw)
|
|
{
|
|
uint32_t rx_buf_size;
|
|
if (hw->mac.type == e1000_82576) {
|
|
rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
|
|
} else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
|
|
/* PBS needs to be translated according to a lookup table */
|
|
rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
|
|
rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
|
|
rx_buf_size = (rx_buf_size << 10);
|
|
} else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
|
|
rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
|
|
} else {
|
|
rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
|
|
}
|
|
|
|
return rx_buf_size;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize the hardware
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_hardware_init(struct e1000_hw *hw)
|
|
{
|
|
uint32_t rx_buf_size;
|
|
int diag;
|
|
|
|
/* Let the firmware know the OS is in control */
|
|
igb_hw_control_acquire(hw);
|
|
|
|
/*
|
|
* These parameters control the automatic generation (Tx) and
|
|
* response (Rx) to Ethernet PAUSE frames.
|
|
* - High water mark should allow for at least two standard size (1518)
|
|
* frames to be received after sending an XOFF.
|
|
* - Low water mark works best when it is very near the high water mark.
|
|
* This allows the receiver to restart by sending XON when it has
|
|
* drained a bit. Here we use an arbitrary value of 1500 which will
|
|
* restart after one full frame is pulled from the buffer. There
|
|
* could be several smaller frames in the buffer and if so they will
|
|
* not trigger the XON until their total number reduces the buffer
|
|
* by 1500.
|
|
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
|
|
*/
|
|
rx_buf_size = igb_get_rx_buffer_size(hw);
|
|
|
|
hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
|
|
hw->fc.low_water = hw->fc.high_water - 1500;
|
|
hw->fc.pause_time = IGB_FC_PAUSE_TIME;
|
|
hw->fc.send_xon = 1;
|
|
|
|
/* Set Flow control, use the tunable location if sane */
|
|
if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
|
|
hw->fc.requested_mode = igb_fc_setting;
|
|
else
|
|
hw->fc.requested_mode = e1000_fc_none;
|
|
|
|
/* Issue a global reset */
|
|
igb_pf_reset_hw(hw);
|
|
E1000_WRITE_REG(hw, E1000_WUC, 0);
|
|
|
|
diag = e1000_init_hw(hw);
|
|
if (diag < 0)
|
|
return diag;
|
|
|
|
E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
|
|
e1000_get_phy_info(hw);
|
|
e1000_check_for_link(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function is based on igb_update_stats_counters() in igb/if_igb.c */
|
|
static void
|
|
igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
|
|
{
|
|
int pause_frames;
|
|
|
|
uint64_t old_gprc = stats->gprc;
|
|
uint64_t old_gptc = stats->gptc;
|
|
uint64_t old_tpr = stats->tpr;
|
|
uint64_t old_tpt = stats->tpt;
|
|
uint64_t old_rpthc = stats->rpthc;
|
|
uint64_t old_hgptc = stats->hgptc;
|
|
|
|
if(hw->phy.media_type == e1000_media_type_copper ||
|
|
(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
|
|
stats->symerrs +=
|
|
E1000_READ_REG(hw,E1000_SYMERRS);
|
|
stats->sec += E1000_READ_REG(hw, E1000_SEC);
|
|
}
|
|
|
|
stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
|
|
stats->mpc += E1000_READ_REG(hw, E1000_MPC);
|
|
stats->scc += E1000_READ_REG(hw, E1000_SCC);
|
|
stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
|
|
|
|
stats->mcc += E1000_READ_REG(hw, E1000_MCC);
|
|
stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
|
|
stats->colc += E1000_READ_REG(hw, E1000_COLC);
|
|
stats->dc += E1000_READ_REG(hw, E1000_DC);
|
|
stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
|
|
stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
|
|
stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
|
|
/*
|
|
** For watchdog management we need to know if we have been
|
|
** paused during the last interval, so capture that here.
|
|
*/
|
|
pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
|
|
stats->xoffrxc += pause_frames;
|
|
stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
|
|
stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
|
|
stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
|
|
stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
|
|
stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
|
|
stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
|
|
stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
|
|
stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
|
|
stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
|
|
stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
|
|
stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
|
|
stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
|
|
|
|
/* For the 64-bit byte counters the low dword must be read first. */
|
|
/* Both registers clear on the read of the high dword */
|
|
|
|
/* Workaround CRC bytes included in size, take away 4 bytes/packet */
|
|
stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
|
|
stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
|
|
stats->gorc -= (stats->gprc - old_gprc) * ETHER_CRC_LEN;
|
|
stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
|
|
stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
|
|
stats->gotc -= (stats->gptc - old_gptc) * ETHER_CRC_LEN;
|
|
|
|
stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
|
|
stats->ruc += E1000_READ_REG(hw, E1000_RUC);
|
|
stats->rfc += E1000_READ_REG(hw, E1000_RFC);
|
|
stats->roc += E1000_READ_REG(hw, E1000_ROC);
|
|
stats->rjc += E1000_READ_REG(hw, E1000_RJC);
|
|
|
|
stats->tpr += E1000_READ_REG(hw, E1000_TPR);
|
|
stats->tpt += E1000_READ_REG(hw, E1000_TPT);
|
|
|
|
stats->tor += E1000_READ_REG(hw, E1000_TORL);
|
|
stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
|
|
stats->tor -= (stats->tpr - old_tpr) * ETHER_CRC_LEN;
|
|
stats->tot += E1000_READ_REG(hw, E1000_TOTL);
|
|
stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
|
|
stats->tot -= (stats->tpt - old_tpt) * ETHER_CRC_LEN;
|
|
|
|
stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
|
|
stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
|
|
stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
|
|
stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
|
|
stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
|
|
stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
|
|
stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
|
|
stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
|
|
|
|
/* Interrupt Counts */
|
|
|
|
stats->iac += E1000_READ_REG(hw, E1000_IAC);
|
|
stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
|
|
stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
|
|
stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
|
|
stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
|
|
stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
|
|
stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
|
|
stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
|
|
stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
|
|
|
|
/* Host to Card Statistics */
|
|
|
|
stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
|
|
stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
|
|
stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
|
|
stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
|
|
stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
|
|
stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
|
|
stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
|
|
stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
|
|
stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
|
|
stats->hgorc -= (stats->rpthc - old_rpthc) * ETHER_CRC_LEN;
|
|
stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
|
|
stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
|
|
stats->hgotc -= (stats->hgptc - old_hgptc) * ETHER_CRC_LEN;
|
|
stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
|
|
stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
|
|
stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
|
|
|
|
stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
|
|
stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
|
|
stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
|
|
stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
|
|
stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
|
|
stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
|
|
}
|
|
|
|
static void
|
|
eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_hw_stats *stats =
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
|
|
igb_read_stats_registers(hw, stats);
|
|
|
|
if (rte_stats == NULL)
|
|
return;
|
|
|
|
/* Rx Errors */
|
|
rte_stats->imissed = stats->mpc;
|
|
rte_stats->ierrors = stats->crcerrs +
|
|
stats->rlec + stats->ruc + stats->roc +
|
|
stats->rxerrc + stats->algnerrc + stats->cexterr;
|
|
|
|
/* Tx Errors */
|
|
rte_stats->oerrors = stats->ecol + stats->latecol;
|
|
|
|
rte_stats->ipackets = stats->gprc;
|
|
rte_stats->opackets = stats->gptc;
|
|
rte_stats->ibytes = stats->gorc;
|
|
rte_stats->obytes = stats->gotc;
|
|
}
|
|
|
|
static void
|
|
eth_igb_stats_reset(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw_stats *hw_stats =
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
|
|
/* HW registers are cleared on read */
|
|
eth_igb_stats_get(dev, NULL);
|
|
|
|
/* Reset software totals */
|
|
memset(hw_stats, 0, sizeof(*hw_stats));
|
|
}
|
|
|
|
static void
|
|
eth_igb_xstats_reset(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw_stats *stats =
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
|
|
/* HW registers are cleared on read */
|
|
eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
|
|
|
|
/* Reset software totals */
|
|
memset(stats, 0, sizeof(*stats));
|
|
}
|
|
|
|
static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
|
|
struct rte_eth_xstat_name *xstats_names,
|
|
__rte_unused unsigned limit)
|
|
{
|
|
unsigned i;
|
|
|
|
if (xstats_names == NULL)
|
|
return IGB_NB_XSTATS;
|
|
|
|
/* Note: limit checked in rte_eth_xstats_names() */
|
|
|
|
for (i = 0; i < IGB_NB_XSTATS; i++) {
|
|
snprintf(xstats_names[i].name, sizeof(xstats_names[i].name),
|
|
"%s", rte_igb_stats_strings[i].name);
|
|
}
|
|
|
|
return IGB_NB_XSTATS;
|
|
}
|
|
|
|
static int
|
|
eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
|
|
unsigned n)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_hw_stats *hw_stats =
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
unsigned i;
|
|
|
|
if (n < IGB_NB_XSTATS)
|
|
return IGB_NB_XSTATS;
|
|
|
|
igb_read_stats_registers(hw, hw_stats);
|
|
|
|
/* If this is a reset xstats is NULL, and we have cleared the
|
|
* registers by reading them.
|
|
*/
|
|
if (!xstats)
|
|
return 0;
|
|
|
|
/* Extended stats */
|
|
for (i = 0; i < IGB_NB_XSTATS; i++) {
|
|
xstats[i].id = i;
|
|
xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
|
|
rte_igb_stats_strings[i].offset);
|
|
}
|
|
|
|
return IGB_NB_XSTATS;
|
|
}
|
|
|
|
static void
|
|
igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
|
|
{
|
|
/* Good Rx packets, include VF loopback */
|
|
UPDATE_VF_STAT(E1000_VFGPRC,
|
|
hw_stats->last_gprc, hw_stats->gprc);
|
|
|
|
/* Good Rx octets, include VF loopback */
|
|
UPDATE_VF_STAT(E1000_VFGORC,
|
|
hw_stats->last_gorc, hw_stats->gorc);
|
|
|
|
/* Good Tx packets, include VF loopback */
|
|
UPDATE_VF_STAT(E1000_VFGPTC,
|
|
hw_stats->last_gptc, hw_stats->gptc);
|
|
|
|
/* Good Tx octets, include VF loopback */
|
|
UPDATE_VF_STAT(E1000_VFGOTC,
|
|
hw_stats->last_gotc, hw_stats->gotc);
|
|
|
|
/* Rx Multicst packets */
|
|
UPDATE_VF_STAT(E1000_VFMPRC,
|
|
hw_stats->last_mprc, hw_stats->mprc);
|
|
|
|
/* Good Rx loopback packets */
|
|
UPDATE_VF_STAT(E1000_VFGPRLBC,
|
|
hw_stats->last_gprlbc, hw_stats->gprlbc);
|
|
|
|
/* Good Rx loopback octets */
|
|
UPDATE_VF_STAT(E1000_VFGORLBC,
|
|
hw_stats->last_gorlbc, hw_stats->gorlbc);
|
|
|
|
/* Good Tx loopback packets */
|
|
UPDATE_VF_STAT(E1000_VFGPTLBC,
|
|
hw_stats->last_gptlbc, hw_stats->gptlbc);
|
|
|
|
/* Good Tx loopback octets */
|
|
UPDATE_VF_STAT(E1000_VFGOTLBC,
|
|
hw_stats->last_gotlbc, hw_stats->gotlbc);
|
|
}
|
|
|
|
static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
|
|
struct rte_eth_xstat_name *xstats_names,
|
|
__rte_unused unsigned limit)
|
|
{
|
|
unsigned i;
|
|
|
|
if (xstats_names != NULL)
|
|
for (i = 0; i < IGBVF_NB_XSTATS; i++) {
|
|
snprintf(xstats_names[i].name,
|
|
sizeof(xstats_names[i].name), "%s",
|
|
rte_igbvf_stats_strings[i].name);
|
|
}
|
|
return IGBVF_NB_XSTATS;
|
|
}
|
|
|
|
static int
|
|
eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
|
|
unsigned n)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
unsigned i;
|
|
|
|
if (n < IGBVF_NB_XSTATS)
|
|
return IGBVF_NB_XSTATS;
|
|
|
|
igbvf_read_stats_registers(hw, hw_stats);
|
|
|
|
if (!xstats)
|
|
return 0;
|
|
|
|
for (i = 0; i < IGBVF_NB_XSTATS; i++) {
|
|
xstats[i].id = i;
|
|
xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
|
|
rte_igbvf_stats_strings[i].offset);
|
|
}
|
|
|
|
return IGBVF_NB_XSTATS;
|
|
}
|
|
|
|
static void
|
|
eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
|
|
igbvf_read_stats_registers(hw, hw_stats);
|
|
|
|
if (rte_stats == NULL)
|
|
return;
|
|
|
|
rte_stats->ipackets = hw_stats->gprc;
|
|
rte_stats->ibytes = hw_stats->gorc;
|
|
rte_stats->opackets = hw_stats->gptc;
|
|
rte_stats->obytes = hw_stats->gotc;
|
|
}
|
|
|
|
static void
|
|
eth_igbvf_stats_reset(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
|
|
/* Sync HW register to the last stats */
|
|
eth_igbvf_stats_get(dev, NULL);
|
|
|
|
/* reset HW current stats*/
|
|
memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
|
|
offsetof(struct e1000_vf_stats, gprc));
|
|
}
|
|
|
|
static int
|
|
eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
|
|
size_t fw_size)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_fw_version fw;
|
|
int ret;
|
|
|
|
e1000_get_fw_version(hw, &fw);
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
if (!(e1000_get_flash_presence_i210(hw))) {
|
|
ret = snprintf(fw_version, fw_size,
|
|
"%2d.%2d-%d",
|
|
fw.invm_major, fw.invm_minor,
|
|
fw.invm_img_type);
|
|
break;
|
|
}
|
|
/* fall through */
|
|
default:
|
|
/* if option rom is valid, display its version too */
|
|
if (fw.or_valid) {
|
|
ret = snprintf(fw_version, fw_size,
|
|
"%d.%d, 0x%08x, %d.%d.%d",
|
|
fw.eep_major, fw.eep_minor, fw.etrack_id,
|
|
fw.or_major, fw.or_build, fw.or_patch);
|
|
/* no option rom */
|
|
} else {
|
|
if (fw.etrack_id != 0X0000) {
|
|
ret = snprintf(fw_version, fw_size,
|
|
"%d.%d, 0x%08x",
|
|
fw.eep_major, fw.eep_minor,
|
|
fw.etrack_id);
|
|
} else {
|
|
ret = snprintf(fw_version, fw_size,
|
|
"%d.%d.%d",
|
|
fw.eep_major, fw.eep_minor,
|
|
fw.eep_build);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
ret += 1; /* add the size of '\0' */
|
|
if (fw_size < (u32)ret)
|
|
return ret;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
dev_info->pci_dev = RTE_DEV_TO_PCI(dev->device);
|
|
dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
|
|
dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
|
|
dev_info->max_mac_addrs = hw->mac.rar_entry_count;
|
|
dev_info->rx_offload_capa =
|
|
DEV_RX_OFFLOAD_VLAN_STRIP |
|
|
DEV_RX_OFFLOAD_IPV4_CKSUM |
|
|
DEV_RX_OFFLOAD_UDP_CKSUM |
|
|
DEV_RX_OFFLOAD_TCP_CKSUM;
|
|
dev_info->tx_offload_capa =
|
|
DEV_TX_OFFLOAD_VLAN_INSERT |
|
|
DEV_TX_OFFLOAD_IPV4_CKSUM |
|
|
DEV_TX_OFFLOAD_UDP_CKSUM |
|
|
DEV_TX_OFFLOAD_TCP_CKSUM |
|
|
DEV_TX_OFFLOAD_SCTP_CKSUM |
|
|
DEV_TX_OFFLOAD_TCP_TSO;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82575:
|
|
dev_info->max_rx_queues = 4;
|
|
dev_info->max_tx_queues = 4;
|
|
dev_info->max_vmdq_pools = 0;
|
|
break;
|
|
|
|
case e1000_82576:
|
|
dev_info->max_rx_queues = 16;
|
|
dev_info->max_tx_queues = 16;
|
|
dev_info->max_vmdq_pools = ETH_8_POOLS;
|
|
dev_info->vmdq_queue_num = 16;
|
|
break;
|
|
|
|
case e1000_82580:
|
|
dev_info->max_rx_queues = 8;
|
|
dev_info->max_tx_queues = 8;
|
|
dev_info->max_vmdq_pools = ETH_8_POOLS;
|
|
dev_info->vmdq_queue_num = 8;
|
|
break;
|
|
|
|
case e1000_i350:
|
|
dev_info->max_rx_queues = 8;
|
|
dev_info->max_tx_queues = 8;
|
|
dev_info->max_vmdq_pools = ETH_8_POOLS;
|
|
dev_info->vmdq_queue_num = 8;
|
|
break;
|
|
|
|
case e1000_i354:
|
|
dev_info->max_rx_queues = 8;
|
|
dev_info->max_tx_queues = 8;
|
|
break;
|
|
|
|
case e1000_i210:
|
|
dev_info->max_rx_queues = 4;
|
|
dev_info->max_tx_queues = 4;
|
|
dev_info->max_vmdq_pools = 0;
|
|
break;
|
|
|
|
case e1000_i211:
|
|
dev_info->max_rx_queues = 2;
|
|
dev_info->max_tx_queues = 2;
|
|
dev_info->max_vmdq_pools = 0;
|
|
break;
|
|
|
|
default:
|
|
/* Should not happen */
|
|
break;
|
|
}
|
|
dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
|
|
dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
|
|
dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
|
|
|
|
dev_info->default_rxconf = (struct rte_eth_rxconf) {
|
|
.rx_thresh = {
|
|
.pthresh = IGB_DEFAULT_RX_PTHRESH,
|
|
.hthresh = IGB_DEFAULT_RX_HTHRESH,
|
|
.wthresh = IGB_DEFAULT_RX_WTHRESH,
|
|
},
|
|
.rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
|
|
.rx_drop_en = 0,
|
|
};
|
|
|
|
dev_info->default_txconf = (struct rte_eth_txconf) {
|
|
.tx_thresh = {
|
|
.pthresh = IGB_DEFAULT_TX_PTHRESH,
|
|
.hthresh = IGB_DEFAULT_TX_HTHRESH,
|
|
.wthresh = IGB_DEFAULT_TX_WTHRESH,
|
|
},
|
|
.txq_flags = 0,
|
|
};
|
|
|
|
dev_info->rx_desc_lim = rx_desc_lim;
|
|
dev_info->tx_desc_lim = tx_desc_lim;
|
|
|
|
dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
|
|
ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
|
|
ETH_LINK_SPEED_1G;
|
|
}
|
|
|
|
static const uint32_t *
|
|
eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
|
|
{
|
|
static const uint32_t ptypes[] = {
|
|
/* refers to igb_rxd_pkt_info_to_pkt_type() */
|
|
RTE_PTYPE_L2_ETHER,
|
|
RTE_PTYPE_L3_IPV4,
|
|
RTE_PTYPE_L3_IPV4_EXT,
|
|
RTE_PTYPE_L3_IPV6,
|
|
RTE_PTYPE_L3_IPV6_EXT,
|
|
RTE_PTYPE_L4_TCP,
|
|
RTE_PTYPE_L4_UDP,
|
|
RTE_PTYPE_L4_SCTP,
|
|
RTE_PTYPE_TUNNEL_IP,
|
|
RTE_PTYPE_INNER_L3_IPV6,
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT,
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
RTE_PTYPE_UNKNOWN
|
|
};
|
|
|
|
if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
|
|
dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
|
|
return ptypes;
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
dev_info->pci_dev = RTE_DEV_TO_PCI(dev->device);
|
|
dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
|
|
dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
|
|
dev_info->max_mac_addrs = hw->mac.rar_entry_count;
|
|
dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
|
|
DEV_RX_OFFLOAD_IPV4_CKSUM |
|
|
DEV_RX_OFFLOAD_UDP_CKSUM |
|
|
DEV_RX_OFFLOAD_TCP_CKSUM;
|
|
dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
|
|
DEV_TX_OFFLOAD_IPV4_CKSUM |
|
|
DEV_TX_OFFLOAD_UDP_CKSUM |
|
|
DEV_TX_OFFLOAD_TCP_CKSUM |
|
|
DEV_TX_OFFLOAD_SCTP_CKSUM |
|
|
DEV_TX_OFFLOAD_TCP_TSO;
|
|
switch (hw->mac.type) {
|
|
case e1000_vfadapt:
|
|
dev_info->max_rx_queues = 2;
|
|
dev_info->max_tx_queues = 2;
|
|
break;
|
|
case e1000_vfadapt_i350:
|
|
dev_info->max_rx_queues = 1;
|
|
dev_info->max_tx_queues = 1;
|
|
break;
|
|
default:
|
|
/* Should not happen */
|
|
break;
|
|
}
|
|
|
|
dev_info->default_rxconf = (struct rte_eth_rxconf) {
|
|
.rx_thresh = {
|
|
.pthresh = IGB_DEFAULT_RX_PTHRESH,
|
|
.hthresh = IGB_DEFAULT_RX_HTHRESH,
|
|
.wthresh = IGB_DEFAULT_RX_WTHRESH,
|
|
},
|
|
.rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
|
|
.rx_drop_en = 0,
|
|
};
|
|
|
|
dev_info->default_txconf = (struct rte_eth_txconf) {
|
|
.tx_thresh = {
|
|
.pthresh = IGB_DEFAULT_TX_PTHRESH,
|
|
.hthresh = IGB_DEFAULT_TX_HTHRESH,
|
|
.wthresh = IGB_DEFAULT_TX_WTHRESH,
|
|
},
|
|
.txq_flags = 0,
|
|
};
|
|
|
|
dev_info->rx_desc_lim = rx_desc_lim;
|
|
dev_info->tx_desc_lim = tx_desc_lim;
|
|
}
|
|
|
|
/* return 0 means link status changed, -1 means not changed */
|
|
static int
|
|
eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_eth_link link, old;
|
|
int link_check, count;
|
|
|
|
link_check = 0;
|
|
hw->mac.get_link_status = 1;
|
|
|
|
/* possible wait-to-complete in up to 9 seconds */
|
|
for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
|
|
/* Read the real link status */
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_copper:
|
|
/* Do the work to read phy */
|
|
e1000_check_for_link(hw);
|
|
link_check = !hw->mac.get_link_status;
|
|
break;
|
|
|
|
case e1000_media_type_fiber:
|
|
e1000_check_for_link(hw);
|
|
link_check = (E1000_READ_REG(hw, E1000_STATUS) &
|
|
E1000_STATUS_LU);
|
|
break;
|
|
|
|
case e1000_media_type_internal_serdes:
|
|
e1000_check_for_link(hw);
|
|
link_check = hw->mac.serdes_has_link;
|
|
break;
|
|
|
|
/* VF device is type_unknown */
|
|
case e1000_media_type_unknown:
|
|
eth_igbvf_link_update(hw);
|
|
link_check = !hw->mac.get_link_status;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
if (link_check || wait_to_complete == 0)
|
|
break;
|
|
rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
|
|
}
|
|
memset(&link, 0, sizeof(link));
|
|
rte_igb_dev_atomic_read_link_status(dev, &link);
|
|
old = link;
|
|
|
|
/* Now we check if a transition has happened */
|
|
if (link_check) {
|
|
uint16_t duplex, speed;
|
|
hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
|
|
link.link_duplex = (duplex == FULL_DUPLEX) ?
|
|
ETH_LINK_FULL_DUPLEX :
|
|
ETH_LINK_HALF_DUPLEX;
|
|
link.link_speed = speed;
|
|
link.link_status = ETH_LINK_UP;
|
|
link.link_autoneg = !(dev->data->dev_conf.link_speeds &
|
|
ETH_LINK_SPEED_FIXED);
|
|
} else if (!link_check) {
|
|
link.link_speed = 0;
|
|
link.link_duplex = ETH_LINK_HALF_DUPLEX;
|
|
link.link_status = ETH_LINK_DOWN;
|
|
link.link_autoneg = ETH_LINK_SPEED_FIXED;
|
|
}
|
|
rte_igb_dev_atomic_write_link_status(dev, &link);
|
|
|
|
/* not changed */
|
|
if (old.link_status == link.link_status)
|
|
return -1;
|
|
|
|
/* changed */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means
|
|
* that the driver is loaded.
|
|
*/
|
|
static void
|
|
igb_hw_control_acquire(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl_ext;
|
|
|
|
/* Let firmware know the driver has taken over */
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
|
|
/*
|
|
* igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that the
|
|
* driver is no longer loaded.
|
|
*/
|
|
static void
|
|
igb_hw_control_release(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl_ext;
|
|
|
|
/* Let firmware taken over control of h/w */
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
|
|
/*
|
|
* Bit of a misnomer, what this really means is
|
|
* to enable OS management of the system... aka
|
|
* to disable special hardware management features.
|
|
*/
|
|
static void
|
|
igb_init_manageability(struct e1000_hw *hw)
|
|
{
|
|
if (e1000_enable_mng_pass_thru(hw)) {
|
|
uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
|
|
uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
|
|
|
|
/* disable hardware interception of ARP */
|
|
manc &= ~(E1000_MANC_ARP_EN);
|
|
|
|
/* enable receiving management packets to the host */
|
|
manc |= E1000_MANC_EN_MNG2HOST;
|
|
manc2h |= 1 << 5; /* Mng Port 623 */
|
|
manc2h |= 1 << 6; /* Mng Port 664 */
|
|
E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
|
|
E1000_WRITE_REG(hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
igb_release_manageability(struct e1000_hw *hw)
|
|
{
|
|
if (e1000_enable_mng_pass_thru(hw)) {
|
|
uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
|
|
|
|
manc |= E1000_MANC_ARP_EN;
|
|
manc &= ~E1000_MANC_EN_MNG2HOST;
|
|
|
|
E1000_WRITE_REG(hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static void
|
|
eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl &= (~E1000_RCTL_UPE);
|
|
if (dev->data->all_multicast == 1)
|
|
rctl |= E1000_RCTL_MPE;
|
|
else
|
|
rctl &= (~E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static void
|
|
eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl |= E1000_RCTL_MPE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static void
|
|
eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
if (dev->data->promiscuous == 1)
|
|
return; /* must remain in all_multicast mode */
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl &= (~E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static int
|
|
eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
|
|
uint32_t vfta;
|
|
uint32_t vid_idx;
|
|
uint32_t vid_bit;
|
|
|
|
vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
|
|
E1000_VFTA_ENTRY_MASK);
|
|
vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
|
|
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
|
|
if (on)
|
|
vfta |= vid_bit;
|
|
else
|
|
vfta &= ~vid_bit;
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
|
|
|
|
/* update local VFTA copy */
|
|
shadow_vfta->vfta[vid_idx] = vfta;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
|
|
enum rte_vlan_type vlan_type,
|
|
uint16_t tpid)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg, qinq;
|
|
|
|
qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
qinq &= E1000_CTRL_EXT_EXT_VLAN;
|
|
|
|
/* only outer TPID of double VLAN can be configured*/
|
|
if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
|
|
reg = E1000_READ_REG(hw, E1000_VET);
|
|
reg = (reg & (~E1000_VET_VET_EXT)) |
|
|
((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
|
|
E1000_WRITE_REG(hw, E1000_VET, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* all other TPID values are read-only*/
|
|
PMD_DRV_LOG(ERR, "Not supported");
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* Filter Table Disable */
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
reg &= ~E1000_RCTL_CFIEN;
|
|
reg &= ~E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
/* Filter Table Enable, CFI not used for packet acceptance */
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
reg &= ~E1000_RCTL_CFIEN;
|
|
reg |= E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
|
|
/* restore VFTA table */
|
|
for (i = 0; i < IGB_VFTA_SIZE; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* VLAN Mode Disable */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
reg &= ~E1000_CTRL_VME;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, reg);
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* VLAN Mode Enable */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
reg |= E1000_CTRL_VME;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, reg);
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* CTRL_EXT: Extended VLAN */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
|
|
|
|
/* Update maximum packet length */
|
|
if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
|
|
E1000_WRITE_REG(hw, E1000_RLPML,
|
|
dev->data->dev_conf.rxmode.max_rx_pkt_len +
|
|
VLAN_TAG_SIZE);
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* CTRL_EXT: Extended VLAN */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
reg |= E1000_CTRL_EXT_EXTEND_VLAN;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
|
|
|
|
/* Update maximum packet length */
|
|
if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
|
|
E1000_WRITE_REG(hw, E1000_RLPML,
|
|
dev->data->dev_conf.rxmode.max_rx_pkt_len +
|
|
2 * VLAN_TAG_SIZE);
|
|
}
|
|
|
|
static void
|
|
eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
|
|
{
|
|
if(mask & ETH_VLAN_STRIP_MASK){
|
|
if (dev->data->dev_conf.rxmode.hw_vlan_strip)
|
|
igb_vlan_hw_strip_enable(dev);
|
|
else
|
|
igb_vlan_hw_strip_disable(dev);
|
|
}
|
|
|
|
if(mask & ETH_VLAN_FILTER_MASK){
|
|
if (dev->data->dev_conf.rxmode.hw_vlan_filter)
|
|
igb_vlan_hw_filter_enable(dev);
|
|
else
|
|
igb_vlan_hw_filter_disable(dev);
|
|
}
|
|
|
|
if(mask & ETH_VLAN_EXTEND_MASK){
|
|
if (dev->data->dev_conf.rxmode.hw_vlan_extend)
|
|
igb_vlan_hw_extend_enable(dev);
|
|
else
|
|
igb_vlan_hw_extend_disable(dev);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* It enables the interrupt mask and then enable the interrupt.
|
|
*
|
|
* @param dev
|
|
* Pointer to struct rte_eth_dev.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
|
|
intr->mask |= E1000_ICR_LSC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* It clears the interrupt causes and enables the interrupt.
|
|
* It will be called once only during nic initialized.
|
|
*
|
|
* @param dev
|
|
* Pointer to struct rte_eth_dev.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
|
|
{
|
|
uint32_t mask, regval;
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_eth_dev_info dev_info;
|
|
|
|
memset(&dev_info, 0, sizeof(dev_info));
|
|
eth_igb_infos_get(dev, &dev_info);
|
|
|
|
mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues);
|
|
regval = E1000_READ_REG(hw, E1000_EIMS);
|
|
E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It reads ICR and gets interrupt causes, check it and set a bit flag
|
|
* to update link status.
|
|
*
|
|
* @param dev
|
|
* Pointer to struct rte_eth_dev.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
|
|
{
|
|
uint32_t icr;
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
|
|
igb_intr_disable(hw);
|
|
|
|
/* read-on-clear nic registers here */
|
|
icr = E1000_READ_REG(hw, E1000_ICR);
|
|
|
|
intr->flags = 0;
|
|
if (icr & E1000_ICR_LSC) {
|
|
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
|
|
}
|
|
|
|
if (icr & E1000_ICR_VMMB)
|
|
intr->flags |= E1000_FLAG_MAILBOX;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It executes link_update after knowing an interrupt is prsent.
|
|
*
|
|
* @param dev
|
|
* Pointer to struct rte_eth_dev.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
eth_igb_interrupt_action(struct rte_eth_dev *dev,
|
|
struct rte_intr_handle *intr_handle)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
|
|
uint32_t tctl, rctl;
|
|
struct rte_eth_link link;
|
|
int ret;
|
|
|
|
if (intr->flags & E1000_FLAG_MAILBOX) {
|
|
igb_pf_mbx_process(dev);
|
|
intr->flags &= ~E1000_FLAG_MAILBOX;
|
|
}
|
|
|
|
igb_intr_enable(dev);
|
|
rte_intr_enable(intr_handle);
|
|
|
|
if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
|
|
intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
|
|
|
|
/* set get_link_status to check register later */
|
|
hw->mac.get_link_status = 1;
|
|
ret = eth_igb_link_update(dev, 0);
|
|
|
|
/* check if link has changed */
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
memset(&link, 0, sizeof(link));
|
|
rte_igb_dev_atomic_read_link_status(dev, &link);
|
|
if (link.link_status) {
|
|
PMD_INIT_LOG(INFO,
|
|
" Port %d: Link Up - speed %u Mbps - %s",
|
|
dev->data->port_id,
|
|
(unsigned)link.link_speed,
|
|
link.link_duplex == ETH_LINK_FULL_DUPLEX ?
|
|
"full-duplex" : "half-duplex");
|
|
} else {
|
|
PMD_INIT_LOG(INFO, " Port %d: Link Down",
|
|
dev->data->port_id);
|
|
}
|
|
|
|
PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
|
|
pci_dev->addr.domain,
|
|
pci_dev->addr.bus,
|
|
pci_dev->addr.devid,
|
|
pci_dev->addr.function);
|
|
tctl = E1000_READ_REG(hw, E1000_TCTL);
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
if (link.link_status) {
|
|
/* enable Tx/Rx */
|
|
tctl |= E1000_TCTL_EN;
|
|
rctl |= E1000_RCTL_EN;
|
|
} else {
|
|
/* disable Tx/Rx */
|
|
tctl &= ~E1000_TCTL_EN;
|
|
rctl &= ~E1000_RCTL_EN;
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Interrupt handler which shall be registered at first.
|
|
*
|
|
* @param handle
|
|
* Pointer to interrupt handle.
|
|
* @param param
|
|
* The address of parameter (struct rte_eth_dev *) regsitered before.
|
|
*
|
|
* @return
|
|
* void
|
|
*/
|
|
static void
|
|
eth_igb_interrupt_handler(struct rte_intr_handle *handle, void *param)
|
|
{
|
|
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
|
|
|
|
eth_igb_interrupt_get_status(dev);
|
|
eth_igb_interrupt_action(dev, handle);
|
|
}
|
|
|
|
static int
|
|
eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
|
|
{
|
|
uint32_t eicr;
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
|
|
igbvf_intr_disable(hw);
|
|
|
|
/* read-on-clear nic registers here */
|
|
eicr = E1000_READ_REG(hw, E1000_EICR);
|
|
intr->flags = 0;
|
|
|
|
if (eicr == E1000_VTIVAR_MISC_MAILBOX)
|
|
intr->flags |= E1000_FLAG_MAILBOX;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void igbvf_mbx_process(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_mbx_info *mbx = &hw->mbx;
|
|
u32 in_msg = 0;
|
|
|
|
if (mbx->ops.read(hw, &in_msg, 1, 0))
|
|
return;
|
|
|
|
/* PF reset VF event */
|
|
if (in_msg == E1000_PF_CONTROL_MSG)
|
|
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET, NULL);
|
|
}
|
|
|
|
static int
|
|
eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
|
|
{
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
|
|
if (intr->flags & E1000_FLAG_MAILBOX) {
|
|
igbvf_mbx_process(dev);
|
|
intr->flags &= ~E1000_FLAG_MAILBOX;
|
|
}
|
|
|
|
igbvf_intr_enable(dev);
|
|
rte_intr_enable(intr_handle);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
eth_igbvf_interrupt_handler(struct rte_intr_handle *handle,
|
|
void *param)
|
|
{
|
|
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
|
|
|
|
eth_igbvf_interrupt_get_status(dev);
|
|
eth_igbvf_interrupt_action(dev, handle);
|
|
}
|
|
|
|
static int
|
|
eth_igb_led_on(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
|
|
}
|
|
|
|
static int
|
|
eth_igb_led_off(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
|
|
}
|
|
|
|
static int
|
|
eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
|
|
{
|
|
struct e1000_hw *hw;
|
|
uint32_t ctrl;
|
|
int tx_pause;
|
|
int rx_pause;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
fc_conf->pause_time = hw->fc.pause_time;
|
|
fc_conf->high_water = hw->fc.high_water;
|
|
fc_conf->low_water = hw->fc.low_water;
|
|
fc_conf->send_xon = hw->fc.send_xon;
|
|
fc_conf->autoneg = hw->mac.autoneg;
|
|
|
|
/*
|
|
* Return rx_pause and tx_pause status according to actual setting of
|
|
* the TFCE and RFCE bits in the CTRL register.
|
|
*/
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
if (ctrl & E1000_CTRL_TFCE)
|
|
tx_pause = 1;
|
|
else
|
|
tx_pause = 0;
|
|
|
|
if (ctrl & E1000_CTRL_RFCE)
|
|
rx_pause = 1;
|
|
else
|
|
rx_pause = 0;
|
|
|
|
if (rx_pause && tx_pause)
|
|
fc_conf->mode = RTE_FC_FULL;
|
|
else if (rx_pause)
|
|
fc_conf->mode = RTE_FC_RX_PAUSE;
|
|
else if (tx_pause)
|
|
fc_conf->mode = RTE_FC_TX_PAUSE;
|
|
else
|
|
fc_conf->mode = RTE_FC_NONE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
|
|
{
|
|
struct e1000_hw *hw;
|
|
int err;
|
|
enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
|
|
e1000_fc_none,
|
|
e1000_fc_rx_pause,
|
|
e1000_fc_tx_pause,
|
|
e1000_fc_full
|
|
};
|
|
uint32_t rx_buf_size;
|
|
uint32_t max_high_water;
|
|
uint32_t rctl;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
if (fc_conf->autoneg != hw->mac.autoneg)
|
|
return -ENOTSUP;
|
|
rx_buf_size = igb_get_rx_buffer_size(hw);
|
|
PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
|
|
|
|
/* At least reserve one Ethernet frame for watermark */
|
|
max_high_water = rx_buf_size - ETHER_MAX_LEN;
|
|
if ((fc_conf->high_water > max_high_water) ||
|
|
(fc_conf->high_water < fc_conf->low_water)) {
|
|
PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
|
|
PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
|
|
return -EINVAL;
|
|
}
|
|
|
|
hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
|
|
hw->fc.pause_time = fc_conf->pause_time;
|
|
hw->fc.high_water = fc_conf->high_water;
|
|
hw->fc.low_water = fc_conf->low_water;
|
|
hw->fc.send_xon = fc_conf->send_xon;
|
|
|
|
err = e1000_setup_link_generic(hw);
|
|
if (err == E1000_SUCCESS) {
|
|
|
|
/* check if we want to forward MAC frames - driver doesn't have native
|
|
* capability to do that, so we'll write the registers ourselves */
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
|
|
/* set or clear MFLCN.PMCF bit depending on configuration */
|
|
if (fc_conf->mac_ctrl_frame_fwd != 0)
|
|
rctl |= E1000_RCTL_PMCF;
|
|
else
|
|
rctl &= ~E1000_RCTL_PMCF;
|
|
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
|
|
return -EIO;
|
|
}
|
|
|
|
#define E1000_RAH_POOLSEL_SHIFT (18)
|
|
static void
|
|
eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
|
|
uint32_t index, __rte_unused uint32_t pool)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rah;
|
|
|
|
e1000_rar_set(hw, mac_addr->addr_bytes, index);
|
|
rah = E1000_READ_REG(hw, E1000_RAH(index));
|
|
rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
|
|
E1000_WRITE_REG(hw, E1000_RAH(index), rah);
|
|
}
|
|
|
|
static void
|
|
eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
|
|
{
|
|
uint8_t addr[ETHER_ADDR_LEN];
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
memset(addr, 0, sizeof(addr));
|
|
|
|
e1000_rar_set(hw, addr, index);
|
|
}
|
|
|
|
static void
|
|
eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
|
|
struct ether_addr *addr)
|
|
{
|
|
eth_igb_rar_clear(dev, 0);
|
|
|
|
eth_igb_rar_set(dev, (void *)addr, 0, 0);
|
|
}
|
|
/*
|
|
* Virtual Function operations
|
|
*/
|
|
static void
|
|
igbvf_intr_disable(struct e1000_hw *hw)
|
|
{
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/* Clear interrupt mask to stop from interrupts being generated */
|
|
E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
|
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
static void
|
|
igbvf_stop_adapter(struct rte_eth_dev *dev)
|
|
{
|
|
u32 reg_val;
|
|
u16 i;
|
|
struct rte_eth_dev_info dev_info;
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
memset(&dev_info, 0, sizeof(dev_info));
|
|
eth_igbvf_infos_get(dev, &dev_info);
|
|
|
|
/* Clear interrupt mask to stop from interrupts being generated */
|
|
igbvf_intr_disable(hw);
|
|
|
|
/* Clear any pending interrupts, flush previous writes */
|
|
E1000_READ_REG(hw, E1000_EICR);
|
|
|
|
/* Disable the transmit unit. Each queue must be disabled. */
|
|
for (i = 0; i < dev_info.max_tx_queues; i++)
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
|
|
|
|
/* Disable the receive unit by stopping each queue */
|
|
for (i = 0; i < dev_info.max_rx_queues; i++) {
|
|
reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
|
|
reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
|
|
while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
|
|
;
|
|
}
|
|
|
|
/* flush all queues disables */
|
|
E1000_WRITE_FLUSH(hw);
|
|
msec_delay(2);
|
|
}
|
|
|
|
static int eth_igbvf_link_update(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mbx_info *mbx = &hw->mbx;
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
int ret_val = E1000_SUCCESS;
|
|
|
|
PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
|
|
|
|
/*
|
|
* We only want to run this if there has been a rst asserted.
|
|
* in this case that could mean a link change, device reset,
|
|
* or a virtual function reset
|
|
*/
|
|
|
|
/* If we were hit with a reset or timeout drop the link */
|
|
if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
|
|
mac->get_link_status = TRUE;
|
|
|
|
if (!mac->get_link_status)
|
|
goto out;
|
|
|
|
/* if link status is down no point in checking to see if pf is up */
|
|
if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
|
|
goto out;
|
|
|
|
/* if we passed all the tests above then the link is up and we no
|
|
* longer need to check for link */
|
|
mac->get_link_status = FALSE;
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
|
|
static int
|
|
igbvf_dev_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_conf* conf = &dev->data->dev_conf;
|
|
|
|
PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
|
|
dev->data->port_id);
|
|
|
|
/*
|
|
* VF has no ability to enable/disable HW CRC
|
|
* Keep the persistent behavior the same as Host PF
|
|
*/
|
|
#ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
|
|
if (!conf->rxmode.hw_strip_crc) {
|
|
PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
|
|
conf->rxmode.hw_strip_crc = 1;
|
|
}
|
|
#else
|
|
if (conf->rxmode.hw_strip_crc) {
|
|
PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
|
|
conf->rxmode.hw_strip_crc = 0;
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
igbvf_dev_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(dev->data->dev_private);
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
int ret;
|
|
uint32_t intr_vector = 0;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
hw->mac.ops.reset_hw(hw);
|
|
adapter->stopped = 0;
|
|
|
|
/* Set all vfta */
|
|
igbvf_set_vfta_all(dev,1);
|
|
|
|
eth_igbvf_tx_init(dev);
|
|
|
|
/* This can fail when allocating mbufs for descriptor rings */
|
|
ret = eth_igbvf_rx_init(dev);
|
|
if (ret) {
|
|
PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
|
|
igb_dev_clear_queues(dev);
|
|
return ret;
|
|
}
|
|
|
|
/* check and configure queue intr-vector mapping */
|
|
if (dev->data->dev_conf.intr_conf.rxq != 0) {
|
|
intr_vector = dev->data->nb_rx_queues;
|
|
ret = rte_intr_efd_enable(intr_handle, intr_vector);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
|
|
intr_handle->intr_vec =
|
|
rte_zmalloc("intr_vec",
|
|
dev->data->nb_rx_queues * sizeof(int), 0);
|
|
if (!intr_handle->intr_vec) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
|
|
" intr_vec\n", dev->data->nb_rx_queues);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
eth_igbvf_configure_msix_intr(dev);
|
|
|
|
/* enable uio/vfio intr/eventfd mapping */
|
|
rte_intr_enable(intr_handle);
|
|
|
|
/* resume enabled intr since hw reset */
|
|
igbvf_intr_enable(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
igbvf_dev_stop(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
igbvf_stop_adapter(dev);
|
|
|
|
/*
|
|
* Clear what we set, but we still keep shadow_vfta to
|
|
* restore after device starts
|
|
*/
|
|
igbvf_set_vfta_all(dev,0);
|
|
|
|
igb_dev_clear_queues(dev);
|
|
|
|
/* disable intr eventfd mapping */
|
|
rte_intr_disable(intr_handle);
|
|
|
|
/* Clean datapath event and queue/vec mapping */
|
|
rte_intr_efd_disable(intr_handle);
|
|
if (intr_handle->intr_vec) {
|
|
rte_free(intr_handle->intr_vec);
|
|
intr_handle->intr_vec = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
igbvf_dev_close(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(dev->data->dev_private);
|
|
struct ether_addr addr;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
e1000_reset_hw(hw);
|
|
|
|
igbvf_dev_stop(dev);
|
|
adapter->stopped = 1;
|
|
igb_dev_free_queues(dev);
|
|
|
|
/**
|
|
* reprogram the RAR with a zero mac address,
|
|
* to ensure that the VF traffic goes to the PF
|
|
* after stop, close and detach of the VF.
|
|
**/
|
|
|
|
memset(&addr, 0, sizeof(addr));
|
|
igbvf_default_mac_addr_set(dev, &addr);
|
|
}
|
|
|
|
static void
|
|
igbvf_promiscuous_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* Set both unicast and multicast promisc */
|
|
e1000_promisc_set_vf(hw, e1000_promisc_enabled);
|
|
}
|
|
|
|
static void
|
|
igbvf_promiscuous_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* If in allmulticast mode leave multicast promisc */
|
|
if (dev->data->all_multicast == 1)
|
|
e1000_promisc_set_vf(hw, e1000_promisc_multicast);
|
|
else
|
|
e1000_promisc_set_vf(hw, e1000_promisc_disabled);
|
|
}
|
|
|
|
static void
|
|
igbvf_allmulticast_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* In promiscuous mode multicast promisc already set */
|
|
if (dev->data->promiscuous == 0)
|
|
e1000_promisc_set_vf(hw, e1000_promisc_multicast);
|
|
}
|
|
|
|
static void
|
|
igbvf_allmulticast_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* In promiscuous mode leave multicast promisc enabled */
|
|
if (dev->data->promiscuous == 0)
|
|
e1000_promisc_set_vf(hw, e1000_promisc_disabled);
|
|
}
|
|
|
|
static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
|
|
{
|
|
struct e1000_mbx_info *mbx = &hw->mbx;
|
|
uint32_t msgbuf[2];
|
|
s32 err;
|
|
|
|
/* After set vlan, vlan strip will also be enabled in igb driver*/
|
|
msgbuf[0] = E1000_VF_SET_VLAN;
|
|
msgbuf[1] = vid;
|
|
/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
|
|
if (on)
|
|
msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
|
|
|
|
err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
|
|
if (err)
|
|
goto mbx_err;
|
|
|
|
err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
|
|
if (err)
|
|
goto mbx_err;
|
|
|
|
msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
|
|
if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
|
|
err = -EINVAL;
|
|
|
|
mbx_err:
|
|
return err;
|
|
}
|
|
|
|
static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
|
|
int i = 0, j = 0, vfta = 0, mask = 1;
|
|
|
|
for (i = 0; i < IGB_VFTA_SIZE; i++){
|
|
vfta = shadow_vfta->vfta[i];
|
|
if(vfta){
|
|
mask = 1;
|
|
for (j = 0; j < 32; j++){
|
|
if(vfta & mask)
|
|
igbvf_set_vfta(hw,
|
|
(uint16_t)((i<<5)+j), on);
|
|
mask<<=1;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static int
|
|
igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
|
|
uint32_t vid_idx = 0;
|
|
uint32_t vid_bit = 0;
|
|
int ret = 0;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
|
|
ret = igbvf_set_vfta(hw, vlan_id, !!on);
|
|
if(ret){
|
|
PMD_INIT_LOG(ERR, "Unable to set VF vlan");
|
|
return ret;
|
|
}
|
|
vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
|
|
vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
|
|
|
|
/*Save what we set and retore it after device reset*/
|
|
if (on)
|
|
shadow_vfta->vfta[vid_idx] |= vid_bit;
|
|
else
|
|
shadow_vfta->vfta[vid_idx] &= ~vid_bit;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* index is not used by rar_set() */
|
|
hw->mac.ops.rar_set(hw, (void *)addr, 0);
|
|
}
|
|
|
|
|
|
static int
|
|
eth_igb_rss_reta_update(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta_entry64 *reta_conf,
|
|
uint16_t reta_size)
|
|
{
|
|
uint8_t i, j, mask;
|
|
uint32_t reta, r;
|
|
uint16_t idx, shift;
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (reta_size != ETH_RSS_RETA_SIZE_128) {
|
|
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
|
|
"(%d) doesn't match the number hardware can supported "
|
|
"(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
|
|
idx = i / RTE_RETA_GROUP_SIZE;
|
|
shift = i % RTE_RETA_GROUP_SIZE;
|
|
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
|
|
IGB_4_BIT_MASK);
|
|
if (!mask)
|
|
continue;
|
|
if (mask == IGB_4_BIT_MASK)
|
|
r = 0;
|
|
else
|
|
r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
|
|
for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
|
|
if (mask & (0x1 << j))
|
|
reta |= reta_conf[idx].reta[shift + j] <<
|
|
(CHAR_BIT * j);
|
|
else
|
|
reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_rss_reta_query(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta_entry64 *reta_conf,
|
|
uint16_t reta_size)
|
|
{
|
|
uint8_t i, j, mask;
|
|
uint32_t reta;
|
|
uint16_t idx, shift;
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (reta_size != ETH_RSS_RETA_SIZE_128) {
|
|
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
|
|
"(%d) doesn't match the number hardware can supported "
|
|
"(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
|
|
idx = i / RTE_RETA_GROUP_SIZE;
|
|
shift = i % RTE_RETA_GROUP_SIZE;
|
|
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
|
|
IGB_4_BIT_MASK);
|
|
if (!mask)
|
|
continue;
|
|
reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
|
|
for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
|
|
if (mask & (0x1 << j))
|
|
reta_conf[idx].reta[shift + j] =
|
|
((reta >> (CHAR_BIT * j)) &
|
|
IGB_8_BIT_MASK);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define MAC_TYPE_FILTER_SUP(type) do {\
|
|
if ((type) != e1000_82580 && (type) != e1000_i350 &&\
|
|
(type) != e1000_82576)\
|
|
return -ENOTSUP;\
|
|
} while (0)
|
|
|
|
static int
|
|
eth_igb_syn_filter_set(struct rte_eth_dev *dev,
|
|
struct rte_eth_syn_filter *filter,
|
|
bool add)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t synqf, rfctl;
|
|
|
|
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
|
|
return -EINVAL;
|
|
|
|
synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
|
|
|
|
if (add) {
|
|
if (synqf & E1000_SYN_FILTER_ENABLE)
|
|
return -EINVAL;
|
|
|
|
synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
|
|
E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
|
|
|
|
rfctl = E1000_READ_REG(hw, E1000_RFCTL);
|
|
if (filter->hig_pri)
|
|
rfctl |= E1000_RFCTL_SYNQFP;
|
|
else
|
|
rfctl &= ~E1000_RFCTL_SYNQFP;
|
|
|
|
E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
|
|
} else {
|
|
if (!(synqf & E1000_SYN_FILTER_ENABLE))
|
|
return -ENOENT;
|
|
synqf = 0;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
|
|
E1000_WRITE_FLUSH(hw);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_syn_filter_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_syn_filter *filter)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t synqf, rfctl;
|
|
|
|
synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
|
|
if (synqf & E1000_SYN_FILTER_ENABLE) {
|
|
rfctl = E1000_READ_REG(hw, E1000_RFCTL);
|
|
filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
|
|
filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
|
|
E1000_SYN_FILTER_QUEUE_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int
|
|
eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
|
|
enum rte_filter_op filter_op,
|
|
void *arg)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
int ret;
|
|
|
|
MAC_TYPE_FILTER_SUP(hw->mac.type);
|
|
|
|
if (filter_op == RTE_ETH_FILTER_NOP)
|
|
return 0;
|
|
|
|
if (arg == NULL) {
|
|
PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
|
|
filter_op);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (filter_op) {
|
|
case RTE_ETH_FILTER_ADD:
|
|
ret = eth_igb_syn_filter_set(dev,
|
|
(struct rte_eth_syn_filter *)arg,
|
|
TRUE);
|
|
break;
|
|
case RTE_ETH_FILTER_DELETE:
|
|
ret = eth_igb_syn_filter_set(dev,
|
|
(struct rte_eth_syn_filter *)arg,
|
|
FALSE);
|
|
break;
|
|
case RTE_ETH_FILTER_GET:
|
|
ret = eth_igb_syn_filter_get(dev,
|
|
(struct rte_eth_syn_filter *)arg);
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "unsupported operation %u\n", filter_op);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define MAC_TYPE_FILTER_SUP_EXT(type) do {\
|
|
if ((type) != e1000_82580 && (type) != e1000_i350)\
|
|
return -ENOSYS; \
|
|
} while (0)
|
|
|
|
/* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
|
|
static inline int
|
|
ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
|
|
struct e1000_2tuple_filter_info *filter_info)
|
|
{
|
|
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
|
|
return -EINVAL;
|
|
if (filter->priority > E1000_2TUPLE_MAX_PRI)
|
|
return -EINVAL; /* filter index is out of range. */
|
|
if (filter->tcp_flags > TCP_FLAG_ALL)
|
|
return -EINVAL; /* flags is invalid. */
|
|
|
|
switch (filter->dst_port_mask) {
|
|
case UINT16_MAX:
|
|
filter_info->dst_port_mask = 0;
|
|
filter_info->dst_port = filter->dst_port;
|
|
break;
|
|
case 0:
|
|
filter_info->dst_port_mask = 1;
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "invalid dst_port mask.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (filter->proto_mask) {
|
|
case UINT8_MAX:
|
|
filter_info->proto_mask = 0;
|
|
filter_info->proto = filter->proto;
|
|
break;
|
|
case 0:
|
|
filter_info->proto_mask = 1;
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "invalid protocol mask.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
filter_info->priority = (uint8_t)filter->priority;
|
|
if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
|
|
filter_info->tcp_flags = filter->tcp_flags;
|
|
else
|
|
filter_info->tcp_flags = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline struct e1000_2tuple_filter *
|
|
igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
|
|
struct e1000_2tuple_filter_info *key)
|
|
{
|
|
struct e1000_2tuple_filter *it;
|
|
|
|
TAILQ_FOREACH(it, filter_list, entries) {
|
|
if (memcmp(key, &it->filter_info,
|
|
sizeof(struct e1000_2tuple_filter_info)) == 0) {
|
|
return it;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* igb_add_2tuple_filter - add a 2tuple filter
|
|
*
|
|
* @param
|
|
* dev: Pointer to struct rte_eth_dev.
|
|
* ntuple_filter: ponter to the filter that will be added.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
igb_add_2tuple_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *ntuple_filter)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_filter_info *filter_info =
|
|
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
|
|
struct e1000_2tuple_filter *filter;
|
|
uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
|
|
uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
|
|
int i, ret;
|
|
|
|
filter = rte_zmalloc("e1000_2tuple_filter",
|
|
sizeof(struct e1000_2tuple_filter), 0);
|
|
if (filter == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = ntuple_filter_to_2tuple(ntuple_filter,
|
|
&filter->filter_info);
|
|
if (ret < 0) {
|
|
rte_free(filter);
|
|
return ret;
|
|
}
|
|
if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
|
|
&filter->filter_info) != NULL) {
|
|
PMD_DRV_LOG(ERR, "filter exists.");
|
|
rte_free(filter);
|
|
return -EEXIST;
|
|
}
|
|
filter->queue = ntuple_filter->queue;
|
|
|
|
/*
|
|
* look for an unused 2tuple filter index,
|
|
* and insert the filter to list.
|
|
*/
|
|
for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
|
|
if (!(filter_info->twotuple_mask & (1 << i))) {
|
|
filter_info->twotuple_mask |= 1 << i;
|
|
filter->index = i;
|
|
TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
|
|
filter,
|
|
entries);
|
|
break;
|
|
}
|
|
}
|
|
if (i >= E1000_MAX_TTQF_FILTERS) {
|
|
PMD_DRV_LOG(ERR, "2tuple filters are full.");
|
|
rte_free(filter);
|
|
return -ENOSYS;
|
|
}
|
|
|
|
imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
|
|
if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
|
|
imir |= E1000_IMIR_PORT_BP;
|
|
else
|
|
imir &= ~E1000_IMIR_PORT_BP;
|
|
|
|
imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
|
|
|
|
ttqf |= E1000_TTQF_QUEUE_ENABLE;
|
|
ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
|
|
ttqf |= (uint32_t)(filter->filter_info.proto & E1000_TTQF_PROTOCOL_MASK);
|
|
if (filter->filter_info.proto_mask == 0)
|
|
ttqf &= ~E1000_TTQF_MASK_ENABLE;
|
|
|
|
/* tcp flags bits setting. */
|
|
if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
|
|
if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_URG;
|
|
if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_ACK;
|
|
if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_PSH;
|
|
if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_RST;
|
|
if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_SYN;
|
|
if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_FIN;
|
|
} else
|
|
imir_ext |= E1000_IMIREXT_CTRL_BP;
|
|
E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
|
|
E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
|
|
E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* igb_remove_2tuple_filter - remove a 2tuple filter
|
|
*
|
|
* @param
|
|
* dev: Pointer to struct rte_eth_dev.
|
|
* ntuple_filter: ponter to the filter that will be removed.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
igb_remove_2tuple_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *ntuple_filter)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_filter_info *filter_info =
|
|
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
|
|
struct e1000_2tuple_filter_info filter_2tuple;
|
|
struct e1000_2tuple_filter *filter;
|
|
int ret;
|
|
|
|
memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
|
|
ret = ntuple_filter_to_2tuple(ntuple_filter,
|
|
&filter_2tuple);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
|
|
&filter_2tuple);
|
|
if (filter == NULL) {
|
|
PMD_DRV_LOG(ERR, "filter doesn't exist.");
|
|
return -ENOENT;
|
|
}
|
|
|
|
filter_info->twotuple_mask &= ~(1 << filter->index);
|
|
TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
|
|
rte_free(filter);
|
|
|
|
E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
|
|
E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
|
|
E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
|
|
return 0;
|
|
}
|
|
|
|
static inline struct e1000_flex_filter *
|
|
eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
|
|
struct e1000_flex_filter_info *key)
|
|
{
|
|
struct e1000_flex_filter *it;
|
|
|
|
TAILQ_FOREACH(it, filter_list, entries) {
|
|
if (memcmp(key, &it->filter_info,
|
|
sizeof(struct e1000_flex_filter_info)) == 0)
|
|
return it;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_flex_filter *filter,
|
|
bool add)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_filter_info *filter_info =
|
|
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
|
|
struct e1000_flex_filter *flex_filter, *it;
|
|
uint32_t wufc, queueing, mask;
|
|
uint32_t reg_off;
|
|
uint8_t shift, i, j = 0;
|
|
|
|
flex_filter = rte_zmalloc("e1000_flex_filter",
|
|
sizeof(struct e1000_flex_filter), 0);
|
|
if (flex_filter == NULL)
|
|
return -ENOMEM;
|
|
|
|
flex_filter->filter_info.len = filter->len;
|
|
flex_filter->filter_info.priority = filter->priority;
|
|
memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
|
|
for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
|
|
mask = 0;
|
|
/* reverse bits in flex filter's mask*/
|
|
for (shift = 0; shift < CHAR_BIT; shift++) {
|
|
if (filter->mask[i] & (0x01 << shift))
|
|
mask |= (0x80 >> shift);
|
|
}
|
|
flex_filter->filter_info.mask[i] = mask;
|
|
}
|
|
|
|
wufc = E1000_READ_REG(hw, E1000_WUFC);
|
|
if (flex_filter->index < E1000_MAX_FHFT)
|
|
reg_off = E1000_FHFT(flex_filter->index);
|
|
else
|
|
reg_off = E1000_FHFT_EXT(flex_filter->index - E1000_MAX_FHFT);
|
|
|
|
if (add) {
|
|
if (eth_igb_flex_filter_lookup(&filter_info->flex_list,
|
|
&flex_filter->filter_info) != NULL) {
|
|
PMD_DRV_LOG(ERR, "filter exists.");
|
|
rte_free(flex_filter);
|
|
return -EEXIST;
|
|
}
|
|
flex_filter->queue = filter->queue;
|
|
/*
|
|
* look for an unused flex filter index
|
|
* and insert the filter into the list.
|
|
*/
|
|
for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
|
|
if (!(filter_info->flex_mask & (1 << i))) {
|
|
filter_info->flex_mask |= 1 << i;
|
|
flex_filter->index = i;
|
|
TAILQ_INSERT_TAIL(&filter_info->flex_list,
|
|
flex_filter,
|
|
entries);
|
|
break;
|
|
}
|
|
}
|
|
if (i >= E1000_MAX_FLEX_FILTERS) {
|
|
PMD_DRV_LOG(ERR, "flex filters are full.");
|
|
rte_free(flex_filter);
|
|
return -ENOSYS;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
|
|
(E1000_WUFC_FLX0 << flex_filter->index));
|
|
queueing = filter->len |
|
|
(filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
|
|
(filter->priority << E1000_FHFT_QUEUEING_PRIO_SHIFT);
|
|
E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
|
|
queueing);
|
|
for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
|
|
E1000_WRITE_REG(hw, reg_off,
|
|
flex_filter->filter_info.dwords[j]);
|
|
reg_off += sizeof(uint32_t);
|
|
E1000_WRITE_REG(hw, reg_off,
|
|
flex_filter->filter_info.dwords[++j]);
|
|
reg_off += sizeof(uint32_t);
|
|
E1000_WRITE_REG(hw, reg_off,
|
|
(uint32_t)flex_filter->filter_info.mask[i]);
|
|
reg_off += sizeof(uint32_t) * 2;
|
|
++j;
|
|
}
|
|
} else {
|
|
it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
|
|
&flex_filter->filter_info);
|
|
if (it == NULL) {
|
|
PMD_DRV_LOG(ERR, "filter doesn't exist.");
|
|
rte_free(flex_filter);
|
|
return -ENOENT;
|
|
}
|
|
|
|
for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
|
|
E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
|
|
E1000_WRITE_REG(hw, E1000_WUFC, wufc &
|
|
(~(E1000_WUFC_FLX0 << it->index)));
|
|
|
|
filter_info->flex_mask &= ~(1 << it->index);
|
|
TAILQ_REMOVE(&filter_info->flex_list, it, entries);
|
|
rte_free(it);
|
|
rte_free(flex_filter);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_get_flex_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_flex_filter *filter)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_filter_info *filter_info =
|
|
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
|
|
struct e1000_flex_filter flex_filter, *it;
|
|
uint32_t wufc, queueing, wufc_en = 0;
|
|
|
|
memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
|
|
flex_filter.filter_info.len = filter->len;
|
|
flex_filter.filter_info.priority = filter->priority;
|
|
memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
|
|
memcpy(flex_filter.filter_info.mask, filter->mask,
|
|
RTE_ALIGN(filter->len, sizeof(char)) / sizeof(char));
|
|
|
|
it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
|
|
&flex_filter.filter_info);
|
|
if (it == NULL) {
|
|
PMD_DRV_LOG(ERR, "filter doesn't exist.");
|
|
return -ENOENT;
|
|
}
|
|
|
|
wufc = E1000_READ_REG(hw, E1000_WUFC);
|
|
wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
|
|
|
|
if ((wufc & wufc_en) == wufc_en) {
|
|
uint32_t reg_off = 0;
|
|
if (it->index < E1000_MAX_FHFT)
|
|
reg_off = E1000_FHFT(it->index);
|
|
else
|
|
reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
|
|
|
|
queueing = E1000_READ_REG(hw,
|
|
reg_off + E1000_FHFT_QUEUEING_OFFSET);
|
|
filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
|
|
filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
|
|
E1000_FHFT_QUEUEING_PRIO_SHIFT;
|
|
filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
|
|
E1000_FHFT_QUEUEING_QUEUE_SHIFT;
|
|
return 0;
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int
|
|
eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
|
|
enum rte_filter_op filter_op,
|
|
void *arg)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_eth_flex_filter *filter;
|
|
int ret = 0;
|
|
|
|
MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
|
|
|
|
if (filter_op == RTE_ETH_FILTER_NOP)
|
|
return ret;
|
|
|
|
if (arg == NULL) {
|
|
PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
|
|
filter_op);
|
|
return -EINVAL;
|
|
}
|
|
|
|
filter = (struct rte_eth_flex_filter *)arg;
|
|
if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
|
|
|| filter->len % sizeof(uint64_t) != 0) {
|
|
PMD_DRV_LOG(ERR, "filter's length is out of range");
|
|
return -EINVAL;
|
|
}
|
|
if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
|
|
PMD_DRV_LOG(ERR, "filter's priority is out of range");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (filter_op) {
|
|
case RTE_ETH_FILTER_ADD:
|
|
ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
|
|
break;
|
|
case RTE_ETH_FILTER_DELETE:
|
|
ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
|
|
break;
|
|
case RTE_ETH_FILTER_GET:
|
|
ret = eth_igb_get_flex_filter(dev, filter);
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
|
|
static inline int
|
|
ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
|
|
struct e1000_5tuple_filter_info *filter_info)
|
|
{
|
|
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
|
|
return -EINVAL;
|
|
if (filter->priority > E1000_2TUPLE_MAX_PRI)
|
|
return -EINVAL; /* filter index is out of range. */
|
|
if (filter->tcp_flags > TCP_FLAG_ALL)
|
|
return -EINVAL; /* flags is invalid. */
|
|
|
|
switch (filter->dst_ip_mask) {
|
|
case UINT32_MAX:
|
|
filter_info->dst_ip_mask = 0;
|
|
filter_info->dst_ip = filter->dst_ip;
|
|
break;
|
|
case 0:
|
|
filter_info->dst_ip_mask = 1;
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (filter->src_ip_mask) {
|
|
case UINT32_MAX:
|
|
filter_info->src_ip_mask = 0;
|
|
filter_info->src_ip = filter->src_ip;
|
|
break;
|
|
case 0:
|
|
filter_info->src_ip_mask = 1;
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "invalid src_ip mask.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (filter->dst_port_mask) {
|
|
case UINT16_MAX:
|
|
filter_info->dst_port_mask = 0;
|
|
filter_info->dst_port = filter->dst_port;
|
|
break;
|
|
case 0:
|
|
filter_info->dst_port_mask = 1;
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "invalid dst_port mask.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (filter->src_port_mask) {
|
|
case UINT16_MAX:
|
|
filter_info->src_port_mask = 0;
|
|
filter_info->src_port = filter->src_port;
|
|
break;
|
|
case 0:
|
|
filter_info->src_port_mask = 1;
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "invalid src_port mask.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (filter->proto_mask) {
|
|
case UINT8_MAX:
|
|
filter_info->proto_mask = 0;
|
|
filter_info->proto = filter->proto;
|
|
break;
|
|
case 0:
|
|
filter_info->proto_mask = 1;
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "invalid protocol mask.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
filter_info->priority = (uint8_t)filter->priority;
|
|
if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
|
|
filter_info->tcp_flags = filter->tcp_flags;
|
|
else
|
|
filter_info->tcp_flags = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline struct e1000_5tuple_filter *
|
|
igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
|
|
struct e1000_5tuple_filter_info *key)
|
|
{
|
|
struct e1000_5tuple_filter *it;
|
|
|
|
TAILQ_FOREACH(it, filter_list, entries) {
|
|
if (memcmp(key, &it->filter_info,
|
|
sizeof(struct e1000_5tuple_filter_info)) == 0) {
|
|
return it;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* igb_add_5tuple_filter_82576 - add a 5tuple filter
|
|
*
|
|
* @param
|
|
* dev: Pointer to struct rte_eth_dev.
|
|
* ntuple_filter: ponter to the filter that will be added.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *ntuple_filter)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_filter_info *filter_info =
|
|
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
|
|
struct e1000_5tuple_filter *filter;
|
|
uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
|
|
uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
|
|
uint8_t i;
|
|
int ret;
|
|
|
|
filter = rte_zmalloc("e1000_5tuple_filter",
|
|
sizeof(struct e1000_5tuple_filter), 0);
|
|
if (filter == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
|
|
&filter->filter_info);
|
|
if (ret < 0) {
|
|
rte_free(filter);
|
|
return ret;
|
|
}
|
|
|
|
if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
|
|
&filter->filter_info) != NULL) {
|
|
PMD_DRV_LOG(ERR, "filter exists.");
|
|
rte_free(filter);
|
|
return -EEXIST;
|
|
}
|
|
filter->queue = ntuple_filter->queue;
|
|
|
|
/*
|
|
* look for an unused 5tuple filter index,
|
|
* and insert the filter to list.
|
|
*/
|
|
for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
|
|
if (!(filter_info->fivetuple_mask & (1 << i))) {
|
|
filter_info->fivetuple_mask |= 1 << i;
|
|
filter->index = i;
|
|
TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
|
|
filter,
|
|
entries);
|
|
break;
|
|
}
|
|
}
|
|
if (i >= E1000_MAX_FTQF_FILTERS) {
|
|
PMD_DRV_LOG(ERR, "5tuple filters are full.");
|
|
rte_free(filter);
|
|
return -ENOSYS;
|
|
}
|
|
|
|
ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
|
|
if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
|
|
ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
|
|
if (filter->filter_info.dst_ip_mask == 0)
|
|
ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
|
|
if (filter->filter_info.src_port_mask == 0)
|
|
ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
|
|
if (filter->filter_info.proto_mask == 0)
|
|
ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
|
|
ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
|
|
E1000_FTQF_QUEUE_MASK;
|
|
ftqf |= E1000_FTQF_QUEUE_ENABLE;
|
|
E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
|
|
E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
|
|
E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
|
|
|
|
spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
|
|
E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
|
|
|
|
imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
|
|
if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
|
|
imir |= E1000_IMIR_PORT_BP;
|
|
else
|
|
imir &= ~E1000_IMIR_PORT_BP;
|
|
imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
|
|
|
|
/* tcp flags bits setting. */
|
|
if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
|
|
if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_URG;
|
|
if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_ACK;
|
|
if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_PSH;
|
|
if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_RST;
|
|
if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_SYN;
|
|
if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
|
|
imir_ext |= E1000_IMIREXT_CTRL_FIN;
|
|
} else
|
|
imir_ext |= E1000_IMIREXT_CTRL_BP;
|
|
E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
|
|
E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* igb_remove_5tuple_filter_82576 - remove a 5tuple filter
|
|
*
|
|
* @param
|
|
* dev: Pointer to struct rte_eth_dev.
|
|
* ntuple_filter: ponter to the filter that will be removed.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *ntuple_filter)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_filter_info *filter_info =
|
|
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
|
|
struct e1000_5tuple_filter_info filter_5tuple;
|
|
struct e1000_5tuple_filter *filter;
|
|
int ret;
|
|
|
|
memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
|
|
ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
|
|
&filter_5tuple);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
|
|
&filter_5tuple);
|
|
if (filter == NULL) {
|
|
PMD_DRV_LOG(ERR, "filter doesn't exist.");
|
|
return -ENOENT;
|
|
}
|
|
|
|
filter_info->fivetuple_mask &= ~(1 << filter->index);
|
|
TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
|
|
rte_free(filter);
|
|
|
|
E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
|
|
E1000_FTQF_VF_BP | E1000_FTQF_MASK);
|
|
E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
|
|
E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
|
|
E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
|
|
E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
|
|
E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
|
|
{
|
|
uint32_t rctl;
|
|
struct e1000_hw *hw;
|
|
struct rte_eth_dev_info dev_info;
|
|
uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
|
|
VLAN_TAG_SIZE);
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
#ifdef RTE_LIBRTE_82571_SUPPORT
|
|
/* XXX: not bigger than max_rx_pktlen */
|
|
if (hw->mac.type == e1000_82571)
|
|
return -ENOTSUP;
|
|
#endif
|
|
eth_igb_infos_get(dev, &dev_info);
|
|
|
|
/* check that mtu is within the allowed range */
|
|
if ((mtu < ETHER_MIN_MTU) ||
|
|
(frame_size > dev_info.max_rx_pktlen))
|
|
return -EINVAL;
|
|
|
|
/* refuse mtu that requires the support of scattered packets when this
|
|
* feature has not been enabled before. */
|
|
if (!dev->data->scattered_rx &&
|
|
frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
|
|
return -EINVAL;
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
|
|
/* switch to jumbo mode if needed */
|
|
if (frame_size > ETHER_MAX_LEN) {
|
|
dev->data->dev_conf.rxmode.jumbo_frame = 1;
|
|
rctl |= E1000_RCTL_LPE;
|
|
} else {
|
|
dev->data->dev_conf.rxmode.jumbo_frame = 0;
|
|
rctl &= ~E1000_RCTL_LPE;
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
|
|
/* update max frame size */
|
|
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
|
|
|
|
E1000_WRITE_REG(hw, E1000_RLPML,
|
|
dev->data->dev_conf.rxmode.max_rx_pkt_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* igb_add_del_ntuple_filter - add or delete a ntuple filter
|
|
*
|
|
* @param
|
|
* dev: Pointer to struct rte_eth_dev.
|
|
* ntuple_filter: Pointer to struct rte_eth_ntuple_filter
|
|
* add: if true, add filter, if false, remove filter
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *ntuple_filter,
|
|
bool add)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
int ret;
|
|
|
|
switch (ntuple_filter->flags) {
|
|
case RTE_5TUPLE_FLAGS:
|
|
case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
|
|
if (hw->mac.type != e1000_82576)
|
|
return -ENOTSUP;
|
|
if (add)
|
|
ret = igb_add_5tuple_filter_82576(dev,
|
|
ntuple_filter);
|
|
else
|
|
ret = igb_remove_5tuple_filter_82576(dev,
|
|
ntuple_filter);
|
|
break;
|
|
case RTE_2TUPLE_FLAGS:
|
|
case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
|
|
if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
|
|
return -ENOTSUP;
|
|
if (add)
|
|
ret = igb_add_2tuple_filter(dev, ntuple_filter);
|
|
else
|
|
ret = igb_remove_2tuple_filter(dev, ntuple_filter);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* igb_get_ntuple_filter - get a ntuple filter
|
|
*
|
|
* @param
|
|
* dev: Pointer to struct rte_eth_dev.
|
|
* ntuple_filter: Pointer to struct rte_eth_ntuple_filter
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
igb_get_ntuple_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ntuple_filter *ntuple_filter)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_filter_info *filter_info =
|
|
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
|
|
struct e1000_5tuple_filter_info filter_5tuple;
|
|
struct e1000_2tuple_filter_info filter_2tuple;
|
|
struct e1000_5tuple_filter *p_5tuple_filter;
|
|
struct e1000_2tuple_filter *p_2tuple_filter;
|
|
int ret;
|
|
|
|
switch (ntuple_filter->flags) {
|
|
case RTE_5TUPLE_FLAGS:
|
|
case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
|
|
if (hw->mac.type != e1000_82576)
|
|
return -ENOTSUP;
|
|
memset(&filter_5tuple,
|
|
0,
|
|
sizeof(struct e1000_5tuple_filter_info));
|
|
ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
|
|
&filter_5tuple);
|
|
if (ret < 0)
|
|
return ret;
|
|
p_5tuple_filter = igb_5tuple_filter_lookup_82576(
|
|
&filter_info->fivetuple_list,
|
|
&filter_5tuple);
|
|
if (p_5tuple_filter == NULL) {
|
|
PMD_DRV_LOG(ERR, "filter doesn't exist.");
|
|
return -ENOENT;
|
|
}
|
|
ntuple_filter->queue = p_5tuple_filter->queue;
|
|
break;
|
|
case RTE_2TUPLE_FLAGS:
|
|
case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
|
|
if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
|
|
return -ENOTSUP;
|
|
memset(&filter_2tuple,
|
|
0,
|
|
sizeof(struct e1000_2tuple_filter_info));
|
|
ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
|
|
if (ret < 0)
|
|
return ret;
|
|
p_2tuple_filter = igb_2tuple_filter_lookup(
|
|
&filter_info->twotuple_list,
|
|
&filter_2tuple);
|
|
if (p_2tuple_filter == NULL) {
|
|
PMD_DRV_LOG(ERR, "filter doesn't exist.");
|
|
return -ENOENT;
|
|
}
|
|
ntuple_filter->queue = p_2tuple_filter->queue;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* igb_ntuple_filter_handle - Handle operations for ntuple filter.
|
|
* @dev: pointer to rte_eth_dev structure
|
|
* @filter_op:operation will be taken.
|
|
* @arg: a pointer to specific structure corresponding to the filter_op
|
|
*/
|
|
static int
|
|
igb_ntuple_filter_handle(struct rte_eth_dev *dev,
|
|
enum rte_filter_op filter_op,
|
|
void *arg)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
int ret;
|
|
|
|
MAC_TYPE_FILTER_SUP(hw->mac.type);
|
|
|
|
if (filter_op == RTE_ETH_FILTER_NOP)
|
|
return 0;
|
|
|
|
if (arg == NULL) {
|
|
PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
|
|
filter_op);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (filter_op) {
|
|
case RTE_ETH_FILTER_ADD:
|
|
ret = igb_add_del_ntuple_filter(dev,
|
|
(struct rte_eth_ntuple_filter *)arg,
|
|
TRUE);
|
|
break;
|
|
case RTE_ETH_FILTER_DELETE:
|
|
ret = igb_add_del_ntuple_filter(dev,
|
|
(struct rte_eth_ntuple_filter *)arg,
|
|
FALSE);
|
|
break;
|
|
case RTE_ETH_FILTER_GET:
|
|
ret = igb_get_ntuple_filter(dev,
|
|
(struct rte_eth_ntuple_filter *)arg);
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline int
|
|
igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
|
|
uint16_t ethertype)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
|
|
if (filter_info->ethertype_filters[i] == ethertype &&
|
|
(filter_info->ethertype_mask & (1 << i)))
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static inline int
|
|
igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
|
|
uint16_t ethertype)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
|
|
if (!(filter_info->ethertype_mask & (1 << i))) {
|
|
filter_info->ethertype_mask |= 1 << i;
|
|
filter_info->ethertype_filters[i] = ethertype;
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static inline int
|
|
igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
|
|
uint8_t idx)
|
|
{
|
|
if (idx >= E1000_MAX_ETQF_FILTERS)
|
|
return -1;
|
|
filter_info->ethertype_mask &= ~(1 << idx);
|
|
filter_info->ethertype_filters[idx] = 0;
|
|
return idx;
|
|
}
|
|
|
|
|
|
static int
|
|
igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ethertype_filter *filter,
|
|
bool add)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_filter_info *filter_info =
|
|
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
|
|
uint32_t etqf = 0;
|
|
int ret;
|
|
|
|
if (filter->ether_type == ETHER_TYPE_IPv4 ||
|
|
filter->ether_type == ETHER_TYPE_IPv6) {
|
|
PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
|
|
" ethertype filter.", filter->ether_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
|
|
PMD_DRV_LOG(ERR, "mac compare is unsupported.");
|
|
return -EINVAL;
|
|
}
|
|
if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
|
|
PMD_DRV_LOG(ERR, "drop option is unsupported.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
|
|
if (ret >= 0 && add) {
|
|
PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
|
|
filter->ether_type);
|
|
return -EEXIST;
|
|
}
|
|
if (ret < 0 && !add) {
|
|
PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
|
|
filter->ether_type);
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (add) {
|
|
ret = igb_ethertype_filter_insert(filter_info,
|
|
filter->ether_type);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "ethertype filters are full.");
|
|
return -ENOSYS;
|
|
}
|
|
|
|
etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
|
|
etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
|
|
etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
|
|
} else {
|
|
ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
|
|
if (ret < 0)
|
|
return -ENOSYS;
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
igb_get_ethertype_filter(struct rte_eth_dev *dev,
|
|
struct rte_eth_ethertype_filter *filter)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_filter_info *filter_info =
|
|
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
|
|
uint32_t etqf;
|
|
int ret;
|
|
|
|
ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
|
|
filter->ether_type);
|
|
return -ENOENT;
|
|
}
|
|
|
|
etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
|
|
if (etqf & E1000_ETQF_FILTER_ENABLE) {
|
|
filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
|
|
filter->flags = 0;
|
|
filter->queue = (etqf & E1000_ETQF_QUEUE) >>
|
|
E1000_ETQF_QUEUE_SHIFT;
|
|
return 0;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/*
|
|
* igb_ethertype_filter_handle - Handle operations for ethertype filter.
|
|
* @dev: pointer to rte_eth_dev structure
|
|
* @filter_op:operation will be taken.
|
|
* @arg: a pointer to specific structure corresponding to the filter_op
|
|
*/
|
|
static int
|
|
igb_ethertype_filter_handle(struct rte_eth_dev *dev,
|
|
enum rte_filter_op filter_op,
|
|
void *arg)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
int ret;
|
|
|
|
MAC_TYPE_FILTER_SUP(hw->mac.type);
|
|
|
|
if (filter_op == RTE_ETH_FILTER_NOP)
|
|
return 0;
|
|
|
|
if (arg == NULL) {
|
|
PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
|
|
filter_op);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (filter_op) {
|
|
case RTE_ETH_FILTER_ADD:
|
|
ret = igb_add_del_ethertype_filter(dev,
|
|
(struct rte_eth_ethertype_filter *)arg,
|
|
TRUE);
|
|
break;
|
|
case RTE_ETH_FILTER_DELETE:
|
|
ret = igb_add_del_ethertype_filter(dev,
|
|
(struct rte_eth_ethertype_filter *)arg,
|
|
FALSE);
|
|
break;
|
|
case RTE_ETH_FILTER_GET:
|
|
ret = igb_get_ethertype_filter(dev,
|
|
(struct rte_eth_ethertype_filter *)arg);
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
eth_igb_filter_ctrl(struct rte_eth_dev *dev,
|
|
enum rte_filter_type filter_type,
|
|
enum rte_filter_op filter_op,
|
|
void *arg)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
switch (filter_type) {
|
|
case RTE_ETH_FILTER_NTUPLE:
|
|
ret = igb_ntuple_filter_handle(dev, filter_op, arg);
|
|
break;
|
|
case RTE_ETH_FILTER_ETHERTYPE:
|
|
ret = igb_ethertype_filter_handle(dev, filter_op, arg);
|
|
break;
|
|
case RTE_ETH_FILTER_SYN:
|
|
ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
|
|
break;
|
|
case RTE_ETH_FILTER_FLEXIBLE:
|
|
ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
|
|
filter_type);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
|
|
struct ether_addr *mc_addr_set,
|
|
uint32_t nb_mc_addr)
|
|
{
|
|
struct e1000_hw *hw;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t
|
|
igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint64_t systime_cycles;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
/*
|
|
* Need to read System Time Residue Register to be able
|
|
* to read the other two registers.
|
|
*/
|
|
E1000_READ_REG(hw, E1000_SYSTIMR);
|
|
/* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
|
|
systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
|
|
systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
|
|
* NSEC_PER_SEC;
|
|
break;
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
case e1000_i354:
|
|
/*
|
|
* Need to read System Time Residue Register to be able
|
|
* to read the other two registers.
|
|
*/
|
|
E1000_READ_REG(hw, E1000_SYSTIMR);
|
|
systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
|
|
/* Only the 8 LSB are valid. */
|
|
systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
|
|
& 0xff) << 32;
|
|
break;
|
|
default:
|
|
systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
|
|
systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
|
|
<< 32;
|
|
break;
|
|
}
|
|
|
|
return systime_cycles;
|
|
}
|
|
|
|
static uint64_t
|
|
igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint64_t rx_tstamp_cycles;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
/* RXSTMPL stores ns and RXSTMPH stores seconds. */
|
|
rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
|
|
rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
|
|
* NSEC_PER_SEC;
|
|
break;
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
case e1000_i354:
|
|
rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
|
|
/* Only the 8 LSB are valid. */
|
|
rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
|
|
& 0xff) << 32;
|
|
break;
|
|
default:
|
|
rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
|
|
rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
|
|
<< 32;
|
|
break;
|
|
}
|
|
|
|
return rx_tstamp_cycles;
|
|
}
|
|
|
|
static uint64_t
|
|
igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint64_t tx_tstamp_cycles;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
/* RXSTMPL stores ns and RXSTMPH stores seconds. */
|
|
tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
|
|
tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
|
|
* NSEC_PER_SEC;
|
|
break;
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
case e1000_i354:
|
|
tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
|
|
/* Only the 8 LSB are valid. */
|
|
tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
|
|
& 0xff) << 32;
|
|
break;
|
|
default:
|
|
tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
|
|
tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
|
|
<< 32;
|
|
break;
|
|
}
|
|
|
|
return tx_tstamp_cycles;
|
|
}
|
|
|
|
static void
|
|
igb_start_timecounters(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_adapter *adapter =
|
|
(struct e1000_adapter *)dev->data->dev_private;
|
|
uint32_t incval = 1;
|
|
uint32_t shift = 0;
|
|
uint64_t mask = E1000_CYCLECOUNTER_MASK;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
case e1000_i354:
|
|
/* 32 LSB bits + 8 MSB bits = 40 bits */
|
|
mask = (1ULL << 40) - 1;
|
|
/* fall-through */
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
/*
|
|
* Start incrementing the register
|
|
* used to timestamp PTP packets.
|
|
*/
|
|
E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
|
|
break;
|
|
case e1000_82576:
|
|
incval = E1000_INCVALUE_82576;
|
|
shift = IGB_82576_TSYNC_SHIFT;
|
|
E1000_WRITE_REG(hw, E1000_TIMINCA,
|
|
E1000_INCPERIOD_82576 | incval);
|
|
break;
|
|
default:
|
|
/* Not supported */
|
|
return;
|
|
}
|
|
|
|
memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
|
|
memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
|
|
memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
|
|
|
|
adapter->systime_tc.cc_mask = mask;
|
|
adapter->systime_tc.cc_shift = shift;
|
|
adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
|
|
|
|
adapter->rx_tstamp_tc.cc_mask = mask;
|
|
adapter->rx_tstamp_tc.cc_shift = shift;
|
|
adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
|
|
|
|
adapter->tx_tstamp_tc.cc_mask = mask;
|
|
adapter->tx_tstamp_tc.cc_shift = shift;
|
|
adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
|
|
}
|
|
|
|
static int
|
|
igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
|
|
{
|
|
struct e1000_adapter *adapter =
|
|
(struct e1000_adapter *)dev->data->dev_private;
|
|
|
|
adapter->systime_tc.nsec += delta;
|
|
adapter->rx_tstamp_tc.nsec += delta;
|
|
adapter->tx_tstamp_tc.nsec += delta;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
|
|
{
|
|
uint64_t ns;
|
|
struct e1000_adapter *adapter =
|
|
(struct e1000_adapter *)dev->data->dev_private;
|
|
|
|
ns = rte_timespec_to_ns(ts);
|
|
|
|
/* Set the timecounters to a new value. */
|
|
adapter->systime_tc.nsec = ns;
|
|
adapter->rx_tstamp_tc.nsec = ns;
|
|
adapter->tx_tstamp_tc.nsec = ns;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
|
|
{
|
|
uint64_t ns, systime_cycles;
|
|
struct e1000_adapter *adapter =
|
|
(struct e1000_adapter *)dev->data->dev_private;
|
|
|
|
systime_cycles = igb_read_systime_cyclecounter(dev);
|
|
ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
|
|
*ts = rte_ns_to_timespec(ns);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
igb_timesync_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t tsync_ctl;
|
|
uint32_t tsauxc;
|
|
|
|
/* Stop the timesync system time. */
|
|
E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
|
|
/* Reset the timesync system time value. */
|
|
switch (hw->mac.type) {
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
case e1000_i354:
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
|
|
/* fall-through */
|
|
case e1000_82576:
|
|
E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
|
|
E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
|
|
break;
|
|
default:
|
|
/* Not supported. */
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Enable system time for it isn't on by default. */
|
|
tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
|
|
tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
|
|
E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
|
|
|
|
igb_start_timecounters(dev);
|
|
|
|
/* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
|
|
E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
|
|
(ETHER_TYPE_1588 |
|
|
E1000_ETQF_FILTER_ENABLE |
|
|
E1000_ETQF_1588));
|
|
|
|
/* Enable timestamping of received PTP packets. */
|
|
tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
|
|
tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
|
|
E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
|
|
|
|
/* Enable Timestamping of transmitted PTP packets. */
|
|
tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
|
|
tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
|
|
E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
igb_timesync_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t tsync_ctl;
|
|
|
|
/* Disable timestamping of transmitted PTP packets. */
|
|
tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
|
|
tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
|
|
E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
|
|
|
|
/* Disable timestamping of received PTP packets. */
|
|
tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
|
|
tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
|
|
E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
|
|
|
|
/* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
|
|
E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
|
|
|
|
/* Stop incrementating the System Time registers. */
|
|
E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
|
|
struct timespec *timestamp,
|
|
uint32_t flags __rte_unused)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_adapter *adapter =
|
|
(struct e1000_adapter *)dev->data->dev_private;
|
|
uint32_t tsync_rxctl;
|
|
uint64_t rx_tstamp_cycles;
|
|
uint64_t ns;
|
|
|
|
tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
|
|
if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
|
|
return -EINVAL;
|
|
|
|
rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
|
|
ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
|
|
*timestamp = rte_ns_to_timespec(ns);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
|
|
struct timespec *timestamp)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_adapter *adapter =
|
|
(struct e1000_adapter *)dev->data->dev_private;
|
|
uint32_t tsync_txctl;
|
|
uint64_t tx_tstamp_cycles;
|
|
uint64_t ns;
|
|
|
|
tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
|
|
if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
|
|
return -EINVAL;
|
|
|
|
tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
|
|
ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
|
|
*timestamp = rte_ns_to_timespec(ns);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
|
|
{
|
|
int count = 0;
|
|
int g_ind = 0;
|
|
const struct reg_info *reg_group;
|
|
|
|
while ((reg_group = igb_regs[g_ind++]))
|
|
count += igb_reg_group_count(reg_group);
|
|
|
|
return count;
|
|
}
|
|
|
|
static int
|
|
igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
|
|
{
|
|
int count = 0;
|
|
int g_ind = 0;
|
|
const struct reg_info *reg_group;
|
|
|
|
while ((reg_group = igbvf_regs[g_ind++]))
|
|
count += igb_reg_group_count(reg_group);
|
|
|
|
return count;
|
|
}
|
|
|
|
static int
|
|
eth_igb_get_regs(struct rte_eth_dev *dev,
|
|
struct rte_dev_reg_info *regs)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t *data = regs->data;
|
|
int g_ind = 0;
|
|
int count = 0;
|
|
const struct reg_info *reg_group;
|
|
|
|
if (data == NULL) {
|
|
regs->length = eth_igb_get_reg_length(dev);
|
|
regs->width = sizeof(uint32_t);
|
|
return 0;
|
|
}
|
|
|
|
/* Support only full register dump */
|
|
if ((regs->length == 0) ||
|
|
(regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
|
|
regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
|
|
hw->device_id;
|
|
while ((reg_group = igb_regs[g_ind++]))
|
|
count += igb_read_regs_group(dev, &data[count],
|
|
reg_group);
|
|
return 0;
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
static int
|
|
igbvf_get_regs(struct rte_eth_dev *dev,
|
|
struct rte_dev_reg_info *regs)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t *data = regs->data;
|
|
int g_ind = 0;
|
|
int count = 0;
|
|
const struct reg_info *reg_group;
|
|
|
|
if (data == NULL) {
|
|
regs->length = igbvf_get_reg_length(dev);
|
|
regs->width = sizeof(uint32_t);
|
|
return 0;
|
|
}
|
|
|
|
/* Support only full register dump */
|
|
if ((regs->length == 0) ||
|
|
(regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
|
|
regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
|
|
hw->device_id;
|
|
while ((reg_group = igbvf_regs[g_ind++]))
|
|
count += igb_read_regs_group(dev, &data[count],
|
|
reg_group);
|
|
return 0;
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
static int
|
|
eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* Return unit is byte count */
|
|
return hw->nvm.word_size * 2;
|
|
}
|
|
|
|
static int
|
|
eth_igb_get_eeprom(struct rte_eth_dev *dev,
|
|
struct rte_dev_eeprom_info *in_eeprom)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
uint16_t *data = in_eeprom->data;
|
|
int first, length;
|
|
|
|
first = in_eeprom->offset >> 1;
|
|
length = in_eeprom->length >> 1;
|
|
if ((first >= hw->nvm.word_size) ||
|
|
((first + length) >= hw->nvm.word_size))
|
|
return -EINVAL;
|
|
|
|
in_eeprom->magic = hw->vendor_id |
|
|
((uint32_t)hw->device_id << 16);
|
|
|
|
if ((nvm->ops.read) == NULL)
|
|
return -ENOTSUP;
|
|
|
|
return nvm->ops.read(hw, first, length, data);
|
|
}
|
|
|
|
static int
|
|
eth_igb_set_eeprom(struct rte_eth_dev *dev,
|
|
struct rte_dev_eeprom_info *in_eeprom)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
uint16_t *data = in_eeprom->data;
|
|
int first, length;
|
|
|
|
first = in_eeprom->offset >> 1;
|
|
length = in_eeprom->length >> 1;
|
|
if ((first >= hw->nvm.word_size) ||
|
|
((first + length) >= hw->nvm.word_size))
|
|
return -EINVAL;
|
|
|
|
in_eeprom->magic = (uint32_t)hw->vendor_id |
|
|
((uint32_t)hw->device_id << 16);
|
|
|
|
if ((nvm->ops.write) == NULL)
|
|
return -ENOTSUP;
|
|
return nvm->ops.write(hw, first, length, data);
|
|
}
|
|
|
|
static int
|
|
eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t mask = 1 << queue_id;
|
|
|
|
E1000_WRITE_REG(hw, E1000_EIMC, mask);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
uint32_t mask = 1 << queue_id;
|
|
uint32_t regval;
|
|
|
|
regval = E1000_READ_REG(hw, E1000_EIMS);
|
|
E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
rte_intr_enable(intr_handle);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
|
|
uint8_t index, uint8_t offset)
|
|
{
|
|
uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
|
|
|
|
/* clear bits */
|
|
val &= ~((uint32_t)0xFF << offset);
|
|
|
|
/* write vector and valid bit */
|
|
val |= (msix_vector | E1000_IVAR_VALID) << offset;
|
|
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
|
|
}
|
|
|
|
static void
|
|
eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
|
|
uint8_t queue, uint8_t msix_vector)
|
|
{
|
|
uint32_t tmp = 0;
|
|
|
|
if (hw->mac.type == e1000_82575) {
|
|
if (direction == 0)
|
|
tmp = E1000_EICR_RX_QUEUE0 << queue;
|
|
else if (direction == 1)
|
|
tmp = E1000_EICR_TX_QUEUE0 << queue;
|
|
E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
|
|
} else if (hw->mac.type == e1000_82576) {
|
|
if ((direction == 0) || (direction == 1))
|
|
eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
|
|
((queue & 0x8) << 1) +
|
|
8 * direction);
|
|
} else if ((hw->mac.type == e1000_82580) ||
|
|
(hw->mac.type == e1000_i350) ||
|
|
(hw->mac.type == e1000_i354) ||
|
|
(hw->mac.type == e1000_i210) ||
|
|
(hw->mac.type == e1000_i211)) {
|
|
if ((direction == 0) || (direction == 1))
|
|
eth_igb_write_ivar(hw, msix_vector,
|
|
queue >> 1,
|
|
((queue & 0x1) << 4) +
|
|
8 * direction);
|
|
}
|
|
}
|
|
|
|
/* Sets up the hardware to generate MSI-X interrupts properly
|
|
* @hw
|
|
* board private structure
|
|
*/
|
|
static void
|
|
eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
|
|
{
|
|
int queue_id;
|
|
uint32_t tmpval, regval, intr_mask;
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t vec = E1000_MISC_VEC_ID;
|
|
uint32_t base = E1000_MISC_VEC_ID;
|
|
uint32_t misc_shift = 0;
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
|
|
/* won't configure msix register if no mapping is done
|
|
* between intr vector and event fd
|
|
*/
|
|
if (!rte_intr_dp_is_en(intr_handle))
|
|
return;
|
|
|
|
if (rte_intr_allow_others(intr_handle)) {
|
|
vec = base = E1000_RX_VEC_START;
|
|
misc_shift = 1;
|
|
}
|
|
|
|
/* set interrupt vector for other causes */
|
|
if (hw->mac.type == e1000_82575) {
|
|
tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
/* enable MSI-X PBA support */
|
|
tmpval |= E1000_CTRL_EXT_PBA_CLR;
|
|
|
|
/* Auto-Mask interrupts upon ICR read */
|
|
tmpval |= E1000_CTRL_EXT_EIAME;
|
|
tmpval |= E1000_CTRL_EXT_IRCA;
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
|
|
|
|
/* enable msix_other interrupt */
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
|
|
regval = E1000_READ_REG(hw, E1000_EIAC);
|
|
E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
|
|
regval = E1000_READ_REG(hw, E1000_EIAM);
|
|
E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
|
|
} else if ((hw->mac.type == e1000_82576) ||
|
|
(hw->mac.type == e1000_82580) ||
|
|
(hw->mac.type == e1000_i350) ||
|
|
(hw->mac.type == e1000_i354) ||
|
|
(hw->mac.type == e1000_i210) ||
|
|
(hw->mac.type == e1000_i211)) {
|
|
/* turn on MSI-X capability first */
|
|
E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
|
|
E1000_GPIE_PBA | E1000_GPIE_EIAME |
|
|
E1000_GPIE_NSICR);
|
|
intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
|
|
misc_shift;
|
|
regval = E1000_READ_REG(hw, E1000_EIAC);
|
|
E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
|
|
|
|
/* enable msix_other interrupt */
|
|
regval = E1000_READ_REG(hw, E1000_EIMS);
|
|
E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
|
|
tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8;
|
|
E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
|
|
}
|
|
|
|
/* use EIAM to auto-mask when MSI-X interrupt
|
|
* is asserted, this saves a register write for every interrupt
|
|
*/
|
|
intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
|
|
misc_shift;
|
|
regval = E1000_READ_REG(hw, E1000_EIAM);
|
|
E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
|
|
|
|
for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
|
|
eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
|
|
intr_handle->intr_vec[queue_id] = vec;
|
|
if (vec < base + intr_handle->nb_efd - 1)
|
|
vec++;
|
|
}
|
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd.pci_drv);
|
|
RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
|
|
RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio");
|
|
RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd.pci_drv);
|
|
RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
|
|
RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio");
|