numam-dpdk/drivers/net/nfp/nfp_net.c
Alejandro Lucero 323fc9bace nfp: fix how Tx checksum is advertised to firmware
Even with tx checksum offload available, do not set the flag by default.

Fixes: b812daadad ("nfp: add Rx and Tx")

Signed-off-by: Alejandro Lucero <alejandro.lucero@netronome.com>
2016-03-16 18:52:18 +01:00

2488 lines
65 KiB
C

/*
* Copyright (c) 2014, 2015 Netronome Systems, Inc.
* All rights reserved.
*
* Small portions derived from code Copyright(c) 2010-2015 Intel Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* vim:shiftwidth=8:noexpandtab
*
* @file dpdk/pmd/nfp_net.c
*
* Netronome vNIC DPDK Poll-Mode Driver: Main entry point
*/
#include <math.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_ethdev.h>
#include <rte_dev.h>
#include <rte_ether.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_mempool.h>
#include <rte_version.h>
#include <rte_string_fns.h>
#include <rte_alarm.h>
#include "nfp_net_pmd.h"
#include "nfp_net_logs.h"
#include "nfp_net_ctrl.h"
/* Prototypes */
static void nfp_net_close(struct rte_eth_dev *dev);
static int nfp_net_configure(struct rte_eth_dev *dev);
static void nfp_net_dev_interrupt_handler(struct rte_intr_handle *handle,
void *param);
static void nfp_net_dev_interrupt_delayed_handler(void *param);
static int nfp_net_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static void nfp_net_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int nfp_net_init(struct rte_eth_dev *eth_dev);
static int nfp_net_link_update(struct rte_eth_dev *dev, int wait_to_complete);
static void nfp_net_promisc_enable(struct rte_eth_dev *dev);
static void nfp_net_promisc_disable(struct rte_eth_dev *dev);
static int nfp_net_rx_fill_freelist(struct nfp_net_rxq *rxq);
static uint32_t nfp_net_rx_queue_count(struct rte_eth_dev *dev,
uint16_t queue_idx);
static uint16_t nfp_net_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
static void nfp_net_rx_queue_release(void *rxq);
static int nfp_net_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp);
static int nfp_net_tx_free_bufs(struct nfp_net_txq *txq);
static void nfp_net_tx_queue_release(void *txq);
static int nfp_net_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf);
static int nfp_net_start(struct rte_eth_dev *dev);
static void nfp_net_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats);
static void nfp_net_stats_reset(struct rte_eth_dev *dev);
static void nfp_net_stop(struct rte_eth_dev *dev);
static uint16_t nfp_net_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
/*
* The offset of the queue controller queues in the PCIe Target. These
* happen to be at the same offset on the NFP6000 and the NFP3200 so
* we use a single macro here.
*/
#define NFP_PCIE_QUEUE(_q) (0x80000 + (0x800 * ((_q) & 0xff)))
/* Maximum value which can be added to a queue with one transaction */
#define NFP_QCP_MAX_ADD 0x7f
#define RTE_MBUF_DMA_ADDR_DEFAULT(mb) \
(uint64_t)((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
/* nfp_qcp_ptr - Read or Write Pointer of a queue */
enum nfp_qcp_ptr {
NFP_QCP_READ_PTR = 0,
NFP_QCP_WRITE_PTR
};
/*
* nfp_qcp_ptr_add - Add the value to the selected pointer of a queue
* @q: Base address for queue structure
* @ptr: Add to the Read or Write pointer
* @val: Value to add to the queue pointer
*
* If @val is greater than @NFP_QCP_MAX_ADD multiple writes are performed.
*/
static inline void
nfp_qcp_ptr_add(uint8_t *q, enum nfp_qcp_ptr ptr, uint32_t val)
{
uint32_t off;
if (ptr == NFP_QCP_READ_PTR)
off = NFP_QCP_QUEUE_ADD_RPTR;
else
off = NFP_QCP_QUEUE_ADD_WPTR;
while (val > NFP_QCP_MAX_ADD) {
nn_writel(rte_cpu_to_le_32(NFP_QCP_MAX_ADD), q + off);
val -= NFP_QCP_MAX_ADD;
}
nn_writel(rte_cpu_to_le_32(val), q + off);
}
/*
* nfp_qcp_read - Read the current Read/Write pointer value for a queue
* @q: Base address for queue structure
* @ptr: Read or Write pointer
*/
static inline uint32_t
nfp_qcp_read(uint8_t *q, enum nfp_qcp_ptr ptr)
{
uint32_t off;
uint32_t val;
if (ptr == NFP_QCP_READ_PTR)
off = NFP_QCP_QUEUE_STS_LO;
else
off = NFP_QCP_QUEUE_STS_HI;
val = rte_cpu_to_le_32(nn_readl(q + off));
if (ptr == NFP_QCP_READ_PTR)
return val & NFP_QCP_QUEUE_STS_LO_READPTR_mask;
else
return val & NFP_QCP_QUEUE_STS_HI_WRITEPTR_mask;
}
/*
* Functions to read/write from/to Config BAR
* Performs any endian conversion necessary.
*/
static inline uint8_t
nn_cfg_readb(struct nfp_net_hw *hw, int off)
{
return nn_readb(hw->ctrl_bar + off);
}
static inline void
nn_cfg_writeb(struct nfp_net_hw *hw, int off, uint8_t val)
{
nn_writeb(val, hw->ctrl_bar + off);
}
static inline uint32_t
nn_cfg_readl(struct nfp_net_hw *hw, int off)
{
return rte_le_to_cpu_32(nn_readl(hw->ctrl_bar + off));
}
static inline void
nn_cfg_writel(struct nfp_net_hw *hw, int off, uint32_t val)
{
nn_writel(rte_cpu_to_le_32(val), hw->ctrl_bar + off);
}
static inline uint64_t
nn_cfg_readq(struct nfp_net_hw *hw, int off)
{
return rte_le_to_cpu_64(nn_readq(hw->ctrl_bar + off));
}
static inline void
nn_cfg_writeq(struct nfp_net_hw *hw, int off, uint64_t val)
{
nn_writeq(rte_cpu_to_le_64(val), hw->ctrl_bar + off);
}
/* Creating memzone for hardware rings. */
static const struct rte_memzone *
ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
uint16_t queue_id, uint32_t ring_size, int socket_id)
{
char z_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
dev->driver->pci_drv.name,
ring_name, dev->data->port_id, queue_id);
mz = rte_memzone_lookup(z_name);
if (mz)
return mz;
return rte_memzone_reserve_aligned(z_name, ring_size, socket_id, 0,
NFP_MEMZONE_ALIGN);
}
/*
* Atomically reads link status information from global structure rte_eth_dev.
*
* @param dev
* - Pointer to the structure rte_eth_dev to read from.
* - Pointer to the buffer to be saved with the link status.
*
* @return
* - On success, zero.
* - On failure, negative value.
*/
static inline int
nfp_net_dev_atomic_read_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = link;
struct rte_eth_link *src = &dev->data->dev_link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
/*
* Atomically writes the link status information into global
* structure rte_eth_dev.
*
* @param dev
* - Pointer to the structure rte_eth_dev to read from.
* - Pointer to the buffer to be saved with the link status.
*
* @return
* - On success, zero.
* - On failure, negative value.
*/
static inline int
nfp_net_dev_atomic_write_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = &dev->data->dev_link;
struct rte_eth_link *src = link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
static void
nfp_net_rx_queue_release_mbufs(struct nfp_net_rxq *rxq)
{
unsigned i;
if (rxq->rxbufs == NULL)
return;
for (i = 0; i < rxq->rx_count; i++) {
if (rxq->rxbufs[i].mbuf) {
rte_pktmbuf_free_seg(rxq->rxbufs[i].mbuf);
rxq->rxbufs[i].mbuf = NULL;
}
}
}
static void
nfp_net_rx_queue_release(void *rx_queue)
{
struct nfp_net_rxq *rxq = rx_queue;
if (rxq) {
nfp_net_rx_queue_release_mbufs(rxq);
rte_free(rxq->rxbufs);
rte_free(rxq);
}
}
static void
nfp_net_reset_rx_queue(struct nfp_net_rxq *rxq)
{
nfp_net_rx_queue_release_mbufs(rxq);
rxq->wr_p = 0;
rxq->rd_p = 0;
rxq->nb_rx_hold = 0;
}
static void
nfp_net_tx_queue_release_mbufs(struct nfp_net_txq *txq)
{
unsigned i;
if (txq->txbufs == NULL)
return;
for (i = 0; i < txq->tx_count; i++) {
if (txq->txbufs[i].mbuf) {
rte_pktmbuf_free_seg(txq->txbufs[i].mbuf);
txq->txbufs[i].mbuf = NULL;
}
}
}
static void
nfp_net_tx_queue_release(void *tx_queue)
{
struct nfp_net_txq *txq = tx_queue;
if (txq) {
nfp_net_tx_queue_release_mbufs(txq);
rte_free(txq->txbufs);
rte_free(txq);
}
}
static void
nfp_net_reset_tx_queue(struct nfp_net_txq *txq)
{
nfp_net_tx_queue_release_mbufs(txq);
txq->wr_p = 0;
txq->rd_p = 0;
txq->tail = 0;
}
static int
__nfp_net_reconfig(struct nfp_net_hw *hw, uint32_t update)
{
int cnt;
uint32_t new;
struct timespec wait;
PMD_DRV_LOG(DEBUG, "Writing to the configuration queue (%p)...\n",
hw->qcp_cfg);
if (hw->qcp_cfg == NULL)
rte_panic("Bad configuration queue pointer\n");
nfp_qcp_ptr_add(hw->qcp_cfg, NFP_QCP_WRITE_PTR, 1);
wait.tv_sec = 0;
wait.tv_nsec = 1000000;
PMD_DRV_LOG(DEBUG, "Polling for update ack...\n");
/* Poll update field, waiting for NFP to ack the config */
for (cnt = 0; ; cnt++) {
new = nn_cfg_readl(hw, NFP_NET_CFG_UPDATE);
if (new == 0)
break;
if (new & NFP_NET_CFG_UPDATE_ERR) {
PMD_INIT_LOG(ERR, "Reconfig error: 0x%08x\n", new);
return -1;
}
if (cnt >= NFP_NET_POLL_TIMEOUT) {
PMD_INIT_LOG(ERR, "Reconfig timeout for 0x%08x after"
" %dms\n", update, cnt);
rte_panic("Exiting\n");
}
nanosleep(&wait, 0); /* waiting for a 1ms */
}
PMD_DRV_LOG(DEBUG, "Ack DONE\n");
return 0;
}
/*
* Reconfigure the NIC
* @nn: device to reconfigure
* @ctrl: The value for the ctrl field in the BAR config
* @update: The value for the update field in the BAR config
*
* Write the update word to the BAR and ping the reconfig queue. Then poll
* until the firmware has acknowledged the update by zeroing the update word.
*/
static int
nfp_net_reconfig(struct nfp_net_hw *hw, uint32_t ctrl, uint32_t update)
{
uint32_t err;
PMD_DRV_LOG(DEBUG, "nfp_net_reconfig: ctrl=%08x update=%08x\n",
ctrl, update);
nn_cfg_writel(hw, NFP_NET_CFG_CTRL, ctrl);
nn_cfg_writel(hw, NFP_NET_CFG_UPDATE, update);
rte_wmb();
err = __nfp_net_reconfig(hw, update);
if (!err)
return 0;
/*
* Reconfig errors imply situations where they can be handled.
* Otherwise, rte_panic is called inside __nfp_net_reconfig
*/
PMD_INIT_LOG(ERR, "Error nfp_net reconfig for ctrl: %x update: %x\n",
ctrl, update);
return -EIO;
}
/*
* Configure an Ethernet device. This function must be invoked first
* before any other function in the Ethernet API. This function can
* also be re-invoked when a device is in the stopped state.
*/
static int
nfp_net_configure(struct rte_eth_dev *dev)
{
struct rte_eth_conf *dev_conf;
struct rte_eth_rxmode *rxmode;
struct rte_eth_txmode *txmode;
uint32_t new_ctrl = 0;
uint32_t update = 0;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* A DPDK app sends info about how many queues to use and how
* those queues need to be configured. This is used by the
* DPDK core and it makes sure no more queues than those
* advertised by the driver are requested. This function is
* called after that internal process
*/
PMD_INIT_LOG(DEBUG, "Configure\n");
dev_conf = &dev->data->dev_conf;
rxmode = &dev_conf->rxmode;
txmode = &dev_conf->txmode;
/* Checking TX mode */
if (txmode->mq_mode) {
PMD_INIT_LOG(INFO, "TX mq_mode DCB and VMDq not supported\n");
return -EINVAL;
}
/* Checking RX mode */
if (rxmode->mq_mode & ETH_MQ_RX_RSS) {
if (hw->cap & NFP_NET_CFG_CTRL_RSS) {
update = NFP_NET_CFG_UPDATE_RSS;
new_ctrl = NFP_NET_CFG_CTRL_RSS;
} else {
PMD_INIT_LOG(INFO, "RSS not supported\n");
return -EINVAL;
}
}
if (rxmode->split_hdr_size) {
PMD_INIT_LOG(INFO, "rxmode does not support split header\n");
return -EINVAL;
}
if (rxmode->hw_ip_checksum) {
if (hw->cap & NFP_NET_CFG_CTRL_RXCSUM) {
new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
} else {
PMD_INIT_LOG(INFO, "RXCSUM not supported\n");
return -EINVAL;
}
}
if (rxmode->hw_vlan_filter) {
PMD_INIT_LOG(INFO, "VLAN filter not supported\n");
return -EINVAL;
}
if (rxmode->hw_vlan_strip) {
if (hw->cap & NFP_NET_CFG_CTRL_RXVLAN) {
new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
} else {
PMD_INIT_LOG(INFO, "hw vlan strip not supported\n");
return -EINVAL;
}
}
if (rxmode->hw_vlan_extend) {
PMD_INIT_LOG(INFO, "VLAN extended not supported\n");
return -EINVAL;
}
/* Supporting VLAN insertion by default */
if (hw->cap & NFP_NET_CFG_CTRL_TXVLAN)
new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
if (rxmode->jumbo_frame)
/* this is handled in rte_eth_dev_configure */
if (rxmode->hw_strip_crc) {
PMD_INIT_LOG(INFO, "strip CRC not supported\n");
return -EINVAL;
}
if (rxmode->enable_scatter) {
PMD_INIT_LOG(INFO, "Scatter not supported\n");
return -EINVAL;
}
if (!new_ctrl)
return 0;
update |= NFP_NET_CFG_UPDATE_GEN;
nn_cfg_writel(hw, NFP_NET_CFG_CTRL, new_ctrl);
if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
return -EIO;
hw->ctrl = new_ctrl;
return 0;
}
static void
nfp_net_enable_queues(struct rte_eth_dev *dev)
{
struct nfp_net_hw *hw;
uint64_t enabled_queues = 0;
int i;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Enabling the required TX queues in the device */
for (i = 0; i < dev->data->nb_tx_queues; i++)
enabled_queues |= (1 << i);
nn_cfg_writeq(hw, NFP_NET_CFG_TXRS_ENABLE, enabled_queues);
enabled_queues = 0;
/* Enabling the required RX queues in the device */
for (i = 0; i < dev->data->nb_rx_queues; i++)
enabled_queues |= (1 << i);
nn_cfg_writeq(hw, NFP_NET_CFG_RXRS_ENABLE, enabled_queues);
}
static void
nfp_net_disable_queues(struct rte_eth_dev *dev)
{
struct nfp_net_hw *hw;
uint32_t new_ctrl, update = 0;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
nn_cfg_writeq(hw, NFP_NET_CFG_TXRS_ENABLE, 0);
nn_cfg_writeq(hw, NFP_NET_CFG_RXRS_ENABLE, 0);
new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_ENABLE;
update = NFP_NET_CFG_UPDATE_GEN | NFP_NET_CFG_UPDATE_RING |
NFP_NET_CFG_UPDATE_MSIX;
if (hw->cap & NFP_NET_CFG_CTRL_RINGCFG)
new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
/* If an error when reconfig we avoid to change hw state */
if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
return;
hw->ctrl = new_ctrl;
}
static int
nfp_net_rx_freelist_setup(struct rte_eth_dev *dev)
{
int i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (nfp_net_rx_fill_freelist(dev->data->rx_queues[i]) < 0)
return -1;
}
return 0;
}
static void
nfp_net_params_setup(struct nfp_net_hw *hw)
{
uint32_t *mac_address;
nn_cfg_writel(hw, NFP_NET_CFG_MTU, hw->mtu);
nn_cfg_writel(hw, NFP_NET_CFG_FLBUFSZ, hw->flbufsz);
/* A MAC address is 8 bytes long */
mac_address = (uint32_t *)(hw->mac_addr);
nn_cfg_writel(hw, NFP_NET_CFG_MACADDR,
rte_cpu_to_be_32(*mac_address));
nn_cfg_writel(hw, NFP_NET_CFG_MACADDR + 4,
rte_cpu_to_be_32(*(mac_address + 4)));
}
static void
nfp_net_cfg_queue_setup(struct nfp_net_hw *hw)
{
hw->qcp_cfg = hw->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
}
static int
nfp_net_start(struct rte_eth_dev *dev)
{
uint32_t new_ctrl, update = 0;
struct nfp_net_hw *hw;
int ret;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_LOG(DEBUG, "Start\n");
/* Disabling queues just in case... */
nfp_net_disable_queues(dev);
/* Writing configuration parameters in the device */
nfp_net_params_setup(hw);
/* Enabling the required queues in the device */
nfp_net_enable_queues(dev);
/* Enable device */
new_ctrl = hw->ctrl | NFP_NET_CFG_CTRL_ENABLE | NFP_NET_CFG_UPDATE_MSIX;
update = NFP_NET_CFG_UPDATE_GEN | NFP_NET_CFG_UPDATE_RING;
if (hw->cap & NFP_NET_CFG_CTRL_RINGCFG)
new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
nn_cfg_writel(hw, NFP_NET_CFG_CTRL, new_ctrl);
if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
return -EIO;
/*
* Allocating rte mbuffs for configured rx queues.
* This requires queues being enabled before
*/
if (nfp_net_rx_freelist_setup(dev) < 0) {
ret = -ENOMEM;
goto error;
}
hw->ctrl = new_ctrl;
return 0;
error:
/*
* An error returned by this function should mean the app
* exiting and then the system releasing all the memory
* allocated even memory coming from hugepages.
*
* The device could be enabled at this point with some queues
* ready for getting packets. This is true if the call to
* nfp_net_rx_freelist_setup() succeeds for some queues but
* fails for subsequent queues.
*
* This should make the app exiting but better if we tell the
* device first.
*/
nfp_net_disable_queues(dev);
return ret;
}
/* Stop device: disable rx and tx functions to allow for reconfiguring. */
static void
nfp_net_stop(struct rte_eth_dev *dev)
{
int i;
PMD_INIT_LOG(DEBUG, "Stop\n");
nfp_net_disable_queues(dev);
/* Clear queues */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
nfp_net_reset_tx_queue(
(struct nfp_net_txq *)dev->data->tx_queues[i]);
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
nfp_net_reset_rx_queue(
(struct nfp_net_rxq *)dev->data->rx_queues[i]);
}
}
/* Reset and stop device. The device can not be restarted. */
static void
nfp_net_close(struct rte_eth_dev *dev)
{
struct nfp_net_hw *hw;
PMD_INIT_LOG(DEBUG, "Close\n");
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* We assume that the DPDK application is stopping all the
* threads/queues before calling the device close function.
*/
nfp_net_stop(dev);
rte_intr_disable(&dev->pci_dev->intr_handle);
nn_cfg_writeb(hw, NFP_NET_CFG_LSC, 0xff);
/*
* The ixgbe PMD driver disables the pcie master on the
* device. The i40e does not...
*/
}
static void
nfp_net_promisc_enable(struct rte_eth_dev *dev)
{
uint32_t new_ctrl, update = 0;
struct nfp_net_hw *hw;
PMD_DRV_LOG(DEBUG, "Promiscuous mode enable\n");
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!(hw->cap & NFP_NET_CFG_CTRL_PROMISC)) {
PMD_INIT_LOG(INFO, "Promiscuous mode not supported\n");
return;
}
if (hw->ctrl & NFP_NET_CFG_CTRL_PROMISC) {
PMD_DRV_LOG(INFO, "Promiscuous mode already enabled\n");
return;
}
new_ctrl = hw->ctrl | NFP_NET_CFG_CTRL_PROMISC;
update = NFP_NET_CFG_UPDATE_GEN;
/*
* DPDK sets promiscuous mode on just after this call assuming
* it can not fail ...
*/
if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
return;
hw->ctrl = new_ctrl;
}
static void
nfp_net_promisc_disable(struct rte_eth_dev *dev)
{
uint32_t new_ctrl, update = 0;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if ((hw->ctrl & NFP_NET_CFG_CTRL_PROMISC) == 0) {
PMD_DRV_LOG(INFO, "Promiscuous mode already disabled\n");
return;
}
new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_PROMISC;
update = NFP_NET_CFG_UPDATE_GEN;
/*
* DPDK sets promiscuous mode off just before this call
* assuming it can not fail ...
*/
if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
return;
hw->ctrl = new_ctrl;
}
/*
* return 0 means link status changed, -1 means not changed
*
* Wait to complete is needed as it can take up to 9 seconds to get the Link
* status.
*/
static int
nfp_net_link_update(struct rte_eth_dev *dev, __rte_unused int wait_to_complete)
{
struct nfp_net_hw *hw;
struct rte_eth_link link, old;
uint32_t nn_link_status;
PMD_DRV_LOG(DEBUG, "Link update\n");
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
memset(&old, 0, sizeof(old));
nfp_net_dev_atomic_read_link_status(dev, &old);
nn_link_status = nn_cfg_readl(hw, NFP_NET_CFG_STS);
memset(&link, 0, sizeof(struct rte_eth_link));
if (nn_link_status & NFP_NET_CFG_STS_LINK)
link.link_status = 1;
link.link_duplex = ETH_LINK_FULL_DUPLEX;
/* Other cards can limit the tx and rx rate per VF */
link.link_speed = ETH_LINK_SPEED_40G;
if (old.link_status != link.link_status) {
nfp_net_dev_atomic_write_link_status(dev, &link);
if (link.link_status)
PMD_DRV_LOG(INFO, "NIC Link is Up\n");
else
PMD_DRV_LOG(INFO, "NIC Link is Down\n");
return 0;
}
return -1;
}
static void
nfp_net_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
int i;
struct nfp_net_hw *hw;
struct rte_eth_stats nfp_dev_stats;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* RTE_ETHDEV_QUEUE_STAT_CNTRS default value is 16 */
/* reading per RX ring stats */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
nfp_dev_stats.q_ipackets[i] =
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i));
nfp_dev_stats.q_ipackets[i] -=
hw->eth_stats_base.q_ipackets[i];
nfp_dev_stats.q_ibytes[i] =
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i) + 0x8);
nfp_dev_stats.q_ibytes[i] -=
hw->eth_stats_base.q_ibytes[i];
}
/* reading per TX ring stats */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
nfp_dev_stats.q_opackets[i] =
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i));
nfp_dev_stats.q_opackets[i] -=
hw->eth_stats_base.q_opackets[i];
nfp_dev_stats.q_obytes[i] =
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i) + 0x8);
nfp_dev_stats.q_obytes[i] -=
hw->eth_stats_base.q_obytes[i];
}
nfp_dev_stats.ipackets =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_FRAMES);
nfp_dev_stats.ipackets -= hw->eth_stats_base.ipackets;
nfp_dev_stats.ibytes =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_OCTETS);
nfp_dev_stats.ibytes -= hw->eth_stats_base.ibytes;
nfp_dev_stats.opackets =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_FRAMES);
nfp_dev_stats.opackets -= hw->eth_stats_base.opackets;
nfp_dev_stats.obytes =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_OCTETS);
nfp_dev_stats.obytes -= hw->eth_stats_base.obytes;
nfp_dev_stats.imcasts =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_MC_FRAMES);
nfp_dev_stats.imcasts -= hw->eth_stats_base.imcasts;
/* reading general device stats */
nfp_dev_stats.ierrors =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_ERRORS);
nfp_dev_stats.ierrors -= hw->eth_stats_base.ierrors;
nfp_dev_stats.oerrors =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_ERRORS);
nfp_dev_stats.oerrors -= hw->eth_stats_base.oerrors;
/* Multicast frames received */
nfp_dev_stats.imcasts =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_MC_FRAMES);
nfp_dev_stats.imcasts -= hw->eth_stats_base.imcasts;
/* RX ring mbuf allocation failures */
nfp_dev_stats.rx_nombuf = dev->data->rx_mbuf_alloc_failed;
nfp_dev_stats.imissed =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_DISCARDS);
nfp_dev_stats.imissed -= hw->eth_stats_base.imissed;
if (stats)
memcpy(stats, &nfp_dev_stats, sizeof(*stats));
}
static void
nfp_net_stats_reset(struct rte_eth_dev *dev)
{
int i;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* hw->eth_stats_base records the per counter starting point.
* Lets update it now
*/
/* reading per RX ring stats */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
hw->eth_stats_base.q_ipackets[i] =
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i));
hw->eth_stats_base.q_ibytes[i] =
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i) + 0x8);
}
/* reading per TX ring stats */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
hw->eth_stats_base.q_opackets[i] =
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i));
hw->eth_stats_base.q_obytes[i] =
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i) + 0x8);
}
hw->eth_stats_base.ipackets =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_FRAMES);
hw->eth_stats_base.ibytes =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_OCTETS);
hw->eth_stats_base.opackets =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_FRAMES);
hw->eth_stats_base.obytes =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_OCTETS);
hw->eth_stats_base.imcasts =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_MC_FRAMES);
/* reading general device stats */
hw->eth_stats_base.ierrors =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_ERRORS);
hw->eth_stats_base.oerrors =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_ERRORS);
/* Multicast frames received */
hw->eth_stats_base.imcasts =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_MC_FRAMES);
/* RX ring mbuf allocation failures */
dev->data->rx_mbuf_alloc_failed = 0;
hw->eth_stats_base.imissed =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_DISCARDS);
}
static void
nfp_net_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
dev_info->driver_name = dev->driver->pci_drv.name;
dev_info->max_rx_queues = (uint16_t)hw->max_rx_queues;
dev_info->max_tx_queues = (uint16_t)hw->max_tx_queues;
dev_info->min_rx_bufsize = ETHER_MIN_MTU;
dev_info->max_rx_pktlen = hw->mtu;
/* Next should change when PF support is implemented */
dev_info->max_mac_addrs = 1;
if (hw->cap & NFP_NET_CFG_CTRL_RXVLAN)
dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
if (hw->cap & NFP_NET_CFG_CTRL_RXCSUM)
dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM;
if (hw->cap & NFP_NET_CFG_CTRL_TXVLAN)
dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
if (hw->cap & NFP_NET_CFG_CTRL_TXCSUM)
dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = DEFAULT_RX_PTHRESH,
.hthresh = DEFAULT_RX_HTHRESH,
.wthresh = DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = DEFAULT_TX_PTHRESH,
.hthresh = DEFAULT_TX_HTHRESH,
.wthresh = DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = DEFAULT_TX_RSBIT_THRESH,
.txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
ETH_TXQ_FLAGS_NOOFFLOADS,
};
dev_info->reta_size = NFP_NET_CFG_RSS_ITBL_SZ;
dev_info->hash_key_size = NFP_NET_CFG_RSS_KEY_SZ;
}
static uint32_t
nfp_net_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_idx)
{
struct nfp_net_rxq *rxq;
struct nfp_net_rx_desc *rxds;
uint32_t idx;
uint32_t count;
rxq = (struct nfp_net_rxq *)dev->data->rx_queues[queue_idx];
if (rxq == NULL) {
PMD_INIT_LOG(ERR, "Bad queue: %u\n", queue_idx);
return 0;
}
idx = rxq->rd_p % rxq->rx_count;
rxds = &rxq->rxds[idx];
count = 0;
/*
* Other PMDs are just checking the DD bit in intervals of 4
* descriptors and counting all four if the first has the DD
* bit on. Of course, this is not accurate but can be good for
* perfomance. But ideally that should be done in descriptors
* chunks belonging to the same cache line
*/
while (count < rxq->rx_count) {
rxds = &rxq->rxds[idx];
if ((rxds->rxd.meta_len_dd & PCIE_DESC_RX_DD) == 0)
break;
count++;
idx++;
/* Wrapping? */
if ((idx) == rxq->rx_count)
idx = 0;
}
return count;
}
static void
nfp_net_dev_link_status_print(struct rte_eth_dev *dev)
{
struct rte_eth_link link;
memset(&link, 0, sizeof(link));
nfp_net_dev_atomic_read_link_status(dev, &link);
if (link.link_status)
RTE_LOG(INFO, PMD, "Port %d: Link Up - speed %u Mbps - %s\n",
(int)(dev->data->port_id), (unsigned)link.link_speed,
link.link_duplex == ETH_LINK_FULL_DUPLEX
? "full-duplex" : "half-duplex");
else
RTE_LOG(INFO, PMD, " Port %d: Link Down\n",
(int)(dev->data->port_id));
RTE_LOG(INFO, PMD, "PCI Address: %04d:%02d:%02d:%d\n",
dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
}
/* Interrupt configuration and handling */
/*
* nfp_net_irq_unmask - Unmask an interrupt
*
* If MSI-X auto-masking is enabled clear the mask bit, otherwise
* clear the ICR for the entry.
*/
static void
nfp_net_irq_unmask(struct rte_eth_dev *dev)
{
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (hw->ctrl & NFP_NET_CFG_CTRL_MSIXAUTO) {
/* If MSI-X auto-masking is used, clear the entry */
rte_wmb();
rte_intr_enable(&dev->pci_dev->intr_handle);
} else {
/* Make sure all updates are written before un-masking */
rte_wmb();
nn_cfg_writeb(hw, NFP_NET_CFG_ICR(NFP_NET_IRQ_LSC_IDX),
NFP_NET_CFG_ICR_UNMASKED);
}
}
static void
nfp_net_dev_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
void *param)
{
int64_t timeout;
struct rte_eth_link link;
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
PMD_DRV_LOG(DEBUG, "We got a LSC interrupt!!!\n");
/* get the link status */
memset(&link, 0, sizeof(link));
nfp_net_dev_atomic_read_link_status(dev, &link);
nfp_net_link_update(dev, 0);
/* likely to up */
if (!link.link_status) {
/* handle it 1 sec later, wait it being stable */
timeout = NFP_NET_LINK_UP_CHECK_TIMEOUT;
/* likely to down */
} else {
/* handle it 4 sec later, wait it being stable */
timeout = NFP_NET_LINK_DOWN_CHECK_TIMEOUT;
}
if (rte_eal_alarm_set(timeout * 1000,
nfp_net_dev_interrupt_delayed_handler,
(void *)dev) < 0) {
RTE_LOG(ERR, PMD, "Error setting alarm");
/* Unmasking */
nfp_net_irq_unmask(dev);
}
}
/*
* Interrupt handler which shall be registered for alarm callback for delayed
* handling specific interrupt to wait for the stable nic state. As the NIC
* interrupt state is not stable for nfp after link is just down, it needs
* to wait 4 seconds to get the stable status.
*
* @param handle Pointer to interrupt handle.
* @param param The address of parameter (struct rte_eth_dev *)
*
* @return void
*/
static void
nfp_net_dev_interrupt_delayed_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
nfp_net_link_update(dev, 0);
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
nfp_net_dev_link_status_print(dev);
/* Unmasking */
nfp_net_irq_unmask(dev);
}
static int
nfp_net_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* check that mtu is within the allowed range */
if ((mtu < ETHER_MIN_MTU) || ((uint32_t)mtu > hw->max_mtu))
return -EINVAL;
/* switch to jumbo mode if needed */
if ((uint32_t)mtu > ETHER_MAX_LEN)
dev->data->dev_conf.rxmode.jumbo_frame = 1;
else
dev->data->dev_conf.rxmode.jumbo_frame = 0;
/* update max frame size */
dev->data->dev_conf.rxmode.max_rx_pkt_len = (uint32_t)mtu;
/* writing to configuration space */
nn_cfg_writel(hw, NFP_NET_CFG_MTU, (uint32_t)mtu);
hw->mtu = mtu;
return 0;
}
static int
nfp_net_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx, uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *tz;
struct nfp_net_rxq *rxq;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
/* Validating number of descriptors */
if (((nb_desc * sizeof(struct nfp_net_rx_desc)) % 128) != 0 ||
(nb_desc > NFP_NET_MAX_RX_DESC) ||
(nb_desc < NFP_NET_MIN_RX_DESC)) {
RTE_LOG(ERR, PMD, "Wrong nb_desc value\n");
return -EINVAL;
}
/*
* Free memory prior to re-allocation if needed. This is the case after
* calling nfp_net_stop
*/
if (dev->data->rx_queues[queue_idx]) {
nfp_net_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* Allocating rx queue data structure */
rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct nfp_net_rxq),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL)
return -ENOMEM;
/* Hw queues mapping based on firmware confifguration */
rxq->qidx = queue_idx;
rxq->fl_qcidx = queue_idx * hw->stride_rx;
rxq->rx_qcidx = rxq->fl_qcidx + (hw->stride_rx - 1);
rxq->qcp_fl = hw->rx_bar + NFP_QCP_QUEUE_OFF(rxq->fl_qcidx);
rxq->qcp_rx = hw->rx_bar + NFP_QCP_QUEUE_OFF(rxq->rx_qcidx);
/*
* Tracking mbuf size for detecting a potential mbuf overflow due to
* RX offset
*/
rxq->mem_pool = mp;
rxq->mbuf_size = rxq->mem_pool->elt_size;
rxq->mbuf_size -= (sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM);
hw->flbufsz = rxq->mbuf_size;
rxq->rx_count = nb_desc;
rxq->port_id = dev->data->port_id;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0
: ETHER_CRC_LEN);
rxq->drop_en = rx_conf->rx_drop_en;
/*
* Allocate RX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
tz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx,
sizeof(struct nfp_net_rx_desc) *
NFP_NET_MAX_RX_DESC, socket_id);
if (tz == NULL) {
RTE_LOG(ERR, PMD, "Error allocatig rx dma\n");
nfp_net_rx_queue_release(rxq);
return -ENOMEM;
}
/* Saving physical and virtual addresses for the RX ring */
rxq->dma = (uint64_t)tz->phys_addr;
rxq->rxds = (struct nfp_net_rx_desc *)tz->addr;
/* mbuf pointers array for referencing mbufs linked to RX descriptors */
rxq->rxbufs = rte_zmalloc_socket("rxq->rxbufs",
sizeof(*rxq->rxbufs) * nb_desc,
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->rxbufs == NULL) {
nfp_net_rx_queue_release(rxq);
return -ENOMEM;
}
PMD_RX_LOG(DEBUG, "rxbufs=%p hw_ring=%p dma_addr=0x%" PRIx64 "\n",
rxq->rxbufs, rxq->rxds, (unsigned long int)rxq->dma);
nfp_net_reset_rx_queue(rxq);
dev->data->rx_queues[queue_idx] = rxq;
rxq->hw = hw;
/*
* Telling the HW about the physical address of the RX ring and number
* of descriptors in log2 format
*/
nn_cfg_writeq(hw, NFP_NET_CFG_RXR_ADDR(queue_idx), rxq->dma);
nn_cfg_writeb(hw, NFP_NET_CFG_RXR_SZ(queue_idx), log2(nb_desc));
return 0;
}
static int
nfp_net_rx_fill_freelist(struct nfp_net_rxq *rxq)
{
struct nfp_net_rx_buff *rxe = rxq->rxbufs;
uint64_t dma_addr;
unsigned i;
PMD_RX_LOG(DEBUG, "nfp_net_rx_fill_freelist for %u descriptors\n",
rxq->rx_count);
for (i = 0; i < rxq->rx_count; i++) {
struct nfp_net_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(rxq->mem_pool);
if (mbuf == NULL) {
RTE_LOG(ERR, PMD, "RX mbuf alloc failed queue_id=%u\n",
(unsigned)rxq->qidx);
return -ENOMEM;
}
dma_addr = rte_cpu_to_le_64(RTE_MBUF_DMA_ADDR_DEFAULT(mbuf));
rxd = &rxq->rxds[i];
rxd->fld.dd = 0;
rxd->fld.dma_addr_hi = (dma_addr >> 32) & 0xff;
rxd->fld.dma_addr_lo = dma_addr & 0xffffffff;
rxe[i].mbuf = mbuf;
PMD_RX_LOG(DEBUG, "[%d]: %" PRIx64 "\n", i, dma_addr);
rxq->wr_p++;
}
/* Make sure all writes are flushed before telling the hardware */
rte_wmb();
/* Not advertising the whole ring as the firmware gets confused if so */
PMD_RX_LOG(DEBUG, "Increment FL write pointer in %u\n",
rxq->rx_count - 1);
nfp_qcp_ptr_add(rxq->qcp_fl, NFP_QCP_WRITE_PTR, rxq->rx_count - 1);
return 0;
}
static int
nfp_net_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const struct rte_memzone *tz;
struct nfp_net_txq *txq;
uint16_t tx_free_thresh;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
/* Validating number of descriptors */
if (((nb_desc * sizeof(struct nfp_net_tx_desc)) % 128) != 0 ||
(nb_desc > NFP_NET_MAX_TX_DESC) ||
(nb_desc < NFP_NET_MIN_TX_DESC)) {
RTE_LOG(ERR, PMD, "Wrong nb_desc value\n");
return -EINVAL;
}
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
tx_conf->tx_free_thresh :
DEFAULT_TX_FREE_THRESH);
if (tx_free_thresh > (nb_desc)) {
RTE_LOG(ERR, PMD,
"tx_free_thresh must be less than the number of TX "
"descriptors. (tx_free_thresh=%u port=%d "
"queue=%d)\n", (unsigned int)tx_free_thresh,
(int)dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
/*
* Free memory prior to re-allocation if needed. This is the case after
* calling nfp_net_stop
*/
if (dev->data->tx_queues[queue_idx]) {
PMD_TX_LOG(DEBUG, "Freeing memory prior to re-allocation %d\n",
queue_idx);
nfp_net_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* Allocating tx queue data structure */
txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct nfp_net_txq),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL) {
RTE_LOG(ERR, PMD, "Error allocating tx dma\n");
return -ENOMEM;
}
/*
* Allocate TX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
sizeof(struct nfp_net_tx_desc) *
NFP_NET_MAX_TX_DESC, socket_id);
if (tz == NULL) {
RTE_LOG(ERR, PMD, "Error allocating tx dma\n");
nfp_net_tx_queue_release(txq);
return -ENOMEM;
}
txq->tx_count = nb_desc;
txq->tail = 0;
txq->tx_free_thresh = tx_free_thresh;
txq->tx_pthresh = tx_conf->tx_thresh.pthresh;
txq->tx_hthresh = tx_conf->tx_thresh.hthresh;
txq->tx_wthresh = tx_conf->tx_thresh.wthresh;
/* queue mapping based on firmware configuration */
txq->qidx = queue_idx;
txq->tx_qcidx = queue_idx * hw->stride_tx;
txq->qcp_q = hw->tx_bar + NFP_QCP_QUEUE_OFF(txq->tx_qcidx);
txq->port_id = dev->data->port_id;
txq->txq_flags = tx_conf->txq_flags;
/* Saving physical and virtual addresses for the TX ring */
txq->dma = (uint64_t)tz->phys_addr;
txq->txds = (struct nfp_net_tx_desc *)tz->addr;
/* mbuf pointers array for referencing mbufs linked to TX descriptors */
txq->txbufs = rte_zmalloc_socket("txq->txbufs",
sizeof(*txq->txbufs) * nb_desc,
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->txbufs == NULL) {
nfp_net_tx_queue_release(txq);
return -ENOMEM;
}
PMD_TX_LOG(DEBUG, "txbufs=%p hw_ring=%p dma_addr=0x%" PRIx64 "\n",
txq->txbufs, txq->txds, (unsigned long int)txq->dma);
nfp_net_reset_tx_queue(txq);
dev->data->tx_queues[queue_idx] = txq;
txq->hw = hw;
/*
* Telling the HW about the physical address of the TX ring and number
* of descriptors in log2 format
*/
nn_cfg_writeq(hw, NFP_NET_CFG_TXR_ADDR(queue_idx), txq->dma);
nn_cfg_writeb(hw, NFP_NET_CFG_TXR_SZ(queue_idx), log2(nb_desc));
return 0;
}
/* nfp_net_tx_cksum - Set TX CSUM offload flags in TX descriptor */
static inline void
nfp_net_tx_cksum(struct nfp_net_txq *txq, struct nfp_net_tx_desc *txd,
struct rte_mbuf *mb)
{
uint64_t ol_flags;
struct nfp_net_hw *hw = txq->hw;
if (!(hw->cap & NFP_NET_CFG_CTRL_TXCSUM))
return;
ol_flags = mb->ol_flags;
/* IPv6 does not need checksum */
if (ol_flags & PKT_TX_IP_CKSUM)
txd->flags |= PCIE_DESC_TX_IP4_CSUM;
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_UDP_CKSUM:
txd->flags |= PCIE_DESC_TX_UDP_CSUM;
break;
case PKT_TX_TCP_CKSUM:
txd->flags |= PCIE_DESC_TX_TCP_CSUM;
break;
}
if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
txd->flags |= PCIE_DESC_TX_CSUM;
}
/* nfp_net_rx_cksum - set mbuf checksum flags based on RX descriptor flags */
static inline void
nfp_net_rx_cksum(struct nfp_net_rxq *rxq, struct nfp_net_rx_desc *rxd,
struct rte_mbuf *mb)
{
struct nfp_net_hw *hw = rxq->hw;
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RXCSUM))
return;
/* If IPv4 and IP checksum error, fail */
if ((rxd->rxd.flags & PCIE_DESC_RX_IP4_CSUM) &&
!(rxd->rxd.flags & PCIE_DESC_RX_IP4_CSUM_OK))
mb->ol_flags |= PKT_RX_IP_CKSUM_BAD;
/* If neither UDP nor TCP return */
if (!(rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM) &&
!(rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM))
return;
if ((rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM) &&
!(rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK))
mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
if ((rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM) &&
!(rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK))
mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
}
#define NFP_HASH_OFFSET ((uint8_t *)mbuf->buf_addr + mbuf->data_off - 4)
#define NFP_HASH_TYPE_OFFSET ((uint8_t *)mbuf->buf_addr + mbuf->data_off - 8)
/*
* nfp_net_set_hash - Set mbuf hash data
*
* The RSS hash and hash-type are pre-pended to the packet data.
* Extract and decode it and set the mbuf fields.
*/
static inline void
nfp_net_set_hash(struct nfp_net_rxq *rxq, struct nfp_net_rx_desc *rxd,
struct rte_mbuf *mbuf)
{
uint32_t hash;
uint32_t hash_type;
struct nfp_net_hw *hw = rxq->hw;
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
return;
if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
return;
hash = rte_be_to_cpu_32(*(uint32_t *)NFP_HASH_OFFSET);
hash_type = rte_be_to_cpu_32(*(uint32_t *)NFP_HASH_TYPE_OFFSET);
/*
* hash type is sharing the same word with input port info
* 31-8: input port
* 7:0: hash type
*/
hash_type &= 0xff;
mbuf->hash.rss = hash;
mbuf->ol_flags |= PKT_RX_RSS_HASH;
switch (hash_type) {
case NFP_NET_RSS_IPV4:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV4;
break;
case NFP_NET_RSS_IPV6:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6;
break;
case NFP_NET_RSS_IPV6_EX:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
break;
default:
mbuf->packet_type |= RTE_PTYPE_INNER_L4_MASK;
}
}
/* nfp_net_check_port - Set mbuf in_port field */
static void
nfp_net_check_port(struct nfp_net_rx_desc *rxd, struct rte_mbuf *mbuf)
{
uint32_t port;
if (!(rxd->rxd.flags & PCIE_DESC_RX_INGRESS_PORT)) {
mbuf->port = 0;
return;
}
port = rte_be_to_cpu_32(*(uint32_t *)((uint8_t *)mbuf->buf_addr +
mbuf->data_off - 8));
/*
* hash type is sharing the same word with input port info
* 31-8: input port
* 7:0: hash type
*/
port = (uint8_t)(port >> 8);
mbuf->port = port;
}
static inline void
nfp_net_mbuf_alloc_failed(struct nfp_net_rxq *rxq)
{
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
}
#define NFP_DESC_META_LEN(d) (d->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK)
/*
* RX path design:
*
* There are some decissions to take:
* 1) How to check DD RX descriptors bit
* 2) How and when to allocate new mbufs
*
* Current implementation checks just one single DD bit each loop. As each
* descriptor is 8 bytes, it is likely a good idea to check descriptors in
* a single cache line instead. Tests with this change have not shown any
* performance improvement but it requires further investigation. For example,
* depending on which descriptor is next, the number of descriptors could be
* less than 8 for just checking those in the same cache line. This implies
* extra work which could be counterproductive by itself. Indeed, last firmware
* changes are just doing this: writing several descriptors with the DD bit
* for saving PCIe bandwidth and DMA operations from the NFP.
*
* Mbuf allocation is done when a new packet is received. Then the descriptor
* is automatically linked with the new mbuf and the old one is given to the
* user. The main drawback with this design is mbuf allocation is heavier than
* using bulk allocations allowed by DPDK with rte_mempool_get_bulk. From the
* cache point of view it does not seem allocating the mbuf early on as we are
* doing now have any benefit at all. Again, tests with this change have not
* shown any improvement. Also, rte_mempool_get_bulk returns all or nothing
* so looking at the implications of this type of allocation should be studied
* deeply
*/
static uint16_t
nfp_net_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct nfp_net_rxq *rxq;
struct nfp_net_rx_desc *rxds;
struct nfp_net_rx_buff *rxb;
struct nfp_net_hw *hw;
struct rte_mbuf *mb;
struct rte_mbuf *new_mb;
int idx;
uint16_t nb_hold;
uint64_t dma_addr;
int avail;
rxq = rx_queue;
if (unlikely(rxq == NULL)) {
/*
* DPDK just checks the queue is lower than max queues
* enabled. But the queue needs to be configured
*/
RTE_LOG(ERR, PMD, "RX Bad queue\n");
return -EINVAL;
}
hw = rxq->hw;
avail = 0;
nb_hold = 0;
while (avail < nb_pkts) {
idx = rxq->rd_p % rxq->rx_count;
rxb = &rxq->rxbufs[idx];
if (unlikely(rxb == NULL)) {
RTE_LOG(ERR, PMD, "rxb does not exist!\n");
break;
}
/*
* Memory barrier to ensure that we won't do other
* reads before the DD bit.
*/
rte_rmb();
rxds = &rxq->rxds[idx];
if ((rxds->rxd.meta_len_dd & PCIE_DESC_RX_DD) == 0)
break;
/*
* We got a packet. Let's alloc a new mbuff for refilling the
* free descriptor ring as soon as possible
*/
new_mb = rte_pktmbuf_alloc(rxq->mem_pool);
if (unlikely(new_mb == NULL)) {
RTE_LOG(DEBUG, PMD, "RX mbuf alloc failed port_id=%u "
"queue_id=%u\n", (unsigned)rxq->port_id,
(unsigned)rxq->qidx);
nfp_net_mbuf_alloc_failed(rxq);
break;
}
nb_hold++;
/*
* Grab the mbuff and refill the descriptor with the
* previously allocated mbuff
*/
mb = rxb->mbuf;
rxb->mbuf = new_mb;
PMD_RX_LOG(DEBUG, "Packet len: %u, mbuf_size: %u\n",
rxds->rxd.data_len, rxq->mbuf_size);
/* Size of this segment */
mb->data_len = rxds->rxd.data_len - NFP_DESC_META_LEN(rxds);
/* Size of the whole packet. We just support 1 segment */
mb->pkt_len = rxds->rxd.data_len - NFP_DESC_META_LEN(rxds);
if (unlikely((mb->data_len + hw->rx_offset) >
rxq->mbuf_size)) {
/*
* This should not happen and the user has the
* responsibility of avoiding it. But we have
* to give some info about the error
*/
RTE_LOG(ERR, PMD,
"mbuf overflow likely due to the RX offset.\n"
"\t\tYour mbuf size should have extra space for"
" RX offset=%u bytes.\n"
"\t\tCurrently you just have %u bytes available"
" but the received packet is %u bytes long",
hw->rx_offset,
rxq->mbuf_size - hw->rx_offset,
mb->data_len);
return -EINVAL;
}
/* Filling the received mbuff with packet info */
if (hw->rx_offset)
mb->data_off = RTE_PKTMBUF_HEADROOM + hw->rx_offset;
else
mb->data_off = RTE_PKTMBUF_HEADROOM +
NFP_DESC_META_LEN(rxds);
/* No scatter mode supported */
mb->nb_segs = 1;
mb->next = NULL;
/* Checking the RSS flag */
nfp_net_set_hash(rxq, rxds, mb);
/* Checking the checksum flag */
nfp_net_rx_cksum(rxq, rxds, mb);
/* Checking the port flag */
nfp_net_check_port(rxds, mb);
if ((rxds->rxd.flags & PCIE_DESC_RX_VLAN) &&
(hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN)) {
mb->vlan_tci = rte_cpu_to_le_32(rxds->rxd.vlan);
mb->ol_flags |= PKT_RX_VLAN_PKT;
}
/* Adding the mbuff to the mbuff array passed by the app */
rx_pkts[avail++] = mb;
/* Now resetting and updating the descriptor */
rxds->vals[0] = 0;
rxds->vals[1] = 0;
dma_addr = rte_cpu_to_le_64(RTE_MBUF_DMA_ADDR_DEFAULT(new_mb));
rxds->fld.dd = 0;
rxds->fld.dma_addr_hi = (dma_addr >> 32) & 0xff;
rxds->fld.dma_addr_lo = dma_addr & 0xffffffff;
rxq->rd_p++;
}
if (nb_hold == 0)
return nb_hold;
PMD_RX_LOG(DEBUG, "RX port_id=%u queue_id=%u, %d packets received\n",
(unsigned)rxq->port_id, (unsigned)rxq->qidx, nb_hold);
nb_hold += rxq->nb_rx_hold;
/*
* FL descriptors needs to be written before incrementing the
* FL queue WR pointer
*/
rte_wmb();
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port=%u queue=%u nb_hold=%u avail=%u\n",
(unsigned)rxq->port_id, (unsigned)rxq->qidx,
(unsigned)nb_hold, (unsigned)avail);
nfp_qcp_ptr_add(rxq->qcp_fl, NFP_QCP_WRITE_PTR, nb_hold);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return avail;
}
/*
* nfp_net_tx_free_bufs - Check for descriptors with a complete
* status
* @txq: TX queue to work with
* Returns number of descriptors freed
*/
int
nfp_net_tx_free_bufs(struct nfp_net_txq *txq)
{
uint32_t qcp_rd_p;
int todo;
PMD_TX_LOG(DEBUG, "queue %u. Check for descriptor with a complete"
" status\n", txq->qidx);
/* Work out how many packets have been sent */
qcp_rd_p = nfp_qcp_read(txq->qcp_q, NFP_QCP_READ_PTR);
if (qcp_rd_p == txq->qcp_rd_p) {
PMD_TX_LOG(DEBUG, "queue %u: It seems harrier is not sending "
"packets (%u, %u)\n", txq->qidx,
qcp_rd_p, txq->qcp_rd_p);
return 0;
}
if (qcp_rd_p > txq->qcp_rd_p)
todo = qcp_rd_p - txq->qcp_rd_p;
else
todo = qcp_rd_p + txq->tx_count - txq->qcp_rd_p;
PMD_TX_LOG(DEBUG, "qcp_rd_p %u, txq->qcp_rd_p: %u, qcp->rd_p: %u\n",
qcp_rd_p, txq->qcp_rd_p, txq->rd_p);
if (todo == 0)
return todo;
txq->qcp_rd_p += todo;
txq->qcp_rd_p %= txq->tx_count;
txq->rd_p += todo;
return todo;
}
/* Leaving always free descriptors for avoiding wrapping confusion */
#define NFP_FREE_TX_DESC(t) (t->tx_count - (t->wr_p - t->rd_p) - 8)
/*
* nfp_net_txq_full - Check if the TX queue free descriptors
* is below tx_free_threshold
*
* @txq: TX queue to check
*
* This function uses the host copy* of read/write pointers
*/
static inline
int nfp_net_txq_full(struct nfp_net_txq *txq)
{
return NFP_FREE_TX_DESC(txq) < txq->tx_free_thresh;
}
static uint16_t
nfp_net_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct nfp_net_txq *txq;
struct nfp_net_hw *hw;
struct nfp_net_tx_desc *txds;
struct rte_mbuf *pkt;
uint64_t dma_addr;
int pkt_size, dma_size;
uint16_t free_descs, issued_descs;
struct rte_mbuf **lmbuf;
int i;
txq = tx_queue;
hw = txq->hw;
txds = &txq->txds[txq->tail];
PMD_TX_LOG(DEBUG, "working for queue %u at pos %d and %u packets\n",
txq->qidx, txq->tail, nb_pkts);
if ((NFP_FREE_TX_DESC(txq) < nb_pkts) || (nfp_net_txq_full(txq)))
nfp_net_tx_free_bufs(txq);
free_descs = (uint16_t)NFP_FREE_TX_DESC(txq);
if (unlikely(free_descs == 0))
return 0;
pkt = *tx_pkts;
i = 0;
issued_descs = 0;
PMD_TX_LOG(DEBUG, "queue: %u. Sending %u packets\n",
txq->qidx, nb_pkts);
/* Sending packets */
while ((i < nb_pkts) && free_descs) {
/* Grabbing the mbuf linked to the current descriptor */
lmbuf = &txq->txbufs[txq->tail].mbuf;
/* Warming the cache for releasing the mbuf later on */
RTE_MBUF_PREFETCH_TO_FREE(*lmbuf);
pkt = *(tx_pkts + i);
if (unlikely((pkt->nb_segs > 1) &&
!(hw->cap & NFP_NET_CFG_CTRL_GATHER))) {
PMD_INIT_LOG(INFO, "NFP_NET_CFG_CTRL_GATHER not set\n");
rte_panic("Multisegment packet unsupported\n");
}
/* Checking if we have enough descriptors */
if (unlikely(pkt->nb_segs > free_descs))
goto xmit_end;
/*
* Checksum and VLAN flags just in the first descriptor for a
* multisegment packet
*/
nfp_net_tx_cksum(txq, txds, pkt);
if ((pkt->ol_flags & PKT_TX_VLAN_PKT) &&
(hw->cap & NFP_NET_CFG_CTRL_TXVLAN)) {
txds->flags |= PCIE_DESC_TX_VLAN;
txds->vlan = pkt->vlan_tci;
}
if (pkt->ol_flags & PKT_TX_TCP_SEG)
rte_panic("TSO is not supported\n");
/*
* mbuf data_len is the data in one segment and pkt_len data
* in the whole packet. When the packet is just one segment,
* then data_len = pkt_len
*/
pkt_size = pkt->pkt_len;
while (pkt_size) {
/* Releasing mbuf which was prefetched above */
if (*lmbuf)
rte_pktmbuf_free_seg(*lmbuf);
dma_size = pkt->data_len;
dma_addr = rte_mbuf_data_dma_addr(pkt);
PMD_TX_LOG(DEBUG, "Working with mbuf at dma address:"
"%" PRIx64 "\n", dma_addr);
/* Filling descriptors fields */
txds->dma_len = dma_size;
txds->data_len = pkt->pkt_len;
txds->dma_addr_hi = (dma_addr >> 32) & 0xff;
txds->dma_addr_lo = (dma_addr & 0xffffffff);
ASSERT(free_descs > 0);
free_descs--;
/*
* Linking mbuf with descriptor for being released
* next time descriptor is used
*/
*lmbuf = pkt;
txq->wr_p++;
txq->tail++;
if (unlikely(txq->tail == txq->tx_count)) /* wrapping?*/
txq->tail = 0;
pkt_size -= dma_size;
if (!pkt_size) {
/* End of packet */
txds->offset_eop |= PCIE_DESC_TX_EOP;
} else {
txds->offset_eop &= PCIE_DESC_TX_OFFSET_MASK;
pkt = pkt->next;
}
/* Referencing next free TX descriptor */
txds = &txq->txds[txq->tail];
issued_descs++;
}
i++;
}
xmit_end:
/* Increment write pointers. Force memory write before we let HW know */
rte_wmb();
nfp_qcp_ptr_add(txq->qcp_q, NFP_QCP_WRITE_PTR, issued_descs);
return i;
}
static void
nfp_net_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
uint32_t new_ctrl, update;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
new_ctrl = 0;
if ((mask & ETH_VLAN_FILTER_OFFLOAD) ||
(mask & ETH_VLAN_FILTER_OFFLOAD))
RTE_LOG(INFO, PMD, "Not support for ETH_VLAN_FILTER_OFFLOAD or"
" ETH_VLAN_FILTER_EXTEND");
/* Enable vlan strip if it is not configured yet */
if ((mask & ETH_VLAN_STRIP_OFFLOAD) &&
!(hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN))
new_ctrl = hw->ctrl | NFP_NET_CFG_CTRL_RXVLAN;
/* Disable vlan strip just if it is configured */
if (!(mask & ETH_VLAN_STRIP_OFFLOAD) &&
(hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN))
new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_RXVLAN;
if (new_ctrl == 0)
return;
update = NFP_NET_CFG_UPDATE_GEN;
if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
return;
hw->ctrl = new_ctrl;
}
/* Update Redirection Table(RETA) of Receive Side Scaling of Ethernet device */
static int
nfp_net_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
uint32_t reta, mask;
int i, j;
int idx, shift;
uint32_t update;
struct nfp_net_hw *hw =
NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
return -EINVAL;
if (reta_size != NFP_NET_CFG_RSS_ITBL_SZ) {
RTE_LOG(ERR, PMD, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)\n", reta_size, NFP_NET_CFG_RSS_ITBL_SZ);
return -EINVAL;
}
/*
* Update Redirection Table. There are 128 8bit-entries which can be
* manage as 32 32bit-entries
*/
for (i = 0; i < reta_size; i += 4) {
/* Handling 4 RSS entries per loop */
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) & 0xF);
if (!mask)
continue;
reta = 0;
/* If all 4 entries were set, don't need read RETA register */
if (mask != 0xF)
reta = nn_cfg_readl(hw, NFP_NET_CFG_RSS_ITBL + i);
for (j = 0; j < 4; j++) {
if (!(mask & (0x1 << j)))
continue;
if (mask != 0xF)
/* Clearing the entry bits */
reta &= ~(0xFF << (8 * j));
reta |= reta_conf[idx].reta[shift + j] << (8 * j);
}
nn_cfg_writel(hw, NFP_NET_CFG_RSS_ITBL + shift, reta);
}
update = NFP_NET_CFG_UPDATE_RSS;
if (nfp_net_reconfig(hw, hw->ctrl, update) < 0)
return -EIO;
return 0;
}
/* Query Redirection Table(RETA) of Receive Side Scaling of Ethernet device. */
static int
nfp_net_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
uint8_t i, j, mask;
int idx, shift;
uint32_t reta;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
return -EINVAL;
if (reta_size != NFP_NET_CFG_RSS_ITBL_SZ) {
RTE_LOG(ERR, PMD, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)\n", reta_size, NFP_NET_CFG_RSS_ITBL_SZ);
return -EINVAL;
}
/*
* Reading Redirection Table. There are 128 8bit-entries which can be
* manage as 32 32bit-entries
*/
for (i = 0; i < reta_size; i += 4) {
/* Handling 4 RSS entries per loop */
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) & 0xF);
if (!mask)
continue;
reta = nn_cfg_readl(hw, NFP_NET_CFG_RSS_ITBL + shift);
for (j = 0; j < 4; j++) {
if (!(mask & (0x1 << j)))
continue;
reta_conf->reta[shift + j] =
(uint8_t)((reta >> (8 * j)) & 0xF);
}
}
return 0;
}
static int
nfp_net_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
uint32_t update;
uint32_t cfg_rss_ctrl = 0;
uint8_t key;
uint64_t rss_hf;
int i;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
rss_hf = rss_conf->rss_hf;
/* Checking if RSS is enabled */
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS)) {
if (rss_hf != 0) { /* Enable RSS? */
RTE_LOG(ERR, PMD, "RSS unsupported\n");
return -EINVAL;
}
return 0; /* Nothing to do */
}
if (rss_conf->rss_key_len > NFP_NET_CFG_RSS_KEY_SZ) {
RTE_LOG(ERR, PMD, "hash key too long\n");
return -EINVAL;
}
if (rss_hf & ETH_RSS_IPV4)
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV4 |
NFP_NET_CFG_RSS_IPV4_TCP |
NFP_NET_CFG_RSS_IPV4_UDP;
if (rss_hf & ETH_RSS_IPV6)
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV6 |
NFP_NET_CFG_RSS_IPV6_TCP |
NFP_NET_CFG_RSS_IPV6_UDP;
/* configuring where to apply the RSS hash */
nn_cfg_writel(hw, NFP_NET_CFG_RSS_CTRL, cfg_rss_ctrl);
/* Writing the key byte a byte */
for (i = 0; i < rss_conf->rss_key_len; i++) {
memcpy(&key, &rss_conf->rss_key[i], 1);
nn_cfg_writeb(hw, NFP_NET_CFG_RSS_KEY + i, key);
}
/* Writing the key size */
nn_cfg_writeb(hw, NFP_NET_CFG_RSS_KEY_SZ, rss_conf->rss_key_len);
update = NFP_NET_CFG_UPDATE_RSS;
if (nfp_net_reconfig(hw, hw->ctrl, update) < 0)
return -EIO;
return 0;
}
static int
nfp_net_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
uint64_t rss_hf;
uint32_t cfg_rss_ctrl;
uint8_t key;
int i;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
return -EINVAL;
rss_hf = rss_conf->rss_hf;
cfg_rss_ctrl = nn_cfg_readl(hw, NFP_NET_CFG_RSS_CTRL);
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4)
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP | ETH_RSS_NONFRAG_IPV4_UDP;
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4_TCP)
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6_TCP)
rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4_UDP)
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6_UDP)
rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6)
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP | ETH_RSS_NONFRAG_IPV6_UDP;
/* Reading the key size */
rss_conf->rss_key_len = nn_cfg_readl(hw, NFP_NET_CFG_RSS_KEY_SZ);
/* Reading the key byte a byte */
for (i = 0; i < rss_conf->rss_key_len; i++) {
key = nn_cfg_readb(hw, NFP_NET_CFG_RSS_KEY + i);
memcpy(&rss_conf->rss_key[i], &key, 1);
}
return 0;
}
/* Initialise and register driver with DPDK Application */
static struct eth_dev_ops nfp_net_eth_dev_ops = {
.dev_configure = nfp_net_configure,
.dev_start = nfp_net_start,
.dev_stop = nfp_net_stop,
.dev_close = nfp_net_close,
.promiscuous_enable = nfp_net_promisc_enable,
.promiscuous_disable = nfp_net_promisc_disable,
.link_update = nfp_net_link_update,
.stats_get = nfp_net_stats_get,
.stats_reset = nfp_net_stats_reset,
.dev_infos_get = nfp_net_infos_get,
.mtu_set = nfp_net_dev_mtu_set,
.vlan_offload_set = nfp_net_vlan_offload_set,
.reta_update = nfp_net_reta_update,
.reta_query = nfp_net_reta_query,
.rss_hash_update = nfp_net_rss_hash_update,
.rss_hash_conf_get = nfp_net_rss_hash_conf_get,
.rx_queue_setup = nfp_net_rx_queue_setup,
.rx_queue_release = nfp_net_rx_queue_release,
.rx_queue_count = nfp_net_rx_queue_count,
.tx_queue_setup = nfp_net_tx_queue_setup,
.tx_queue_release = nfp_net_tx_queue_release,
};
static int
nfp_net_init(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev;
struct nfp_net_hw *hw;
uint32_t tx_bar_off, rx_bar_off;
uint32_t start_q;
int stride = 4;
PMD_INIT_FUNC_TRACE();
hw = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
eth_dev->dev_ops = &nfp_net_eth_dev_ops;
eth_dev->rx_pkt_burst = &nfp_net_recv_pkts;
eth_dev->tx_pkt_burst = &nfp_net_xmit_pkts;
/* For secondary processes, the primary has done all the work */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
pci_dev = eth_dev->pci_dev;
hw->device_id = pci_dev->id.device_id;
hw->vendor_id = pci_dev->id.vendor_id;
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
PMD_INIT_LOG(DEBUG, "nfp_net: device (%u:%u) %u:%u:%u:%u\n",
pci_dev->id.vendor_id, pci_dev->id.device_id,
pci_dev->addr.domain, pci_dev->addr.bus,
pci_dev->addr.devid, pci_dev->addr.function);
hw->ctrl_bar = (uint8_t *)pci_dev->mem_resource[0].addr;
if (hw->ctrl_bar == NULL) {
RTE_LOG(ERR, PMD,
"hw->ctrl_bar is NULL. BAR0 not configured\n");
return -ENODEV;
}
hw->max_rx_queues = nn_cfg_readl(hw, NFP_NET_CFG_MAX_RXRINGS);
hw->max_tx_queues = nn_cfg_readl(hw, NFP_NET_CFG_MAX_TXRINGS);
/* Work out where in the BAR the queues start. */
switch (pci_dev->id.device_id) {
case PCI_DEVICE_ID_NFP6000_VF_NIC:
start_q = nn_cfg_readl(hw, NFP_NET_CFG_START_TXQ);
tx_bar_off = NFP_PCIE_QUEUE(start_q);
start_q = nn_cfg_readl(hw, NFP_NET_CFG_START_RXQ);
rx_bar_off = NFP_PCIE_QUEUE(start_q);
break;
default:
RTE_LOG(ERR, PMD, "nfp_net: no device ID matching\n");
return -ENODEV;
}
PMD_INIT_LOG(DEBUG, "tx_bar_off: 0x%08x\n", tx_bar_off);
PMD_INIT_LOG(DEBUG, "rx_bar_off: 0x%08x\n", rx_bar_off);
hw->tx_bar = (uint8_t *)pci_dev->mem_resource[2].addr + tx_bar_off;
hw->rx_bar = (uint8_t *)pci_dev->mem_resource[2].addr + rx_bar_off;
PMD_INIT_LOG(DEBUG, "ctrl_bar: %p, tx_bar: %p, rx_bar: %p\n",
hw->ctrl_bar, hw->tx_bar, hw->rx_bar);
nfp_net_cfg_queue_setup(hw);
/* Get some of the read-only fields from the config BAR */
hw->ver = nn_cfg_readl(hw, NFP_NET_CFG_VERSION);
hw->cap = nn_cfg_readl(hw, NFP_NET_CFG_CAP);
hw->max_mtu = nn_cfg_readl(hw, NFP_NET_CFG_MAX_MTU);
hw->mtu = hw->max_mtu;
if (NFD_CFG_MAJOR_VERSION_of(hw->ver) < 2)
hw->rx_offset = NFP_NET_RX_OFFSET;
else
hw->rx_offset = nn_cfg_readl(hw, NFP_NET_CFG_RX_OFFSET_ADDR);
PMD_INIT_LOG(INFO, "VER: %#x, Maximum supported MTU: %d\n",
hw->ver, hw->max_mtu);
PMD_INIT_LOG(INFO, "CAP: %#x, %s%s%s%s%s%s%s%s%s\n", hw->cap,
hw->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
hw->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
hw->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
hw->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
hw->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
hw->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
hw->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
hw->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "",
hw->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "");
pci_dev = eth_dev->pci_dev;
hw->ctrl = 0;
hw->stride_rx = stride;
hw->stride_tx = stride;
PMD_INIT_LOG(INFO, "max_rx_queues: %u, max_tx_queues: %u\n",
hw->max_rx_queues, hw->max_tx_queues);
/* Allocating memory for mac addr */
eth_dev->data->mac_addrs = rte_zmalloc("mac_addr", ETHER_ADDR_LEN, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to space for MAC address");
return -ENOMEM;
}
/* Using random mac addresses for VFs */
eth_random_addr(&hw->mac_addr[0]);
/* Copying mac address to DPDK eth_dev struct */
ether_addr_copy(&eth_dev->data->mac_addrs[0],
(struct ether_addr *)hw->mac_addr);
PMD_INIT_LOG(INFO, "port %d VendorID=0x%x DeviceID=0x%x "
"mac=%02x:%02x:%02x:%02x:%02x:%02x",
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id,
hw->mac_addr[0], hw->mac_addr[1], hw->mac_addr[2],
hw->mac_addr[3], hw->mac_addr[4], hw->mac_addr[5]);
/* Registering LSC interrupt handler */
rte_intr_callback_register(&pci_dev->intr_handle,
nfp_net_dev_interrupt_handler,
(void *)eth_dev);
/* enable uio intr after callback register */
rte_intr_enable(&pci_dev->intr_handle);
/* Telling the firmware about the LSC interrupt entry */
nn_cfg_writeb(hw, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
/* Recording current stats counters values */
nfp_net_stats_reset(eth_dev);
return 0;
}
static struct rte_pci_id pci_id_nfp_net_map[] = {
{
.vendor_id = PCI_VENDOR_ID_NETRONOME,
.device_id = PCI_DEVICE_ID_NFP6000_PF_NIC,
.subsystem_vendor_id = PCI_ANY_ID,
.subsystem_device_id = PCI_ANY_ID,
},
{
.vendor_id = PCI_VENDOR_ID_NETRONOME,
.device_id = PCI_DEVICE_ID_NFP6000_VF_NIC,
.subsystem_vendor_id = PCI_ANY_ID,
.subsystem_device_id = PCI_ANY_ID,
},
{
.vendor_id = 0,
},
};
static struct eth_driver rte_nfp_net_pmd = {
{
.name = "rte_nfp_net_pmd",
.id_table = pci_id_nfp_net_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
},
.eth_dev_init = nfp_net_init,
.dev_private_size = sizeof(struct nfp_net_adapter),
};
static int
nfp_net_pmd_init(const char *name __rte_unused,
const char *params __rte_unused)
{
PMD_INIT_FUNC_TRACE();
PMD_INIT_LOG(INFO, "librte_pmd_nfp_net version %s\n",
NFP_NET_PMD_VERSION);
rte_eth_driver_register(&rte_nfp_net_pmd);
return 0;
}
static struct rte_driver rte_nfp_net_driver = {
.type = PMD_PDEV,
.init = nfp_net_pmd_init,
};
PMD_REGISTER_DRIVER(rte_nfp_net_driver);
/*
* Local variables:
* c-file-style: "Linux"
* indent-tabs-mode: t
* End:
*/