Jasvinder Singh 5b590fbe09 app/testpmd: add traffic management forwarding mode
This commit extends the testpmd application with new forwarding engine
that demonstrates the use of ethdev traffic management APIs and softnic
PMD for QoS traffic management.

In this mode, 5-level hierarchical tree of the QoS scheduler is built
with the help of ethdev TM APIs such as shaper profile add/delete,
shared shaper add/update, node add/delete, hierarchy commit, etc.
The hierarchical tree has following nodes; root node(x1, level 0),
subport node(x1, level 1), pipe node(x4096, level 2),
tc node(x16348, level 3), queue node(x65536, level 4).

During runtime, each received packet is first classified by mapping the
packet fields information to 5-tuples (HQoS subport, pipe, traffic class,
queue within traffic class, and color) and storing it in the packet mbuf
sched field. After classification, each packet is sent to softnic port
which prioritizes the transmission of the received packets, and
accordingly sends them on to the output interface.

To enable traffic management mode, following testpmd command is used;

$ ./testpmd -c c -n 4 --vdev
	'net_softnic0,hard_name=0000:06:00.1,soft_tm=on' -- -i
	--forward-mode=tm

Signed-off-by: Jasvinder Singh <jasvinder.singh@intel.com>
Acked-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
2017-10-12 01:52:48 +01:00

866 lines
24 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <sys/stat.h>
#include <rte_cycles.h>
#include <rte_mbuf.h>
#include <rte_ethdev.h>
#include <rte_flow.h>
#include <rte_meter.h>
#include <rte_eth_softnic.h>
#include <rte_tm.h>
#include "testpmd.h"
#define SUBPORT_NODES_PER_PORT 1
#define PIPE_NODES_PER_SUBPORT 4096
#define TC_NODES_PER_PIPE 4
#define QUEUE_NODES_PER_TC 4
#define NUM_PIPE_NODES \
(SUBPORT_NODES_PER_PORT * PIPE_NODES_PER_SUBPORT)
#define NUM_TC_NODES \
(NUM_PIPE_NODES * TC_NODES_PER_PIPE)
#define ROOT_NODE_ID 1000000
#define SUBPORT_NODES_START_ID 900000
#define PIPE_NODES_START_ID 800000
#define TC_NODES_START_ID 700000
#define STATS_MASK_DEFAULT \
(RTE_TM_STATS_N_PKTS | \
RTE_TM_STATS_N_BYTES | \
RTE_TM_STATS_N_PKTS_GREEN_DROPPED | \
RTE_TM_STATS_N_BYTES_GREEN_DROPPED)
#define STATS_MASK_QUEUE \
(STATS_MASK_DEFAULT | \
RTE_TM_STATS_N_PKTS_QUEUED)
#define BYTES_IN_MBPS (1000 * 1000 / 8)
#define TOKEN_BUCKET_SIZE 1000000
/* TM Hierarchy Levels */
enum tm_hierarchy_level {
TM_NODE_LEVEL_PORT = 0,
TM_NODE_LEVEL_SUBPORT,
TM_NODE_LEVEL_PIPE,
TM_NODE_LEVEL_TC,
TM_NODE_LEVEL_QUEUE,
TM_NODE_LEVEL_MAX,
};
struct tm_hierarchy {
/* TM Nodes */
uint32_t root_node_id;
uint32_t subport_node_id[SUBPORT_NODES_PER_PORT];
uint32_t pipe_node_id[SUBPORT_NODES_PER_PORT][PIPE_NODES_PER_SUBPORT];
uint32_t tc_node_id[NUM_PIPE_NODES][TC_NODES_PER_PIPE];
uint32_t queue_node_id[NUM_TC_NODES][QUEUE_NODES_PER_TC];
/* TM Hierarchy Nodes Shaper Rates */
uint32_t root_node_shaper_rate;
uint32_t subport_node_shaper_rate;
uint32_t pipe_node_shaper_rate;
uint32_t tc_node_shaper_rate;
uint32_t tc_node_shared_shaper_rate;
uint32_t n_shapers;
};
#define BITFIELD(byte_array, slab_pos, slab_mask, slab_shr) \
({ \
uint64_t slab = *((uint64_t *) &byte_array[slab_pos]); \
uint64_t val = \
(rte_be_to_cpu_64(slab) & slab_mask) >> slab_shr; \
val; \
})
#define RTE_SCHED_PORT_HIERARCHY(subport, pipe, \
traffic_class, queue, color) \
((((uint64_t) (queue)) & 0x3) | \
((((uint64_t) (traffic_class)) & 0x3) << 2) | \
((((uint64_t) (color)) & 0x3) << 4) | \
((((uint64_t) (subport)) & 0xFFFF) << 16) | \
((((uint64_t) (pipe)) & 0xFFFFFFFF) << 32))
static void
pkt_metadata_set(struct rte_port *p, struct rte_mbuf **pkts,
uint32_t n_pkts)
{
struct softnic_port_tm *tm = &p->softport.tm;
uint32_t i;
for (i = 0; i < (n_pkts & (~0x3)); i += 4) {
struct rte_mbuf *pkt0 = pkts[i];
struct rte_mbuf *pkt1 = pkts[i + 1];
struct rte_mbuf *pkt2 = pkts[i + 2];
struct rte_mbuf *pkt3 = pkts[i + 3];
uint8_t *pkt0_data = rte_pktmbuf_mtod(pkt0, uint8_t *);
uint8_t *pkt1_data = rte_pktmbuf_mtod(pkt1, uint8_t *);
uint8_t *pkt2_data = rte_pktmbuf_mtod(pkt2, uint8_t *);
uint8_t *pkt3_data = rte_pktmbuf_mtod(pkt3, uint8_t *);
uint64_t pkt0_subport = BITFIELD(pkt0_data,
tm->tm_pktfield0_slabpos,
tm->tm_pktfield0_slabmask,
tm->tm_pktfield0_slabshr);
uint64_t pkt0_pipe = BITFIELD(pkt0_data,
tm->tm_pktfield1_slabpos,
tm->tm_pktfield1_slabmask,
tm->tm_pktfield1_slabshr);
uint64_t pkt0_dscp = BITFIELD(pkt0_data,
tm->tm_pktfield2_slabpos,
tm->tm_pktfield2_slabmask,
tm->tm_pktfield2_slabshr);
uint32_t pkt0_tc = tm->tm_tc_table[pkt0_dscp & 0x3F] >> 2;
uint32_t pkt0_tc_q = tm->tm_tc_table[pkt0_dscp & 0x3F] & 0x3;
uint64_t pkt1_subport = BITFIELD(pkt1_data,
tm->tm_pktfield0_slabpos,
tm->tm_pktfield0_slabmask,
tm->tm_pktfield0_slabshr);
uint64_t pkt1_pipe = BITFIELD(pkt1_data,
tm->tm_pktfield1_slabpos,
tm->tm_pktfield1_slabmask,
tm->tm_pktfield1_slabshr);
uint64_t pkt1_dscp = BITFIELD(pkt1_data,
tm->tm_pktfield2_slabpos,
tm->tm_pktfield2_slabmask,
tm->tm_pktfield2_slabshr);
uint32_t pkt1_tc = tm->tm_tc_table[pkt1_dscp & 0x3F] >> 2;
uint32_t pkt1_tc_q = tm->tm_tc_table[pkt1_dscp & 0x3F] & 0x3;
uint64_t pkt2_subport = BITFIELD(pkt2_data,
tm->tm_pktfield0_slabpos,
tm->tm_pktfield0_slabmask,
tm->tm_pktfield0_slabshr);
uint64_t pkt2_pipe = BITFIELD(pkt2_data,
tm->tm_pktfield1_slabpos,
tm->tm_pktfield1_slabmask,
tm->tm_pktfield1_slabshr);
uint64_t pkt2_dscp = BITFIELD(pkt2_data,
tm->tm_pktfield2_slabpos,
tm->tm_pktfield2_slabmask,
tm->tm_pktfield2_slabshr);
uint32_t pkt2_tc = tm->tm_tc_table[pkt2_dscp & 0x3F] >> 2;
uint32_t pkt2_tc_q = tm->tm_tc_table[pkt2_dscp & 0x3F] & 0x3;
uint64_t pkt3_subport = BITFIELD(pkt3_data,
tm->tm_pktfield0_slabpos,
tm->tm_pktfield0_slabmask,
tm->tm_pktfield0_slabshr);
uint64_t pkt3_pipe = BITFIELD(pkt3_data,
tm->tm_pktfield1_slabpos,
tm->tm_pktfield1_slabmask,
tm->tm_pktfield1_slabshr);
uint64_t pkt3_dscp = BITFIELD(pkt3_data,
tm->tm_pktfield2_slabpos,
tm->tm_pktfield2_slabmask,
tm->tm_pktfield2_slabshr);
uint32_t pkt3_tc = tm->tm_tc_table[pkt3_dscp & 0x3F] >> 2;
uint32_t pkt3_tc_q = tm->tm_tc_table[pkt3_dscp & 0x3F] & 0x3;
uint64_t pkt0_sched = RTE_SCHED_PORT_HIERARCHY(pkt0_subport,
pkt0_pipe,
pkt0_tc,
pkt0_tc_q,
0);
uint64_t pkt1_sched = RTE_SCHED_PORT_HIERARCHY(pkt1_subport,
pkt1_pipe,
pkt1_tc,
pkt1_tc_q,
0);
uint64_t pkt2_sched = RTE_SCHED_PORT_HIERARCHY(pkt2_subport,
pkt2_pipe,
pkt2_tc,
pkt2_tc_q,
0);
uint64_t pkt3_sched = RTE_SCHED_PORT_HIERARCHY(pkt3_subport,
pkt3_pipe,
pkt3_tc,
pkt3_tc_q,
0);
pkt0->hash.sched.lo = pkt0_sched & 0xFFFFFFFF;
pkt0->hash.sched.hi = pkt0_sched >> 32;
pkt1->hash.sched.lo = pkt1_sched & 0xFFFFFFFF;
pkt1->hash.sched.hi = pkt1_sched >> 32;
pkt2->hash.sched.lo = pkt2_sched & 0xFFFFFFFF;
pkt2->hash.sched.hi = pkt2_sched >> 32;
pkt3->hash.sched.lo = pkt3_sched & 0xFFFFFFFF;
pkt3->hash.sched.hi = pkt3_sched >> 32;
}
for (; i < n_pkts; i++) {
struct rte_mbuf *pkt = pkts[i];
uint8_t *pkt_data = rte_pktmbuf_mtod(pkt, uint8_t *);
uint64_t pkt_subport = BITFIELD(pkt_data,
tm->tm_pktfield0_slabpos,
tm->tm_pktfield0_slabmask,
tm->tm_pktfield0_slabshr);
uint64_t pkt_pipe = BITFIELD(pkt_data,
tm->tm_pktfield1_slabpos,
tm->tm_pktfield1_slabmask,
tm->tm_pktfield1_slabshr);
uint64_t pkt_dscp = BITFIELD(pkt_data,
tm->tm_pktfield2_slabpos,
tm->tm_pktfield2_slabmask,
tm->tm_pktfield2_slabshr);
uint32_t pkt_tc = tm->tm_tc_table[pkt_dscp & 0x3F] >> 2;
uint32_t pkt_tc_q = tm->tm_tc_table[pkt_dscp & 0x3F] & 0x3;
uint64_t pkt_sched = RTE_SCHED_PORT_HIERARCHY(pkt_subport,
pkt_pipe,
pkt_tc,
pkt_tc_q,
0);
pkt->hash.sched.lo = pkt_sched & 0xFFFFFFFF;
pkt->hash.sched.hi = pkt_sched >> 32;
}
}
/*
* Soft port packet forward
*/
static void
softport_packet_fwd(struct fwd_stream *fs)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_port *rte_tx_port = &ports[fs->tx_port];
uint16_t nb_rx;
uint16_t nb_tx;
uint32_t retry;
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
uint64_t start_tsc;
uint64_t end_tsc;
uint64_t core_cycles;
#endif
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
start_tsc = rte_rdtsc();
#endif
/* Packets Receive */
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue,
pkts_burst, nb_pkt_per_burst);
fs->rx_packets += nb_rx;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
#endif
if (rte_tx_port->softnic_enable) {
/* Set packet metadata if tm flag enabled */
if (rte_tx_port->softport.tm_flag)
pkt_metadata_set(rte_tx_port, pkts_burst, nb_rx);
/* Softport run */
rte_pmd_softnic_run(fs->tx_port);
}
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
pkts_burst, nb_rx);
/* Retry if necessary */
if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
retry = 0;
while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
rte_delay_us(burst_tx_delay_time);
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
&pkts_burst[nb_tx], nb_rx - nb_tx);
}
}
fs->tx_packets += nb_tx;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
#endif
if (unlikely(nb_tx < nb_rx)) {
fs->fwd_dropped += (nb_rx - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_rx);
}
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
end_tsc = rte_rdtsc();
core_cycles = (end_tsc - start_tsc);
fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
#endif
}
static void
set_tm_hiearchy_nodes_shaper_rate(portid_t port_id, struct tm_hierarchy *h)
{
struct rte_eth_link link_params;
uint64_t tm_port_rate;
memset(&link_params, 0, sizeof(link_params));
rte_eth_link_get(port_id, &link_params);
tm_port_rate = link_params.link_speed * BYTES_IN_MBPS;
if (tm_port_rate > UINT32_MAX)
tm_port_rate = UINT32_MAX;
/* Set tm hierarchy shapers rate */
h->root_node_shaper_rate = tm_port_rate;
h->subport_node_shaper_rate =
tm_port_rate / SUBPORT_NODES_PER_PORT;
h->pipe_node_shaper_rate
= h->subport_node_shaper_rate / PIPE_NODES_PER_SUBPORT;
h->tc_node_shaper_rate = h->pipe_node_shaper_rate;
h->tc_node_shared_shaper_rate = h->subport_node_shaper_rate;
}
static int
softport_tm_root_node_add(portid_t port_id, struct tm_hierarchy *h,
struct rte_tm_error *error)
{
struct rte_tm_node_params rnp;
struct rte_tm_shaper_params rsp;
uint32_t priority, weight, level_id, shaper_profile_id;
memset(&rsp, 0, sizeof(struct rte_tm_shaper_params));
memset(&rnp, 0, sizeof(struct rte_tm_node_params));
/* Shaper profile Parameters */
rsp.peak.rate = h->root_node_shaper_rate;
rsp.peak.size = TOKEN_BUCKET_SIZE;
rsp.pkt_length_adjust = RTE_TM_ETH_FRAMING_OVERHEAD_FCS;
shaper_profile_id = 0;
if (rte_tm_shaper_profile_add(port_id, shaper_profile_id,
&rsp, error)) {
printf("%s ERROR(%d)-%s!(shaper_id %u)\n ",
__func__, error->type, error->message,
shaper_profile_id);
return -1;
}
/* Root Node Parameters */
h->root_node_id = ROOT_NODE_ID;
weight = 1;
priority = 0;
level_id = TM_NODE_LEVEL_PORT;
rnp.shaper_profile_id = shaper_profile_id;
rnp.nonleaf.n_sp_priorities = 1;
rnp.stats_mask = STATS_MASK_DEFAULT;
/* Add Node to TM Hierarchy */
if (rte_tm_node_add(port_id, h->root_node_id, RTE_TM_NODE_ID_NULL,
priority, weight, level_id, &rnp, error)) {
printf("%s ERROR(%d)-%s!(node_id %u, parent_id %u, level %u)\n",
__func__, error->type, error->message,
h->root_node_id, RTE_TM_NODE_ID_NULL,
level_id);
return -1;
}
/* Update */
h->n_shapers++;
printf(" Root node added (Start id %u, Count %u, level %u)\n",
h->root_node_id, 1, level_id);
return 0;
}
static int
softport_tm_subport_node_add(portid_t port_id, struct tm_hierarchy *h,
struct rte_tm_error *error)
{
uint32_t subport_parent_node_id, subport_node_id = 0;
struct rte_tm_node_params snp;
struct rte_tm_shaper_params ssp;
uint32_t priority, weight, level_id, shaper_profile_id;
uint32_t i;
memset(&ssp, 0, sizeof(struct rte_tm_shaper_params));
memset(&snp, 0, sizeof(struct rte_tm_node_params));
shaper_profile_id = h->n_shapers;
/* Add Shaper Profile to TM Hierarchy */
for (i = 0; i < SUBPORT_NODES_PER_PORT; i++) {
ssp.peak.rate = h->subport_node_shaper_rate;
ssp.peak.size = TOKEN_BUCKET_SIZE;
ssp.pkt_length_adjust = RTE_TM_ETH_FRAMING_OVERHEAD_FCS;
if (rte_tm_shaper_profile_add(port_id, shaper_profile_id,
&ssp, error)) {
printf("%s ERROR(%d)-%s!(shaper_id %u)\n ",
__func__, error->type, error->message,
shaper_profile_id);
return -1;
}
/* Node Parameters */
h->subport_node_id[i] = SUBPORT_NODES_START_ID + i;
subport_parent_node_id = h->root_node_id;
weight = 1;
priority = 0;
level_id = TM_NODE_LEVEL_SUBPORT;
snp.shaper_profile_id = shaper_profile_id;
snp.nonleaf.n_sp_priorities = 1;
snp.stats_mask = STATS_MASK_DEFAULT;
/* Add Node to TM Hiearchy */
if (rte_tm_node_add(port_id,
h->subport_node_id[i],
subport_parent_node_id,
priority, weight,
level_id,
&snp,
error)) {
printf("%s ERROR(%d)-%s!(node %u,parent %u,level %u)\n",
__func__,
error->type,
error->message,
h->subport_node_id[i],
subport_parent_node_id,
level_id);
return -1;
}
shaper_profile_id++;
subport_node_id++;
}
/* Update */
h->n_shapers = shaper_profile_id;
printf(" Subport nodes added (Start id %u, Count %u, level %u)\n",
h->subport_node_id[0], SUBPORT_NODES_PER_PORT, level_id);
return 0;
}
static int
softport_tm_pipe_node_add(portid_t port_id, struct tm_hierarchy *h,
struct rte_tm_error *error)
{
uint32_t pipe_parent_node_id;
struct rte_tm_node_params pnp;
struct rte_tm_shaper_params psp;
uint32_t priority, weight, level_id, shaper_profile_id;
uint32_t i, j;
memset(&psp, 0, sizeof(struct rte_tm_shaper_params));
memset(&pnp, 0, sizeof(struct rte_tm_node_params));
shaper_profile_id = h->n_shapers;
/* Shaper Profile Parameters */
psp.peak.rate = h->pipe_node_shaper_rate;
psp.peak.size = TOKEN_BUCKET_SIZE;
psp.pkt_length_adjust = RTE_TM_ETH_FRAMING_OVERHEAD_FCS;
/* Pipe Node Parameters */
weight = 1;
priority = 0;
level_id = TM_NODE_LEVEL_PIPE;
pnp.nonleaf.n_sp_priorities = 4;
pnp.stats_mask = STATS_MASK_DEFAULT;
/* Add Shaper Profiles and Nodes to TM Hierarchy */
for (i = 0; i < SUBPORT_NODES_PER_PORT; i++) {
for (j = 0; j < PIPE_NODES_PER_SUBPORT; j++) {
if (rte_tm_shaper_profile_add(port_id,
shaper_profile_id, &psp, error)) {
printf("%s ERROR(%d)-%s!(shaper_id %u)\n ",
__func__, error->type, error->message,
shaper_profile_id);
return -1;
}
pnp.shaper_profile_id = shaper_profile_id;
pipe_parent_node_id = h->subport_node_id[i];
h->pipe_node_id[i][j] = PIPE_NODES_START_ID +
(i * PIPE_NODES_PER_SUBPORT) + j;
if (rte_tm_node_add(port_id,
h->pipe_node_id[i][j],
pipe_parent_node_id,
priority, weight, level_id,
&pnp,
error)) {
printf("%s ERROR(%d)-%s!(node %u,parent %u )\n",
__func__,
error->type,
error->message,
h->pipe_node_id[i][j],
pipe_parent_node_id);
return -1;
}
shaper_profile_id++;
}
}
/* Update */
h->n_shapers = shaper_profile_id;
printf(" Pipe nodes added (Start id %u, Count %u, level %u)\n",
h->pipe_node_id[0][0], NUM_PIPE_NODES, level_id);
return 0;
}
static int
softport_tm_tc_node_add(portid_t port_id, struct tm_hierarchy *h,
struct rte_tm_error *error)
{
uint32_t tc_parent_node_id;
struct rte_tm_node_params tnp;
struct rte_tm_shaper_params tsp, tssp;
uint32_t shared_shaper_profile_id[TC_NODES_PER_PIPE];
uint32_t priority, weight, level_id, shaper_profile_id;
uint32_t pos, n_tc_nodes, i, j, k;
memset(&tsp, 0, sizeof(struct rte_tm_shaper_params));
memset(&tssp, 0, sizeof(struct rte_tm_shaper_params));
memset(&tnp, 0, sizeof(struct rte_tm_node_params));
shaper_profile_id = h->n_shapers;
/* Private Shaper Profile (TC) Parameters */
tsp.peak.rate = h->tc_node_shaper_rate;
tsp.peak.size = TOKEN_BUCKET_SIZE;
tsp.pkt_length_adjust = RTE_TM_ETH_FRAMING_OVERHEAD_FCS;
/* Shared Shaper Profile (TC) Parameters */
tssp.peak.rate = h->tc_node_shared_shaper_rate;
tssp.peak.size = TOKEN_BUCKET_SIZE;
tssp.pkt_length_adjust = RTE_TM_ETH_FRAMING_OVERHEAD_FCS;
/* TC Node Parameters */
weight = 1;
level_id = TM_NODE_LEVEL_TC;
tnp.n_shared_shapers = 1;
tnp.nonleaf.n_sp_priorities = 1;
tnp.stats_mask = STATS_MASK_DEFAULT;
/* Add Shared Shaper Profiles to TM Hierarchy */
for (i = 0; i < TC_NODES_PER_PIPE; i++) {
shared_shaper_profile_id[i] = shaper_profile_id;
if (rte_tm_shaper_profile_add(port_id,
shared_shaper_profile_id[i], &tssp, error)) {
printf("%s ERROR(%d)-%s!(Shared shaper profileid %u)\n",
__func__, error->type, error->message,
shared_shaper_profile_id[i]);
return -1;
}
if (rte_tm_shared_shaper_add_update(port_id, i,
shared_shaper_profile_id[i], error)) {
printf("%s ERROR(%d)-%s!(Shared shaper id %u)\n",
__func__, error->type, error->message, i);
return -1;
}
shaper_profile_id++;
}
/* Add Shaper Profiles and Nodes to TM Hierarchy */
n_tc_nodes = 0;
for (i = 0; i < SUBPORT_NODES_PER_PORT; i++) {
for (j = 0; j < PIPE_NODES_PER_SUBPORT; j++) {
for (k = 0; k < TC_NODES_PER_PIPE ; k++) {
priority = k;
tc_parent_node_id = h->pipe_node_id[i][j];
tnp.shared_shaper_id =
(uint32_t *)calloc(1, sizeof(uint32_t));
tnp.shared_shaper_id[0] = k;
pos = j + (i * PIPE_NODES_PER_SUBPORT);
h->tc_node_id[pos][k] =
TC_NODES_START_ID + n_tc_nodes;
if (rte_tm_shaper_profile_add(port_id,
shaper_profile_id, &tsp, error)) {
printf("%s ERROR(%d)-%s!(shaper %u)\n",
__func__, error->type,
error->message,
shaper_profile_id);
return -1;
}
tnp.shaper_profile_id = shaper_profile_id;
if (rte_tm_node_add(port_id,
h->tc_node_id[pos][k],
tc_parent_node_id,
priority, weight,
level_id,
&tnp, error)) {
printf("%s ERROR(%d)-%s!(node id %u)\n",
__func__,
error->type,
error->message,
h->tc_node_id[pos][k]);
return -1;
}
shaper_profile_id++;
n_tc_nodes++;
}
}
}
/* Update */
h->n_shapers = shaper_profile_id;
printf(" TC nodes added (Start id %u, Count %u, level %u)\n",
h->tc_node_id[0][0], n_tc_nodes, level_id);
return 0;
}
static int
softport_tm_queue_node_add(portid_t port_id, struct tm_hierarchy *h,
struct rte_tm_error *error)
{
uint32_t queue_parent_node_id;
struct rte_tm_node_params qnp;
uint32_t priority, weight, level_id, pos;
uint32_t n_queue_nodes, i, j, k;
memset(&qnp, 0, sizeof(struct rte_tm_node_params));
/* Queue Node Parameters */
priority = 0;
weight = 1;
level_id = TM_NODE_LEVEL_QUEUE;
qnp.shaper_profile_id = RTE_TM_SHAPER_PROFILE_ID_NONE;
qnp.leaf.cman = RTE_TM_CMAN_TAIL_DROP;
qnp.stats_mask = STATS_MASK_QUEUE;
/* Add Queue Nodes to TM Hierarchy */
n_queue_nodes = 0;
for (i = 0; i < NUM_PIPE_NODES; i++) {
for (j = 0; j < TC_NODES_PER_PIPE; j++) {
queue_parent_node_id = h->tc_node_id[i][j];
for (k = 0; k < QUEUE_NODES_PER_TC; k++) {
pos = j + (i * TC_NODES_PER_PIPE);
h->queue_node_id[pos][k] = n_queue_nodes;
if (rte_tm_node_add(port_id,
h->queue_node_id[pos][k],
queue_parent_node_id,
priority,
weight,
level_id,
&qnp, error)) {
printf("%s ERROR(%d)-%s!(node %u)\n",
__func__,
error->type,
error->message,
h->queue_node_id[pos][k]);
return -1;
}
n_queue_nodes++;
}
}
}
printf(" Queue nodes added (Start id %u, Count %u, level %u)\n",
h->queue_node_id[0][0], n_queue_nodes, level_id);
return 0;
}
/*
* TM Packet Field Setup
*/
static void
softport_tm_pktfield_setup(portid_t port_id)
{
struct rte_port *p = &ports[port_id];
uint64_t pktfield0_mask = 0;
uint64_t pktfield1_mask = 0x0000000FFF000000LLU;
uint64_t pktfield2_mask = 0x00000000000000FCLLU;
p->softport.tm = (struct softnic_port_tm) {
.n_subports_per_port = SUBPORT_NODES_PER_PORT,
.n_pipes_per_subport = PIPE_NODES_PER_SUBPORT,
/* Packet field to identify subport
*
* Default configuration assumes only one subport, thus
* the subport ID is hardcoded to 0
*/
.tm_pktfield0_slabpos = 0,
.tm_pktfield0_slabmask = pktfield0_mask,
.tm_pktfield0_slabshr =
__builtin_ctzll(pktfield0_mask),
/* Packet field to identify pipe.
*
* Default value assumes Ethernet/IPv4/UDP packets,
* UDP payload bits 12 .. 23
*/
.tm_pktfield1_slabpos = 40,
.tm_pktfield1_slabmask = pktfield1_mask,
.tm_pktfield1_slabshr =
__builtin_ctzll(pktfield1_mask),
/* Packet field used as index into TC translation table
* to identify the traffic class and queue.
*
* Default value assumes Ethernet/IPv4 packets, IPv4
* DSCP field
*/
.tm_pktfield2_slabpos = 8,
.tm_pktfield2_slabmask = pktfield2_mask,
.tm_pktfield2_slabshr =
__builtin_ctzll(pktfield2_mask),
.tm_tc_table = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
}, /**< TC translation table */
};
}
static int
softport_tm_hierarchy_specify(portid_t port_id, struct rte_tm_error *error)
{
struct tm_hierarchy h;
int status;
memset(&h, 0, sizeof(struct tm_hierarchy));
/* TM hierarchy shapers rate */
set_tm_hiearchy_nodes_shaper_rate(port_id, &h);
/* Add root node (level 0) */
status = softport_tm_root_node_add(port_id, &h, error);
if (status)
return status;
/* Add subport node (level 1) */
status = softport_tm_subport_node_add(port_id, &h, error);
if (status)
return status;
/* Add pipe nodes (level 2) */
status = softport_tm_pipe_node_add(port_id, &h, error);
if (status)
return status;
/* Add traffic class nodes (level 3) */
status = softport_tm_tc_node_add(port_id, &h, error);
if (status)
return status;
/* Add queue nodes (level 4) */
status = softport_tm_queue_node_add(port_id, &h, error);
if (status)
return status;
/* TM packet fields setup */
softport_tm_pktfield_setup(port_id);
return 0;
}
/*
* Soft port Init
*/
static void
softport_tm_begin(portid_t pi)
{
struct rte_port *port = &ports[pi];
/* Soft port TM flag */
if (port->softport.tm_flag == 1) {
printf("\n\n TM feature available on port %u\n", pi);
/* Soft port TM hierarchy configuration */
if ((port->softport.tm.hierarchy_config == 0) &&
(port->softport.tm.default_hierarchy_enable == 1)) {
struct rte_tm_error error;
int status;
/* Stop port */
rte_eth_dev_stop(pi);
/* TM hierarchy specification */
status = softport_tm_hierarchy_specify(pi, &error);
if (status) {
printf(" TM Hierarchy built error(%d) - %s\n",
error.type, error.message);
return;
}
printf("\n TM Hierarchy Specified!\n\v");
/* TM hierarchy commit */
status = rte_tm_hierarchy_commit(pi, 0, &error);
if (status) {
printf(" Hierarchy commit error(%d) - %s\n",
error.type, error.message);
return;
}
printf(" Hierarchy Committed (port %u)!", pi);
port->softport.tm.hierarchy_config = 1;
/* Start port */
status = rte_eth_dev_start(pi);
if (status) {
printf("\n Port %u start error!\n", pi);
return;
}
printf("\n Port %u started!\n", pi);
return;
}
}
printf("\n TM feature not available on port %u", pi);
}
struct fwd_engine softnic_tm_engine = {
.fwd_mode_name = "tm",
.port_fwd_begin = softport_tm_begin,
.port_fwd_end = NULL,
.packet_fwd = softport_packet_fwd,
};
struct fwd_engine softnic_tm_bypass_engine = {
.fwd_mode_name = "tm-bypass",
.port_fwd_begin = NULL,
.port_fwd_end = NULL,
.packet_fwd = softport_packet_fwd,
};