numam-dpdk/app/test/test_memcpy.c
Intel dada9ef6ed remove version in all files
Signed-off-by: Intel
2013-07-05 11:59:50 +02:00

429 lines
13 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <rte_common.h>
#include <cmdline_parse.h>
#include <rte_cycles.h>
#include <rte_random.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include "test.h"
/*
* Set this to the maximum buffer size you want to test. If it is 0, then the
* values in the buf_sizes[] array below will be used.
*/
#define TEST_VALUE_RANGE 0
/* List of buffer sizes to test */
#if TEST_VALUE_RANGE == 0
static size_t buf_sizes[] = {
0, 1, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 255,
256, 257, 320, 384, 511, 512, 513, 1023, 1024, 1025, 1518, 1522, 1600,
2048, 3072, 4096, 5120, 6144, 7168, 8192
};
/* MUST be as large as largest packet size above */
#define SMALL_BUFFER_SIZE 8192
#else /* TEST_VALUE_RANGE != 0 */
static size_t buf_sizes[TEST_VALUE_RANGE];
#define SMALL_BUFFER_SIZE TEST_VALUE_RANGE
#endif /* TEST_VALUE_RANGE == 0 */
/*
* Arrays of this size are used for measuring uncached memory accesses by
* picking a random location within the buffer. Make this smaller if there are
* memory allocation errors.
*/
#define LARGE_BUFFER_SIZE (100 * 1024 * 1024)
/* How many times to run timing loop for performance tests */
#define TEST_ITERATIONS 1000000
#define TEST_BATCH_SIZE 100
/* Data is aligned on this many bytes (power of 2) */
#define ALIGNMENT_UNIT 16
/*
* Pointers used in performance tests. The two large buffers are for uncached
* access where random addresses within the buffer are used for each
* memcpy. The two small buffers are for cached access.
*/
static uint8_t *large_buf_read, *large_buf_write,
*small_buf_read, *small_buf_write;
/* Initialise data buffers. */
static int
init_buffers(void)
{
unsigned i;
large_buf_read = rte_malloc("memcpy", LARGE_BUFFER_SIZE, ALIGNMENT_UNIT);
if (large_buf_read == NULL)
goto error_large_buf_read;
large_buf_write = rte_malloc("memcpy", LARGE_BUFFER_SIZE, ALIGNMENT_UNIT);
if (large_buf_write == NULL)
goto error_large_buf_write;
small_buf_read = rte_malloc("memcpy", SMALL_BUFFER_SIZE, ALIGNMENT_UNIT);
if (small_buf_read == NULL)
goto error_small_buf_read;
small_buf_write = rte_malloc("memcpy", SMALL_BUFFER_SIZE, ALIGNMENT_UNIT);
if (small_buf_write == NULL)
goto error_small_buf_write;
for (i = 0; i < LARGE_BUFFER_SIZE; i++)
large_buf_read[i] = rte_rand();
for (i = 0; i < SMALL_BUFFER_SIZE; i++)
small_buf_read[i] = rte_rand();
return 0;
error_small_buf_write:
rte_free(small_buf_read);
error_small_buf_read:
rte_free(large_buf_write);
error_large_buf_write:
rte_free(large_buf_read);
error_large_buf_read:
printf("ERROR: not enough memory");
return -1;
}
/* Cleanup data buffers */
static void
free_buffers(void)
{
rte_free(large_buf_read);
rte_free(large_buf_write);
rte_free(small_buf_read);
rte_free(small_buf_write);
}
/*
* Get a random offset into large array, with enough space needed to perform
* max copy size. Offset is aligned.
*/
static inline size_t
get_rand_offset(void)
{
return ((rte_rand() % (LARGE_BUFFER_SIZE - SMALL_BUFFER_SIZE)) &
~(ALIGNMENT_UNIT - 1));
}
/* Fill in source and destination addresses. */
static inline void
fill_addr_arrays(size_t *dst_addr, int is_dst_cached,
size_t *src_addr, int is_src_cached)
{
unsigned int i;
for (i = 0; i < TEST_BATCH_SIZE; i++) {
dst_addr[i] = (is_dst_cached) ? 0 : get_rand_offset();
src_addr[i] = (is_src_cached) ? 0 : get_rand_offset();
}
}
/* Integer division with round to nearest */
static inline uint64_t
div_round(uint64_t dividend, uint64_t divisor)
{
return ((2 * dividend) + divisor) / (2 * divisor);
}
/*
* WORKAROUND: For some reason the first test doing an uncached write
* takes a very long time (~25 times longer than is expected). So we do
* it once without timing.
*/
static void
do_uncached_write(uint8_t *dst, int is_dst_cached,
const uint8_t *src, int is_src_cached, size_t size)
{
unsigned i, j;
size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE];
for (i = 0; i < (TEST_ITERATIONS / TEST_BATCH_SIZE); i++) {
fill_addr_arrays(dst_addrs, is_dst_cached,
src_addrs, is_src_cached);
for (j = 0; j < TEST_BATCH_SIZE; j++)
rte_memcpy(dst+dst_addrs[j], src+src_addrs[j], size);
}
}
/*
* Run a single memcpy performance test. This is a macro to ensure that if
* the "size" parameter is a constant it won't be converted to a variable.
*/
#define SINGLE_PERF_TEST(dst, is_dst_cached, src, is_src_cached, size) do { \
unsigned int iter, t; \
size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE]; \
uint64_t start_time, total_time = 0; \
uint64_t total_time2 = 0; \
for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
fill_addr_arrays(dst_addrs, is_dst_cached, \
src_addrs, is_src_cached); \
start_time = rte_rdtsc(); \
for (t = 0; t < TEST_BATCH_SIZE; t++) \
rte_memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \
total_time += rte_rdtsc() - start_time; \
} \
for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
fill_addr_arrays(dst_addrs, is_dst_cached, \
src_addrs, is_src_cached); \
start_time = rte_rdtsc(); \
for (t = 0; t < TEST_BATCH_SIZE; t++) \
memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \
total_time2 += rte_rdtsc() - start_time; \
} \
printf("%9u/", (unsigned)div_round(total_time, TEST_ITERATIONS)); \
printf("%4u", (unsigned)div_round(total_time2, TEST_ITERATIONS)); \
} while (0)
/* Run memcpy() tests for each cached/uncached permutation. */
#define ALL_PERF_TESTS_FOR_SIZE(n) do { \
if (__builtin_constant_p(n)) \
printf("\nC%6u ", (unsigned)n); \
else \
printf("\n%7u ", (unsigned)n); \
SINGLE_PERF_TEST(small_buf_write, 1, small_buf_read, 1, n); \
SINGLE_PERF_TEST(large_buf_write, 0, small_buf_read, 1, n); \
SINGLE_PERF_TEST(small_buf_write, 1, large_buf_read, 0, n); \
SINGLE_PERF_TEST(large_buf_write, 0, large_buf_read, 0, n); \
} while (0)
/*
* Run performance tests for a number of different sizes and cached/uncached
* permutations.
*/
static int
perf_test(void)
{
const unsigned num_buf_sizes = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
unsigned i;
int ret;
ret = init_buffers();
if (ret != 0)
return ret;
#if TEST_VALUE_RANGE != 0
/* Setup buf_sizes array, if required */
for (i = 0; i < TEST_VALUE_RANGE; i++)
buf_sizes[i] = i;
#endif
/* See function comment */
do_uncached_write(large_buf_write, 0, small_buf_read, 1, SMALL_BUFFER_SIZE);
printf("\n** rte_memcpy()/memcpy performance tests **\n"
"======= ============== ============== ============== ==============\n"
" Size Cache to cache Cache to mem Mem to cache Mem to mem\n"
"(bytes) (ticks) (ticks) (ticks) (ticks)\n"
"------- -------------- -------------- -------------- --------------");
/* Do tests where size is a variable */
for (i = 0; i < num_buf_sizes; i++) {
ALL_PERF_TESTS_FOR_SIZE((size_t)buf_sizes[i]);
}
#ifdef RTE_MEMCPY_BUILTIN_CONSTANT_P
/* Do tests where size is a compile-time constant */
ALL_PERF_TESTS_FOR_SIZE(63U);
ALL_PERF_TESTS_FOR_SIZE(64U);
ALL_PERF_TESTS_FOR_SIZE(65U);
ALL_PERF_TESTS_FOR_SIZE(255U);
ALL_PERF_TESTS_FOR_SIZE(256U);
ALL_PERF_TESTS_FOR_SIZE(257U);
ALL_PERF_TESTS_FOR_SIZE(1023U);
ALL_PERF_TESTS_FOR_SIZE(1024U);
ALL_PERF_TESTS_FOR_SIZE(1025U);
ALL_PERF_TESTS_FOR_SIZE(1518U);
#endif
printf("\n======= ============== ============== ============== ==============\n\n");
free_buffers();
return 0;
}
/* Structure with base memcpy func pointer, and number of bytes it copies */
struct base_memcpy_func {
void (*func)(uint8_t *dst, const uint8_t *src);
unsigned size;
};
/* To create base_memcpy_func structure entries */
#define BASE_FUNC(n) {rte_mov##n, n}
/* Max number of bytes that can be copies with a "base" memcpy functions */
#define MAX_BASE_FUNC_SIZE 256
/*
* Test the "base" memcpy functions, that a copy fixed number of bytes.
*/
static int
base_func_test(void)
{
const struct base_memcpy_func base_memcpy_funcs[6] = {
BASE_FUNC(16),
BASE_FUNC(32),
BASE_FUNC(48),
BASE_FUNC(64),
BASE_FUNC(128),
BASE_FUNC(256),
};
unsigned i, j;
unsigned num_funcs = sizeof(base_memcpy_funcs) / sizeof(base_memcpy_funcs[0]);
uint8_t dst[MAX_BASE_FUNC_SIZE];
uint8_t src[MAX_BASE_FUNC_SIZE];
for (i = 0; i < num_funcs; i++) {
unsigned size = base_memcpy_funcs[i].size;
for (j = 0; j < size; j++) {
dst[j] = 0;
src[j] = (uint8_t) rte_rand();
}
base_memcpy_funcs[i].func(dst, src);
for (j = 0; j < size; j++)
if (dst[j] != src[j])
return -1;
}
return 0;
}
/*
* Create two buffers, and initialise one with random values. These are copied
* to the second buffer and then compared to see if the copy was successful.
* The bytes outside the copied area are also checked to make sure they were not
* changed.
*/
static int
test_single_memcpy(unsigned int off_src, unsigned int off_dst, size_t size)
{
unsigned int i;
uint8_t dest[SMALL_BUFFER_SIZE + ALIGNMENT_UNIT];
uint8_t src[SMALL_BUFFER_SIZE + ALIGNMENT_UNIT];
/* Setup buffers */
for (i = 0; i < SMALL_BUFFER_SIZE + ALIGNMENT_UNIT; i++) {
dest[i] = 0;
src[i] = (uint8_t) rte_rand();
}
/* Do the copy */
rte_memcpy(dest + off_dst, src + off_src, size);
/* Check nothing before offset is affected */
for (i = 0; i < off_dst; i++) {
if (dest[i] != 0) {
printf("rte_memcpy() failed for %u bytes (offsets=%u,%u): "
"[modified before start of dst].\n",
(unsigned)size, off_src, off_dst);
return -1;
}
}
/* Check everything was copied */
for (i = 0; i < size; i++) {
if (dest[i + off_dst] != src[i + off_src]) {
printf("rte_memcpy() failed for %u bytes (offsets=%u,%u): "
"[didn't copy byte %u].\n",
(unsigned)size, off_src, off_dst, i);
return -1;
}
}
/* Check nothing after copy was affected */
for (i = size; i < SMALL_BUFFER_SIZE; i++) {
if (dest[i + off_dst] != 0) {
printf("rte_memcpy() failed for %u bytes (offsets=%u,%u): "
"[copied too many].\n",
(unsigned)size, off_src, off_dst);
return -1;
}
}
return 0;
}
/*
* Check functionality for various buffer sizes and data offsets/alignments.
*/
static int
func_test(void)
{
unsigned int off_src, off_dst, i;
unsigned int num_buf_sizes = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
int ret;
for (off_src = 0; off_src < ALIGNMENT_UNIT; off_src++) {
for (off_dst = 0; off_dst < ALIGNMENT_UNIT; off_dst++) {
for (i = 0; i < num_buf_sizes; i++) {
ret = test_single_memcpy(off_src, off_dst,
buf_sizes[i]);
if (ret != 0)
return -1;
}
}
}
return 0;
}
int
test_memcpy(void)
{
int ret;
ret = func_test();
if (ret != 0)
return -1;
ret = base_func_test();
if (ret != 0)
return -1;
ret = perf_test();
if (ret != 0)
return -1;
return 0;
}