numam-dpdk/drivers/net/cxgbe/base/adapter.h
Vishal Kulkarni 34020f189a net/cxgbe: remove unused code in Rx path
All Rx packet handling is done in process_responses() and hence
t4_ethrx_handler() never gets called. So, remove it.

Signed-off-by: Vishal Kulkarni <vishal@chelsio.com>
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
2019-03-21 20:39:36 +01:00

832 lines
25 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2018 Chelsio Communications.
* All rights reserved.
*/
/* This file should not be included directly. Include common.h instead. */
#ifndef __T4_ADAPTER_H__
#define __T4_ADAPTER_H__
#include <rte_bus_pci.h>
#include <rte_mbuf.h>
#include <rte_io.h>
#include <rte_rwlock.h>
#include <rte_ethdev.h>
#include "../cxgbe_compat.h"
#include "../cxgbe_ofld.h"
#include "t4_regs_values.h"
enum {
MAX_ETH_QSETS = 64, /* # of Ethernet Tx/Rx queue sets */
MAX_CTRL_QUEUES = NCHAN, /* # of control Tx queues */
};
struct adapter;
struct sge_rspq;
enum {
PORT_RSS_DONE = (1 << 0),
};
struct port_info {
struct adapter *adapter; /* adapter that this port belongs to */
struct rte_eth_dev *eth_dev; /* associated rte eth device */
struct port_stats stats_base; /* port statistics base */
struct link_config link_cfg; /* link configuration info */
unsigned long flags; /* port related flags */
short int xact_addr_filt; /* index of exact MAC address filter */
u16 viid; /* associated virtual interface id */
s8 mdio_addr; /* address of the PHY */
u8 port_type; /* firmware port type */
u8 mod_type; /* firmware module type */
u8 port_id; /* physical port ID */
u8 pidx; /* port index for this PF */
u8 tx_chan; /* associated channel */
u8 n_rx_qsets; /* # of rx qsets */
u8 n_tx_qsets; /* # of tx qsets */
u8 first_qset; /* index of first qset */
u16 *rss; /* rss table */
u8 rss_mode; /* rss mode */
u16 rss_size; /* size of VI's RSS table slice */
u64 rss_hf; /* RSS Hash Function */
};
/* Enable or disable autonegotiation. If this is set to enable,
* the forced link modes above are completely ignored.
*/
#define AUTONEG_DISABLE 0x00
#define AUTONEG_ENABLE 0x01
enum { /* adapter flags */
FULL_INIT_DONE = (1 << 0),
USING_MSI = (1 << 1),
USING_MSIX = (1 << 2),
FW_QUEUE_BOUND = (1 << 3),
FW_OK = (1 << 4),
CFG_QUEUES = (1 << 5),
MASTER_PF = (1 << 6),
};
struct rx_sw_desc { /* SW state per Rx descriptor */
void *buf; /* struct page or mbuf */
dma_addr_t dma_addr;
};
struct sge_fl { /* SGE free-buffer queue state */
/* RO fields */
struct rx_sw_desc *sdesc; /* address of SW Rx descriptor ring */
dma_addr_t addr; /* bus address of HW ring start */
__be64 *desc; /* address of HW Rx descriptor ring */
void __iomem *bar2_addr; /* address of BAR2 Queue registers */
unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */
unsigned int cntxt_id; /* SGE relative QID for the free list */
unsigned int size; /* capacity of free list */
unsigned int avail; /* # of available Rx buffers */
unsigned int pend_cred; /* new buffers since last FL DB ring */
unsigned int cidx; /* consumer index */
unsigned int pidx; /* producer index */
unsigned long alloc_failed; /* # of times buffer allocation failed */
unsigned long low; /* # of times momentarily starving */
};
#define MAX_MBUF_FRAGS (16384 / 512 + 2)
/* A packet gather list */
struct pkt_gl {
union {
struct rte_mbuf *mbufs[MAX_MBUF_FRAGS];
} /* UNNAMED */;
void *va; /* virtual address of first byte */
unsigned int nfrags; /* # of fragments */
unsigned int tot_len; /* total length of fragments */
bool usembufs; /* use mbufs for fragments */
};
typedef int (*rspq_handler_t)(struct sge_rspq *q, const __be64 *rsp,
const struct pkt_gl *gl);
struct sge_rspq { /* state for an SGE response queue */
struct adapter *adapter; /* adapter that this queue belongs to */
struct rte_eth_dev *eth_dev; /* associated rte eth device */
struct rte_mempool *mb_pool; /* associated mempool */
dma_addr_t phys_addr; /* physical address of the ring */
__be64 *desc; /* address of HW response ring */
const __be64 *cur_desc; /* current descriptor in queue */
void __iomem *bar2_addr; /* address of BAR2 Queue registers */
unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */
struct sge_qstat *stat;
unsigned int cidx; /* consumer index */
unsigned int gts_idx; /* last gts write sent */
unsigned int iqe_len; /* entry size */
unsigned int size; /* capacity of response queue */
int offset; /* offset into current Rx buffer */
u8 gen; /* current generation bit */
u8 intr_params; /* interrupt holdoff parameters */
u8 next_intr_params; /* holdoff params for next interrupt */
u8 pktcnt_idx; /* interrupt packet threshold */
u8 port_id; /* associated port-id */
u8 idx; /* queue index within its group */
u16 cntxt_id; /* SGE relative QID for the response Q */
u16 abs_id; /* absolute SGE id for the response q */
rspq_handler_t handler; /* associated handler for this response q */
};
struct sge_eth_rx_stats { /* Ethernet rx queue statistics */
u64 pkts; /* # of ethernet packets */
u64 rx_bytes; /* # of ethernet bytes */
u64 rx_cso; /* # of Rx checksum offloads */
u64 vlan_ex; /* # of Rx VLAN extractions */
u64 rx_drops; /* # of packets dropped due to no mem */
};
struct sge_eth_rxq { /* a SW Ethernet Rx queue */
struct sge_rspq rspq;
struct sge_fl fl;
struct sge_eth_rx_stats stats;
bool usembufs; /* one ingress packet per mbuf FL buffer */
} __rte_cache_aligned;
/*
* Currently there are two types of coalesce WR. Type 0 needs 48 bytes per
* packet (if one sgl is present) and type 1 needs 32 bytes. This means
* that type 0 can fit a maximum of 10 packets per WR and type 1 can fit
* 15 packets. We need to keep track of the mbuf pointers in a coalesce WR
* to be able to free those mbufs when we get completions back from the FW.
* Allocating the maximum number of pointers in every tx desc is a waste
* of memory resources so we only store 2 pointers per tx desc which should
* be enough since a tx desc can only fit 2 packets in the best case
* scenario where a packet needs 32 bytes.
*/
#define ETH_COALESCE_PKT_NUM 15
#define ETH_COALESCE_VF_PKT_NUM 7
#define ETH_COALESCE_PKT_PER_DESC 2
struct tx_eth_coal_desc {
struct rte_mbuf *mbuf[ETH_COALESCE_PKT_PER_DESC];
struct ulptx_sgl *sgl[ETH_COALESCE_PKT_PER_DESC];
int idx;
};
struct tx_desc {
__be64 flit[8];
};
struct tx_sw_desc { /* SW state per Tx descriptor */
struct rte_mbuf *mbuf;
struct ulptx_sgl *sgl;
struct tx_eth_coal_desc coalesce;
};
enum {
EQ_STOPPED = (1 << 0),
};
struct eth_coalesce {
unsigned char *ptr;
unsigned char type;
unsigned int idx;
unsigned int len;
unsigned int flits;
unsigned int max;
__u8 ethmacdst[ETHER_ADDR_LEN];
__u8 ethmacsrc[ETHER_ADDR_LEN];
__be16 ethtype;
__be16 vlantci;
};
struct sge_txq {
struct tx_desc *desc; /* address of HW Tx descriptor ring */
struct tx_sw_desc *sdesc; /* address of SW Tx descriptor ring */
struct sge_qstat *stat; /* queue status entry */
struct eth_coalesce coalesce; /* coalesce info */
uint64_t phys_addr; /* physical address of the ring */
void __iomem *bar2_addr; /* address of BAR2 Queue registers */
unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */
unsigned int cntxt_id; /* SGE relative QID for the Tx Q */
unsigned int in_use; /* # of in-use Tx descriptors */
unsigned int size; /* # of descriptors */
unsigned int cidx; /* SW consumer index */
unsigned int pidx; /* producer index */
unsigned int dbidx; /* last idx when db ring was done */
unsigned int equeidx; /* last sent credit request */
unsigned int last_pidx; /* last pidx recorded by tx monitor */
unsigned int last_coal_idx;/* last coal-idx recorded by tx monitor */
unsigned int abs_id;
int db_disabled; /* doorbell state */
unsigned short db_pidx; /* doorbell producer index */
unsigned short db_pidx_inc; /* doorbell producer increment */
};
struct sge_eth_tx_stats { /* Ethernet tx queue statistics */
u64 pkts; /* # of ethernet packets */
u64 tx_bytes; /* # of ethernet bytes */
u64 tso; /* # of TSO requests */
u64 tx_cso; /* # of Tx checksum offloads */
u64 vlan_ins; /* # of Tx VLAN insertions */
u64 mapping_err; /* # of I/O MMU packet mapping errors */
u64 coal_wr; /* # of coalesced wr */
u64 coal_pkts; /* # of coalesced packets */
};
struct sge_eth_txq { /* state for an SGE Ethernet Tx queue */
struct sge_txq q;
struct rte_eth_dev *eth_dev; /* port that this queue belongs to */
struct rte_eth_dev_data *data;
struct sge_eth_tx_stats stats; /* queue statistics */
rte_spinlock_t txq_lock;
unsigned int flags; /* flags for state of the queue */
} __rte_cache_aligned;
struct sge_ctrl_txq { /* State for an SGE control Tx queue */
struct sge_txq q; /* txq */
struct adapter *adapter; /* adapter associated with this queue */
rte_spinlock_t ctrlq_lock; /* control queue lock */
u8 full; /* the Tx ring is full */
u64 txp; /* number of transmits */
struct rte_mempool *mb_pool; /* mempool to generate ctrl pkts */
} __rte_cache_aligned;
struct sge {
struct sge_eth_txq ethtxq[MAX_ETH_QSETS];
struct sge_eth_rxq ethrxq[MAX_ETH_QSETS];
struct sge_rspq fw_evtq __rte_cache_aligned;
struct sge_ctrl_txq ctrlq[MAX_CTRL_QUEUES];
u16 max_ethqsets; /* # of available Ethernet queue sets */
u32 stat_len; /* length of status page at ring end */
u32 pktshift; /* padding between CPL & packet data */
/* response queue interrupt parameters */
u16 timer_val[SGE_NTIMERS];
u8 counter_val[SGE_NCOUNTERS];
u32 fl_align; /* response queue message alignment */
u32 fl_pg_order; /* large page allocation size */
u32 fl_starve_thres; /* Free List starvation threshold */
};
#define T4_OS_NEEDS_MBOX_LOCKING 1
/*
* OS Lock/List primitives for those interfaces in the Common Code which
* need this.
*/
struct mbox_entry {
TAILQ_ENTRY(mbox_entry) next;
};
TAILQ_HEAD(mbox_list, mbox_entry);
struct adapter {
struct rte_pci_device *pdev; /* associated rte pci device */
struct rte_eth_dev *eth_dev; /* first port's rte eth device */
struct adapter_params params; /* adapter parameters */
struct port_info *port[MAX_NPORTS];/* ports belonging to this adapter */
struct sge sge; /* associated SGE */
/* support for single-threading access to adapter mailbox registers */
struct mbox_list mbox_list;
rte_spinlock_t mbox_lock;
u8 *regs; /* pointer to registers region */
u8 *bar2; /* pointer to bar2 region */
unsigned long flags; /* adapter flags */
unsigned int mbox; /* associated mailbox */
unsigned int pf; /* associated physical function id */
unsigned int vpd_busy;
unsigned int vpd_flag;
int use_unpacked_mode; /* unpacked rx mode state */
rte_spinlock_t win0_lock;
unsigned int clipt_start; /* CLIP table start */
unsigned int clipt_end; /* CLIP table end */
unsigned int l2t_start; /* Layer 2 table start */
unsigned int l2t_end; /* Layer 2 table end */
struct clip_tbl *clipt; /* CLIP table */
struct l2t_data *l2t; /* Layer 2 table */
struct mpstcam_table *mpstcam;
struct tid_info tids; /* Info used to access TID related tables */
};
/**
* t4_os_rwlock_init - initialize rwlock
* @lock: the rwlock
*/
static inline void t4_os_rwlock_init(rte_rwlock_t *lock)
{
rte_rwlock_init(lock);
}
/**
* t4_os_write_lock - get a write lock
* @lock: the rwlock
*/
static inline void t4_os_write_lock(rte_rwlock_t *lock)
{
rte_rwlock_write_lock(lock);
}
/**
* t4_os_write_unlock - unlock a write lock
* @lock: the rwlock
*/
static inline void t4_os_write_unlock(rte_rwlock_t *lock)
{
rte_rwlock_write_unlock(lock);
}
/**
* ethdev2pinfo - return the port_info structure associated with a rte_eth_dev
* @dev: the rte_eth_dev
*
* Return the struct port_info associated with a rte_eth_dev
*/
static inline struct port_info *ethdev2pinfo(const struct rte_eth_dev *dev)
{
return (struct port_info *)dev->data->dev_private;
}
/**
* adap2pinfo - return the port_info of a port
* @adap: the adapter
* @idx: the port index
*
* Return the port_info structure for the port of the given index.
*/
static inline struct port_info *adap2pinfo(const struct adapter *adap, int idx)
{
return adap->port[idx];
}
/**
* ethdev2adap - return the adapter structure associated with a rte_eth_dev
* @dev: the rte_eth_dev
*
* Return the struct adapter associated with a rte_eth_dev
*/
static inline struct adapter *ethdev2adap(const struct rte_eth_dev *dev)
{
return ethdev2pinfo(dev)->adapter;
}
#define CXGBE_PCI_REG(reg) rte_read32(reg)
static inline uint64_t cxgbe_read_addr64(volatile void *addr)
{
uint64_t val = CXGBE_PCI_REG(addr);
uint64_t val2 = CXGBE_PCI_REG(((volatile uint8_t *)(addr) + 4));
val2 = (uint64_t)(val2 << 32);
val += val2;
return val;
}
static inline uint32_t cxgbe_read_addr(volatile void *addr)
{
return CXGBE_PCI_REG(addr);
}
#define CXGBE_PCI_REG_ADDR(adap, reg) \
((volatile uint32_t *)((char *)(adap)->regs + (reg)))
#define CXGBE_READ_REG(adap, reg) \
cxgbe_read_addr(CXGBE_PCI_REG_ADDR((adap), (reg)))
#define CXGBE_READ_REG64(adap, reg) \
cxgbe_read_addr64(CXGBE_PCI_REG_ADDR((adap), (reg)))
#define CXGBE_PCI_REG_WRITE(reg, value) rte_write32((value), (reg))
#define CXGBE_PCI_REG_WRITE_RELAXED(reg, value) \
rte_write32_relaxed((value), (reg))
#define CXGBE_WRITE_REG(adap, reg, value) \
CXGBE_PCI_REG_WRITE(CXGBE_PCI_REG_ADDR((adap), (reg)), (value))
#define CXGBE_WRITE_REG_RELAXED(adap, reg, value) \
CXGBE_PCI_REG_WRITE_RELAXED(CXGBE_PCI_REG_ADDR((adap), (reg)), (value))
static inline uint64_t cxgbe_write_addr64(volatile void *addr, uint64_t val)
{
CXGBE_PCI_REG_WRITE(addr, val);
CXGBE_PCI_REG_WRITE(((volatile uint8_t *)(addr) + 4), (val >> 32));
return val;
}
#define CXGBE_WRITE_REG64(adap, reg, value) \
cxgbe_write_addr64(CXGBE_PCI_REG_ADDR((adap), (reg)), (value))
/**
* t4_read_reg - read a HW register
* @adapter: the adapter
* @reg_addr: the register address
*
* Returns the 32-bit value of the given HW register.
*/
static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr)
{
u32 val = CXGBE_READ_REG(adapter, reg_addr);
CXGBE_DEBUG_REG(adapter, "read register 0x%x value 0x%x\n", reg_addr,
val);
return val;
}
/**
* t4_write_reg - write a HW register with barrier
* @adapter: the adapter
* @reg_addr: the register address
* @val: the value to write
*
* Write a 32-bit value into the given HW register.
*/
static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val)
{
CXGBE_DEBUG_REG(adapter, "setting register 0x%x to 0x%x\n", reg_addr,
val);
CXGBE_WRITE_REG(adapter, reg_addr, val);
}
/**
* t4_write_reg_relaxed - write a HW register with no barrier
* @adapter: the adapter
* @reg_addr: the register address
* @val: the value to write
*
* Write a 32-bit value into the given HW register.
*/
static inline void t4_write_reg_relaxed(struct adapter *adapter, u32 reg_addr,
u32 val)
{
CXGBE_DEBUG_REG(adapter, "setting register 0x%x to 0x%x\n", reg_addr,
val);
CXGBE_WRITE_REG_RELAXED(adapter, reg_addr, val);
}
/**
* t4_read_reg64 - read a 64-bit HW register
* @adapter: the adapter
* @reg_addr: the register address
*
* Returns the 64-bit value of the given HW register.
*/
static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr)
{
u64 val = CXGBE_READ_REG64(adapter, reg_addr);
CXGBE_DEBUG_REG(adapter, "64-bit read register %#x value %#llx\n",
reg_addr, (unsigned long long)val);
return val;
}
/**
* t4_write_reg64 - write a 64-bit HW register
* @adapter: the adapter
* @reg_addr: the register address
* @val: the value to write
*
* Write a 64-bit value into the given HW register.
*/
static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr,
u64 val)
{
CXGBE_DEBUG_REG(adapter, "setting register %#x to %#llx\n", reg_addr,
(unsigned long long)val);
CXGBE_WRITE_REG64(adapter, reg_addr, val);
}
#define PCI_STATUS 0x06 /* 16 bits */
#define PCI_STATUS_CAP_LIST 0x10 /* Support Capability List */
#define PCI_CAPABILITY_LIST 0x34
/* Offset of first capability list entry */
#define PCI_CAP_ID_EXP 0x10 /* PCI Express */
#define PCI_CAP_LIST_ID 0 /* Capability ID */
#define PCI_CAP_LIST_NEXT 1 /* Next capability in the list */
#define PCI_EXP_DEVCTL 0x0008 /* Device control */
#define PCI_EXP_DEVCTL2 40 /* Device Control 2 */
#define PCI_EXP_DEVCTL_EXT_TAG 0x0100 /* Extended Tag Field Enable */
#define PCI_EXP_DEVCTL_PAYLOAD 0x00E0 /* Max payload */
#define PCI_CAP_ID_VPD 0x03 /* Vital Product Data */
#define PCI_VPD_ADDR 2 /* Address to access (15 bits!) */
#define PCI_VPD_ADDR_F 0x8000 /* Write 0, 1 indicates completion */
#define PCI_VPD_DATA 4 /* 32-bits of data returned here */
/**
* t4_os_pci_write_cfg4 - 32-bit write to PCI config space
* @adapter: the adapter
* @addr: the register address
* @val: the value to write
*
* Write a 32-bit value into the given register in PCI config space.
*/
static inline void t4_os_pci_write_cfg4(struct adapter *adapter, size_t addr,
off_t val)
{
u32 val32 = val;
if (rte_pci_write_config(adapter->pdev, &val32, sizeof(val32),
addr) < 0)
dev_err(adapter, "Can't write to PCI config space\n");
}
/**
* t4_os_pci_read_cfg4 - read a 32-bit value from PCI config space
* @adapter: the adapter
* @addr: the register address
* @val: where to store the value read
*
* Read a 32-bit value from the given register in PCI config space.
*/
static inline void t4_os_pci_read_cfg4(struct adapter *adapter, size_t addr,
u32 *val)
{
if (rte_pci_read_config(adapter->pdev, val, sizeof(*val),
addr) < 0)
dev_err(adapter, "Can't read from PCI config space\n");
}
/**
* t4_os_pci_write_cfg2 - 16-bit write to PCI config space
* @adapter: the adapter
* @addr: the register address
* @val: the value to write
*
* Write a 16-bit value into the given register in PCI config space.
*/
static inline void t4_os_pci_write_cfg2(struct adapter *adapter, size_t addr,
off_t val)
{
u16 val16 = val;
if (rte_pci_write_config(adapter->pdev, &val16, sizeof(val16),
addr) < 0)
dev_err(adapter, "Can't write to PCI config space\n");
}
/**
* t4_os_pci_read_cfg2 - read a 16-bit value from PCI config space
* @adapter: the adapter
* @addr: the register address
* @val: where to store the value read
*
* Read a 16-bit value from the given register in PCI config space.
*/
static inline void t4_os_pci_read_cfg2(struct adapter *adapter, size_t addr,
u16 *val)
{
if (rte_pci_read_config(adapter->pdev, val, sizeof(*val),
addr) < 0)
dev_err(adapter, "Can't read from PCI config space\n");
}
/**
* t4_os_pci_read_cfg - read a 8-bit value from PCI config space
* @adapter: the adapter
* @addr: the register address
* @val: where to store the value read
*
* Read a 8-bit value from the given register in PCI config space.
*/
static inline void t4_os_pci_read_cfg(struct adapter *adapter, size_t addr,
u8 *val)
{
if (rte_pci_read_config(adapter->pdev, val, sizeof(*val),
addr) < 0)
dev_err(adapter, "Can't read from PCI config space\n");
}
/**
* t4_os_find_pci_capability - lookup a capability in the PCI capability list
* @adapter: the adapter
* @cap: the capability
*
* Return the address of the given capability within the PCI capability list.
*/
static inline int t4_os_find_pci_capability(struct adapter *adapter, int cap)
{
u16 status;
int ttl = 48;
u8 pos = 0;
u8 id = 0;
t4_os_pci_read_cfg2(adapter, PCI_STATUS, &status);
if (!(status & PCI_STATUS_CAP_LIST)) {
dev_err(adapter, "PCIe capability reading failed\n");
return -1;
}
t4_os_pci_read_cfg(adapter, PCI_CAPABILITY_LIST, &pos);
while (ttl-- && pos >= 0x40) {
pos &= ~3;
t4_os_pci_read_cfg(adapter, (pos + PCI_CAP_LIST_ID), &id);
if (id == 0xff)
break;
if (id == cap)
return (int)pos;
t4_os_pci_read_cfg(adapter, (pos + PCI_CAP_LIST_NEXT), &pos);
}
return 0;
}
/**
* t4_os_set_hw_addr - store a port's MAC address in SW
* @adapter: the adapter
* @port_idx: the port index
* @hw_addr: the Ethernet address
*
* Store the Ethernet address of the given port in SW. Called by the
* common code when it retrieves a port's Ethernet address from EEPROM.
*/
static inline void t4_os_set_hw_addr(struct adapter *adapter, int port_idx,
u8 hw_addr[])
{
struct port_info *pi = adap2pinfo(adapter, port_idx);
ether_addr_copy((struct ether_addr *)hw_addr,
&pi->eth_dev->data->mac_addrs[0]);
}
/**
* t4_os_lock_init - initialize spinlock
* @lock: the spinlock
*/
static inline void t4_os_lock_init(rte_spinlock_t *lock)
{
rte_spinlock_init(lock);
}
/**
* t4_os_lock - spin until lock is acquired
* @lock: the spinlock
*/
static inline void t4_os_lock(rte_spinlock_t *lock)
{
rte_spinlock_lock(lock);
}
/**
* t4_os_unlock - unlock a spinlock
* @lock: the spinlock
*/
static inline void t4_os_unlock(rte_spinlock_t *lock)
{
rte_spinlock_unlock(lock);
}
/**
* t4_os_trylock - try to get a lock
* @lock: the spinlock
*/
static inline int t4_os_trylock(rte_spinlock_t *lock)
{
return rte_spinlock_trylock(lock);
}
/**
* t4_os_init_list_head - initialize
* @head: head of list to initialize [to empty]
*/
static inline void t4_os_init_list_head(struct mbox_list *head)
{
TAILQ_INIT(head);
}
static inline struct mbox_entry *t4_os_list_first_entry(struct mbox_list *head)
{
return TAILQ_FIRST(head);
}
/**
* t4_os_atomic_add_tail - Enqueue list element atomically onto list
* @new: the entry to be addded to the queue
* @head: current head of the linked list
* @lock: lock to use to guarantee atomicity
*/
static inline void t4_os_atomic_add_tail(struct mbox_entry *entry,
struct mbox_list *head,
rte_spinlock_t *lock)
{
t4_os_lock(lock);
TAILQ_INSERT_TAIL(head, entry, next);
t4_os_unlock(lock);
}
/**
* t4_os_atomic_list_del - Dequeue list element atomically from list
* @entry: the entry to be remove/dequeued from the list.
* @lock: the spinlock
*/
static inline void t4_os_atomic_list_del(struct mbox_entry *entry,
struct mbox_list *head,
rte_spinlock_t *lock)
{
t4_os_lock(lock);
TAILQ_REMOVE(head, entry, next);
t4_os_unlock(lock);
}
/**
* t4_init_completion - initialize completion
* @c: the completion context
*/
static inline void t4_init_completion(struct t4_completion *c)
{
c->done = 0;
t4_os_lock_init(&c->lock);
}
/**
* t4_complete - set completion as done
* @c: the completion context
*/
static inline void t4_complete(struct t4_completion *c)
{
t4_os_lock(&c->lock);
c->done = 1;
t4_os_unlock(&c->lock);
}
/**
* cxgbe_port_viid - get the VI id of a port
* @dev: the device for the port
*
* Return the VI id of the given port.
*/
static inline unsigned int cxgbe_port_viid(const struct rte_eth_dev *dev)
{
return ethdev2pinfo(dev)->viid;
}
void *t4_alloc_mem(size_t size);
void t4_free_mem(void *addr);
#define t4_os_alloc(_size) t4_alloc_mem((_size))
#define t4_os_free(_ptr) t4_free_mem((_ptr))
void t4_os_portmod_changed(const struct adapter *adap, int port_id);
void t4_os_link_changed(struct adapter *adap, int port_id, int link_stat);
void reclaim_completed_tx(struct sge_txq *q);
void t4_free_sge_resources(struct adapter *adap);
void t4_sge_tx_monitor_start(struct adapter *adap);
void t4_sge_tx_monitor_stop(struct adapter *adap);
int t4_eth_xmit(struct sge_eth_txq *txq, struct rte_mbuf *mbuf,
uint16_t nb_pkts);
int t4_mgmt_tx(struct sge_ctrl_txq *txq, struct rte_mbuf *mbuf);
int t4_sge_init(struct adapter *adap);
int t4vf_sge_init(struct adapter *adap);
int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
struct rte_eth_dev *eth_dev, uint16_t queue_id,
unsigned int iqid, int socket_id);
int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
struct rte_eth_dev *eth_dev, uint16_t queue_id,
unsigned int iqid, int socket_id);
int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *rspq, bool fwevtq,
struct rte_eth_dev *eth_dev, int intr_idx,
struct sge_fl *fl, rspq_handler_t handler,
int cong, struct rte_mempool *mp, int queue_id,
int socket_id);
int t4_sge_eth_txq_start(struct sge_eth_txq *txq);
int t4_sge_eth_txq_stop(struct sge_eth_txq *txq);
void t4_sge_eth_txq_release(struct adapter *adap, struct sge_eth_txq *txq);
int t4_sge_eth_rxq_start(struct adapter *adap, struct sge_rspq *rq);
int t4_sge_eth_rxq_stop(struct adapter *adap, struct sge_rspq *rq);
void t4_sge_eth_rxq_release(struct adapter *adap, struct sge_eth_rxq *rxq);
void t4_sge_eth_clear_queues(struct port_info *pi);
int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
unsigned int cnt);
int cxgbe_poll(struct sge_rspq *q, struct rte_mbuf **rx_pkts,
unsigned int budget, unsigned int *work_done);
int cxgbe_write_rss(const struct port_info *pi, const u16 *queues);
int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t flags);
#endif /* __T4_ADAPTER_H__ */