95f648ff9e
This modification allows for the branch ratio threshold to be set per core rather than system wide. This gives greater flexibility to the branch ratio monitoring allowing it to manage different workloads with different characteristics on the same system. Signed-off-by: Rory Sexton <rory.sexton@intel.com> Reviewed-by: David Hunt <david.hunt@intel.com> Acked-by: Reshma Pattan <reshma.pattan@intel.com>
257 lines
5.3 KiB
C
257 lines
5.3 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
|
|
#include <sys/sysinfo.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <rte_log.h>
|
|
#include <rte_power.h>
|
|
#include <rte_spinlock.h>
|
|
|
|
#include "channel_manager.h"
|
|
#include "power_manager.h"
|
|
#include "oob_monitor.h"
|
|
|
|
#define POWER_SCALE_CORE(DIRECTION, core_num , ret) do { \
|
|
if (core_num >= ci.core_count) \
|
|
return -1; \
|
|
if (!(ci.cd[core_num].global_enabled_cpus)) \
|
|
return -1; \
|
|
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); \
|
|
ret = rte_power_freq_##DIRECTION(core_num); \
|
|
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); \
|
|
} while (0)
|
|
|
|
struct freq_info {
|
|
rte_spinlock_t power_sl;
|
|
uint32_t freqs[RTE_MAX_LCORE_FREQS];
|
|
unsigned num_freqs;
|
|
} __rte_cache_aligned;
|
|
|
|
static struct freq_info global_core_freq_info[RTE_MAX_LCORE];
|
|
|
|
struct core_info ci;
|
|
|
|
#define SYSFS_CPU_PATH "/sys/devices/system/cpu/cpu%u/topology/core_id"
|
|
|
|
struct core_info *
|
|
get_core_info(void)
|
|
{
|
|
return &ci;
|
|
}
|
|
|
|
int
|
|
core_info_init(void)
|
|
{
|
|
struct core_info *ci;
|
|
int i;
|
|
|
|
ci = get_core_info();
|
|
|
|
ci->core_count = get_nprocs_conf();
|
|
ci->cd = malloc(ci->core_count * sizeof(struct core_details));
|
|
memset(ci->cd, 0, ci->core_count * sizeof(struct core_details));
|
|
if (!ci->cd) {
|
|
RTE_LOG(ERR, POWER_MANAGER, "Failed to allocate memory for core info.");
|
|
return -1;
|
|
}
|
|
for (i = 0; i < ci->core_count; i++) {
|
|
ci->cd[i].global_enabled_cpus = 1;
|
|
ci->cd[i].branch_ratio_threshold = BRANCH_RATIO_THRESHOLD;
|
|
}
|
|
printf("%d cores in system\n", ci->core_count);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
power_manager_init(void)
|
|
{
|
|
unsigned int i, num_cpus = 0, num_freqs = 0;
|
|
int ret = 0;
|
|
struct core_info *ci;
|
|
unsigned int max_core_num;
|
|
|
|
rte_power_set_env(PM_ENV_NOT_SET);
|
|
|
|
ci = get_core_info();
|
|
if (!ci) {
|
|
RTE_LOG(ERR, POWER_MANAGER,
|
|
"Failed to get core info!\n");
|
|
return -1;
|
|
}
|
|
|
|
if (ci->core_count > RTE_MAX_LCORE)
|
|
max_core_num = RTE_MAX_LCORE;
|
|
else
|
|
max_core_num = ci->core_count;
|
|
|
|
for (i = 0; i < max_core_num; i++) {
|
|
if (ci->cd[i].global_enabled_cpus) {
|
|
if (rte_power_init(i) < 0)
|
|
RTE_LOG(ERR, POWER_MANAGER,
|
|
"Unable to initialize power manager "
|
|
"for core %u\n", i);
|
|
num_cpus++;
|
|
num_freqs = rte_power_freqs(i,
|
|
global_core_freq_info[i].freqs,
|
|
RTE_MAX_LCORE_FREQS);
|
|
if (num_freqs == 0) {
|
|
RTE_LOG(ERR, POWER_MANAGER,
|
|
"Unable to get frequency list for core %u\n",
|
|
i);
|
|
ci->cd[i].oob_enabled = 0;
|
|
ret = -1;
|
|
}
|
|
global_core_freq_info[i].num_freqs = num_freqs;
|
|
|
|
rte_spinlock_init(&global_core_freq_info[i].power_sl);
|
|
}
|
|
if (ci->cd[i].oob_enabled)
|
|
add_core_to_monitor(i);
|
|
}
|
|
RTE_LOG(INFO, POWER_MANAGER, "Managing %u cores out of %u available host cores\n",
|
|
num_cpus, ci->core_count);
|
|
return ret;
|
|
|
|
}
|
|
|
|
uint32_t
|
|
power_manager_get_current_frequency(unsigned core_num)
|
|
{
|
|
uint32_t freq, index;
|
|
|
|
if (core_num >= RTE_MAX_LCORE) {
|
|
RTE_LOG(ERR, POWER_MANAGER, "Core(%u) is out of range 0...%d\n",
|
|
core_num, RTE_MAX_LCORE-1);
|
|
return -1;
|
|
}
|
|
if (!(ci.cd[core_num].global_enabled_cpus))
|
|
return 0;
|
|
|
|
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
|
|
index = rte_power_get_freq(core_num);
|
|
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
|
|
if (index >= RTE_MAX_LCORE_FREQS)
|
|
freq = 0;
|
|
else
|
|
freq = global_core_freq_info[core_num].freqs[index];
|
|
|
|
return freq;
|
|
}
|
|
|
|
int
|
|
power_manager_exit(void)
|
|
{
|
|
unsigned int i;
|
|
int ret = 0;
|
|
struct core_info *ci;
|
|
unsigned int max_core_num;
|
|
|
|
ci = get_core_info();
|
|
if (!ci) {
|
|
RTE_LOG(ERR, POWER_MANAGER,
|
|
"Failed to get core info!\n");
|
|
return -1;
|
|
}
|
|
|
|
if (ci->core_count > RTE_MAX_LCORE)
|
|
max_core_num = RTE_MAX_LCORE;
|
|
else
|
|
max_core_num = ci->core_count;
|
|
|
|
for (i = 0; i < max_core_num; i++) {
|
|
if (ci->cd[i].global_enabled_cpus) {
|
|
if (rte_power_exit(i) < 0) {
|
|
RTE_LOG(ERR, POWER_MANAGER, "Unable to shutdown power manager "
|
|
"for core %u\n", i);
|
|
ret = -1;
|
|
}
|
|
ci->cd[i].global_enabled_cpus = 0;
|
|
}
|
|
remove_core_from_monitor(i);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_core_up(unsigned core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(up, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_core_down(unsigned core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(down, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_core_min(unsigned core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(min, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_core_max(unsigned core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(max, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_enable_turbo_core(unsigned int core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(enable_turbo, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_disable_turbo_core(unsigned int core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(disable_turbo, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_core_med(unsigned int core_num)
|
|
{
|
|
int ret = 0;
|
|
struct core_info *ci;
|
|
|
|
ci = get_core_info();
|
|
if (core_num >= RTE_MAX_LCORE)
|
|
return -1;
|
|
if (!(ci->cd[core_num].global_enabled_cpus))
|
|
return -1;
|
|
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
|
|
ret = rte_power_set_freq(core_num,
|
|
global_core_freq_info[core_num].num_freqs / 2);
|
|
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
|
|
return ret;
|
|
}
|