numam-dpdk/drivers/net/ice/ice_rxtx_vec_sse.c
Xiao Zhang 91342addd1 net/ice: fix address of first segment
This patch fixes (dereference after null check) coverity issue.
The address of first segmented packets was not set correctly during
reassembling packets which led to this issue.

Coverity issue: 343452, 343407
Fixes: c68a52b8b3 ("net/ice: support vector SSE in Rx")
Cc: stable@dpdk.org

Signed-off-by: Xiao Zhang <xiao.zhang@intel.com>
Acked-by: Xiaolong Ye <xiaolong.ye@intel.com>
2019-08-06 13:29:25 +02:00

662 lines
20 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include "ice_rxtx_vec_common.h"
#include <tmmintrin.h>
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
static inline void
ice_rxq_rearm(struct ice_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union ice_rx_desc *rxdp;
struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
struct rte_mbuf *mb0, *mb1;
__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
RTE_PKTMBUF_HEADROOM);
__m128i dma_addr0, dma_addr1;
rxdp = rxq->rx_ring + rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (rte_mempool_get_bulk(rxq->mp,
(void *)rxep,
ICE_RXQ_REARM_THRESH) < 0) {
if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
_mm_store_si128((__m128i *)&rxdp[i].read,
dma_addr0);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
ICE_RXQ_REARM_THRESH;
return;
}
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
__m128i vaddr0, vaddr1;
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
offsetof(struct rte_mbuf, buf_addr) + 8);
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
/* convert pa to dma_addr hdr/data */
dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
/* add headroom to pa values */
dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
/* flush desc with pa dma_addr */
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
}
rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}
static inline void
ice_rx_desc_to_olflags_v(struct ice_rx_queue *rxq, __m128i descs[4],
struct rte_mbuf **rx_pkts)
{
const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
__m128i rearm0, rearm1, rearm2, rearm3;
__m128i vlan0, vlan1, rss, l3_l4e;
/* mask everything except RSS, flow director and VLAN flags
* bit2 is for VLAN tag, bit11 for flow director indication
* bit13:12 for RSS indication.
*/
const __m128i rss_vlan_msk = _mm_set_epi32(0x1c03804, 0x1c03804,
0x1c03804, 0x1c03804);
const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD |
PKT_RX_EIP_CKSUM_BAD,
PKT_RX_IP_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD |
PKT_RX_EIP_CKSUM_BAD,
PKT_RX_IP_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD |
PKT_RX_EIP_CKSUM_BAD,
PKT_RX_IP_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD |
PKT_RX_EIP_CKSUM_BAD);
/* map rss and vlan type to rss hash and vlan flag */
const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
0, 0, 0, 0);
const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
0, 0, PKT_RX_FDIR, 0);
const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
/* shift right 1 bit to make sure it not exceed 255 */
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
PKT_RX_IP_CKSUM_BAD >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
rss = _mm_srli_epi32(vlan1, 11);
rss = _mm_shuffle_epi8(rss_flags, rss);
l3_l4e = _mm_srli_epi32(vlan1, 22);
l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
/* then we shift left 1 bit */
l3_l4e = _mm_slli_epi32(l3_l4e, 1);
/* we need to mask out the reduntant bits */
l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
vlan0 = _mm_or_si128(vlan0, rss);
vlan0 = _mm_or_si128(vlan0, l3_l4e);
/**
* At this point, we have the 4 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
* We want to extract these, and merge them with the mbuf init data
* so we can do a single 16-byte write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend for
* each mbuf before we do the write.
*/
rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
/* write the rearm data and the olflags in one write */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
}
#define PKTLEN_SHIFT 10
static inline void
ice_rx_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
uint32_t *ptype_tbl)
{
__m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
__m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
ptype0 = _mm_srli_epi64(ptype0, 30);
ptype1 = _mm_srli_epi64(ptype1, 30);
rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 0)];
rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 8)];
rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 0)];
rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 8)];
}
/**
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
* - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
* numbers of DD bits
*/
static inline uint16_t
_ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
volatile union ice_rx_desc *rxdp;
struct ice_rx_entry *sw_ring;
uint16_t nb_pkts_recd;
int pos;
uint64_t var;
__m128i shuf_msk;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
__m128i crc_adjust = _mm_set_epi16
(0, 0, 0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
0, /* ignore high-16bits of pkt_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, 0 /* ignore pkt_type field */
);
/**
* compile-time check the above crc_adjust layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi16
* call above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
__m128i dd_check, eop_check;
/* nb_pkts shall be less equal than ICE_MAX_RX_BURST */
nb_pkts = RTE_MIN(nb_pkts, ICE_MAX_RX_BURST);
/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP);
/* Just the act of getting into the function from the application is
* going to cost about 7 cycles
*/
rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
ice_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.qword1.status_error_len &
rte_cpu_to_le_32(1 << ICE_RX_DESC_STATUS_DD_S)))
return 0;
/* 4 packets DD mask */
dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
/* 4 packets EOP mask */
eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
/* mask to shuffle from desc. to mbuf */
shuf_msk = _mm_set_epi8
(7, 6, 5, 4, /* octet 4~7, 32bits rss */
3, 2, /* octet 2~3, low 16 bits vlan_macip */
15, 14, /* octet 15~14, 16 bits data_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
15, 14, /* octet 15~14, low 16 bits pkt_len */
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF /*pkt_type set as unknown */
);
/**
* Compile-time verify the shuffle mask
* NOTE: some field positions already verified above, but duplicated
* here for completeness in case of future modifications.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
/* Cache is empty -> need to scan the buffer rings, but first move
* the next 'n' mbufs into the cache
*/
sw_ring = &rxq->sw_ring[rxq->rx_tail];
/* A. load 4 packet in one loop
* [A*. mask out 4 unused dirty field in desc]
* B. copy 4 mbuf point from swring to rx_pkts
* C. calc the number of DD bits among the 4 packets
* [C*. extract the end-of-packet bit, if requested]
* D. fill info. from desc to mbuf
*/
for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
pos += ICE_DESCS_PER_LOOP,
rxdp += ICE_DESCS_PER_LOOP) {
__m128i descs[ICE_DESCS_PER_LOOP];
__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
__m128i mbp1;
#if defined(RTE_ARCH_X86_64)
__m128i mbp2;
#endif
/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
/* Read desc statuses backwards to avoid race condition */
/* A.1 load 4 pkts desc */
descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
rte_compiler_barrier();
/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
#if defined(RTE_ARCH_X86_64)
/* B.1 load 2 64 bit mbuf points */
mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
#endif
descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
rte_compiler_barrier();
/* B.1 load 2 mbuf point */
descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
rte_compiler_barrier();
descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
#if defined(RTE_ARCH_X86_64)
/* B.2 copy 2 mbuf point into rx_pkts */
_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
#endif
if (split_packet) {
rte_mbuf_prefetch_part2(rx_pkts[pos]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
}
/* avoid compiler reorder optimization */
rte_compiler_barrier();
/* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
/* merge the now-aligned packet length fields back in */
descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
/* D.1 pkt 3,4 convert format from desc to pktmbuf */
pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
/* C.1 4=>2 filter staterr info only */
sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
/* C.1 4=>2 filter staterr info only */
sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
ice_rx_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
/* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
/* merge the now-aligned packet length fields back in */
descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
/* D.1 pkt 1,2 convert format from desc to pktmbuf */
pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
/* C.2 get 4 pkts staterr value */
zero = _mm_xor_si128(dd_check, dd_check);
staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
/* D.3 copy final 3,4 data to rx_pkts */
_mm_storeu_si128
((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
pkt_mb4);
_mm_storeu_si128
((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
pkt_mb3);
/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
/* C* extract and record EOP bit */
if (split_packet) {
__m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0x04, 0x0C,
0x00, 0x08);
/* and with mask to extract bits, flipping 1-0 */
__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
/* the staterr values are not in order, as the count
* count of dd bits doesn't care. However, for end of
* packet tracking, we do care, so shuffle. This also
* compresses the 32-bit values to 8-bit
*/
eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
/* store the resulting 32-bit value */
*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
split_packet += ICE_DESCS_PER_LOOP;
}
/* C.3 calc available number of desc */
staterr = _mm_and_si128(staterr, dd_check);
staterr = _mm_packs_epi32(staterr, zero);
/* D.3 copy final 1,2 data to rx_pkts */
_mm_storeu_si128
((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
pkt_mb2);
_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
pkt_mb1);
ice_rx_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
/* C.4 calc avaialbe number of desc */
var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
nb_pkts_recd += var;
if (likely(var != ICE_DESCS_PER_LOOP))
break;
}
/* Update our internal tail pointer */
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
return nb_pkts_recd;
}
/**
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
* - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
* numbers of DD bits
*/
uint16_t
ice_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _ice_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}
/* vPMD receive routine that reassembles scattered packets
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
* - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
* numbers of DD bits
*/
uint16_t
ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ice_rx_queue *rxq = rx_queue;
uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _ice_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
split_flags);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (!rxq->pkt_first_seg &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
static inline void
ice_vtx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf *pkt,
uint64_t flags)
{
uint64_t high_qw =
(ICE_TX_DESC_DTYPE_DATA |
((uint64_t)flags << ICE_TXD_QW1_CMD_S) |
((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
__m128i descriptor = _mm_set_epi64x(high_qw,
pkt->buf_iova + pkt->data_off);
_mm_store_si128((__m128i *)txdp, descriptor);
}
static inline void
ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
uint16_t nb_pkts, uint64_t flags)
{
int i;
for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
ice_vtx1(txdp, *pkt, flags);
}
static uint16_t
ice_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
volatile struct ice_tx_desc *txdp;
struct ice_tx_entry *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = ICE_TD_CMD;
uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
int i;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
if (txq->nb_tx_free < txq->tx_free_thresh)
ice_tx_free_bufs(txq);
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
nb_commit = nb_pkts;
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
ice_tx_backlog_entry(txep, tx_pkts, n);
for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
ice_vtx1(txdp, *tx_pkts, flags);
ice_vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
}
ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
ice_vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
ICE_TXD_QW1_CMD_S);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
uint16_t
ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
ret = ice_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}
int __attribute__((cold))
ice_rxq_vec_setup(struct ice_rx_queue *rxq)
{
if (!rxq)
return -1;
rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs_vec;
return ice_rxq_vec_setup_default(rxq);
}
int __attribute__((cold))
ice_txq_vec_setup(struct ice_tx_queue __rte_unused *txq)
{
if (!txq)
return -1;
txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs_vec;
return 0;
}
int __attribute__((cold))
ice_rx_vec_dev_check(struct rte_eth_dev *dev)
{
return ice_rx_vec_dev_check_default(dev);
}
int __attribute__((cold))
ice_tx_vec_dev_check(struct rte_eth_dev *dev)
{
return ice_tx_vec_dev_check_default(dev);
}