numam-dpdk/drivers/net/mlx4/mlx4_txq.c
Yongseok Koh 97d37d2c1f net/mlx4: remove device register remap
UAR (User Access Region) register does not need to be remapped for
primary process but it should be remapped only for secondary process.
UAR register table is in the process private structure in
rte_eth_devices[],
(struct mlx4_proc_priv *)rte_eth_devices[port_id].process_private

The actual UAR table follows the data structure and the table is used
for both Tx and Rx.

For Tx, BlueFlame in UAR is used to ring the doorbell.
MLX4_TX_BFREG(txq) is defined to get a register for the txq. Processes
access its own private data to acquire the register from the UAR table.

For Rx, the doorbell in UAR is required in arming CQ event. However, it
is a known issue that the register isn't remapped for secondary process.

Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
Acked-by: Shahaf Shuler <shahafs@mellanox.com>
2019-04-12 11:02:02 +02:00

528 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox Technologies, Ltd
*/
/**
* @file
* Tx queues configuration for mlx4 driver.
*/
#include <assert.h>
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <sys/mman.h>
#include <inttypes.h>
#include <unistd.h>
/* Verbs headers do not support -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_common.h>
#include <rte_errno.h>
#include <rte_ethdev_driver.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include "mlx4.h"
#include "mlx4_glue.h"
#include "mlx4_prm.h"
#include "mlx4_rxtx.h"
#include "mlx4_utils.h"
/**
* Initialize Tx UAR registers for primary process.
*
* @param txq
* Pointer to Tx queue structure.
*/
static void
txq_uar_init(struct txq *txq)
{
struct mlx4_priv *priv = txq->priv;
struct mlx4_proc_priv *ppriv = MLX4_PROC_PRIV(PORT_ID(priv));
assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
assert(ppriv);
ppriv->uar_table[txq->stats.idx] = txq->msq.db;
}
#ifdef HAVE_IBV_MLX4_UAR_MMAP_OFFSET
/**
* Remap UAR register of a Tx queue for secondary process.
*
* Remapped address is stored at the table in the process private structure of
* the device, indexed by queue index.
*
* @param txq
* Pointer to Tx queue structure.
* @param fd
* Verbs file descriptor to map UAR pages.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
txq_uar_init_secondary(struct txq *txq, int fd)
{
struct mlx4_priv *priv = txq->priv;
struct mlx4_proc_priv *ppriv = MLX4_PROC_PRIV(PORT_ID(priv));
void *addr;
uintptr_t uar_va;
uintptr_t offset;
const size_t page_size = sysconf(_SC_PAGESIZE);
assert(ppriv);
/*
* As rdma-core, UARs are mapped in size of OS page
* size. Ref to libmlx4 function: mlx4_init_context()
*/
uar_va = (uintptr_t)txq->msq.db;
offset = uar_va & (page_size - 1); /* Offset in page. */
addr = mmap(NULL, page_size, PROT_WRITE, MAP_SHARED, fd,
txq->msq.uar_mmap_offset);
if (addr == MAP_FAILED) {
ERROR("port %u mmap failed for BF reg of txq %u",
txq->port_id, txq->stats.idx);
rte_errno = ENXIO;
return -rte_errno;
}
addr = RTE_PTR_ADD(addr, offset);
ppriv->uar_table[txq->stats.idx] = addr;
return 0;
}
/**
* Unmap UAR register of a Tx queue for secondary process.
*
* @param txq
* Pointer to Tx queue structure.
*/
static void
txq_uar_uninit_secondary(struct txq *txq)
{
struct mlx4_proc_priv *ppriv = MLX4_PROC_PRIV(PORT_ID(txq->priv));
const size_t page_size = sysconf(_SC_PAGESIZE);
void *addr;
addr = ppriv->uar_table[txq->stats.idx];
munmap(RTE_PTR_ALIGN_FLOOR(addr, page_size), page_size);
}
/**
* Initialize Tx UAR registers for secondary process.
*
* @param dev
* Pointer to Ethernet device.
* @param fd
* Verbs file descriptor to map UAR pages.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx4_tx_uar_init_secondary(struct rte_eth_dev *dev, int fd)
{
const unsigned int txqs_n = dev->data->nb_tx_queues;
struct txq *txq;
unsigned int i;
int ret;
assert(rte_eal_process_type() == RTE_PROC_SECONDARY);
for (i = 0; i != txqs_n; ++i) {
txq = dev->data->tx_queues[i];
if (!txq)
continue;
assert(txq->stats.idx == (uint16_t)i);
ret = txq_uar_init_secondary(txq, fd);
if (ret)
goto error;
}
return 0;
error:
/* Rollback. */
do {
txq = dev->data->tx_queues[i];
if (!txq)
continue;
txq_uar_uninit_secondary(txq);
} while (i--);
return -rte_errno;
}
#else
int
mlx4_tx_uar_init_secondary(struct rte_eth_dev *dev __rte_unused,
int fd __rte_unused)
{
assert(rte_eal_process_type() == RTE_PROC_SECONDARY);
ERROR("UAR remap is not supported");
rte_errno = ENOTSUP;
return -rte_errno;
}
#endif
/**
* Free Tx queue elements.
*
* @param txq
* Pointer to Tx queue structure.
*/
static void
mlx4_txq_free_elts(struct txq *txq)
{
unsigned int elts_head = txq->elts_head;
unsigned int elts_tail = txq->elts_tail;
struct txq_elt (*elts)[txq->elts_n] = txq->elts;
unsigned int elts_m = txq->elts_n - 1;
DEBUG("%p: freeing WRs", (void *)txq);
while (elts_tail != elts_head) {
struct txq_elt *elt = &(*elts)[elts_tail++ & elts_m];
assert(elt->buf != NULL);
rte_pktmbuf_free(elt->buf);
elt->buf = NULL;
elt->wqe = NULL;
}
txq->elts_tail = txq->elts_head;
}
/**
* Retrieves information needed in order to directly access the Tx queue.
*
* @param txq
* Pointer to Tx queue structure.
* @param mlxdv
* Pointer to device information for this Tx queue.
*/
static void
mlx4_txq_fill_dv_obj_info(struct txq *txq, struct mlx4dv_obj *mlxdv)
{
struct mlx4_sq *sq = &txq->msq;
struct mlx4_cq *cq = &txq->mcq;
struct mlx4dv_qp *dqp = mlxdv->qp.out;
struct mlx4dv_cq *dcq = mlxdv->cq.out;
/* Total length, including headroom and spare WQEs. */
sq->size = (uint32_t)dqp->rq.offset - (uint32_t)dqp->sq.offset;
sq->buf = (uint8_t *)dqp->buf.buf + dqp->sq.offset;
sq->eob = sq->buf + sq->size;
uint32_t headroom_size = 2048 + (1 << dqp->sq.wqe_shift);
/* Continuous headroom size bytes must always stay freed. */
sq->remain_size = sq->size - headroom_size;
sq->owner_opcode = MLX4_OPCODE_SEND | (0u << MLX4_SQ_OWNER_BIT);
sq->stamp = rte_cpu_to_be_32(MLX4_SQ_STAMP_VAL |
(0u << MLX4_SQ_OWNER_BIT));
#ifdef HAVE_IBV_MLX4_UAR_MMAP_OFFSET
sq->uar_mmap_offset = dqp->uar_mmap_offset;
#else
sq->uar_mmap_offset = -1; /* Make mmap() fail. */
#endif
sq->db = dqp->sdb;
sq->doorbell_qpn = dqp->doorbell_qpn;
cq->buf = dcq->buf.buf;
cq->cqe_cnt = dcq->cqe_cnt;
cq->set_ci_db = dcq->set_ci_db;
cq->cqe_64 = (dcq->cqe_size & 64) ? 1 : 0;
}
/**
* Returns the per-port supported offloads.
*
* @param priv
* Pointer to private structure.
*
* @return
* Supported Tx offloads.
*/
uint64_t
mlx4_get_tx_port_offloads(struct mlx4_priv *priv)
{
uint64_t offloads = DEV_TX_OFFLOAD_MULTI_SEGS;
if (priv->hw_csum) {
offloads |= (DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM);
}
if (priv->tso)
offloads |= DEV_TX_OFFLOAD_TCP_TSO;
if (priv->hw_csum_l2tun) {
offloads |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
if (priv->tso)
offloads |= (DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO);
}
return offloads;
}
/**
* DPDK callback to configure a Tx queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* Tx queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
int
mlx4_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct mlx4_priv *priv = dev->data->dev_private;
struct mlx4dv_obj mlxdv;
struct mlx4dv_qp dv_qp;
struct mlx4dv_cq dv_cq;
struct txq_elt (*elts)[rte_align32pow2(desc)];
struct ibv_qp_init_attr qp_init_attr;
struct txq *txq;
uint8_t *bounce_buf;
struct mlx4_malloc_vec vec[] = {
{
.align = RTE_CACHE_LINE_SIZE,
.size = sizeof(*txq),
.addr = (void **)&txq,
},
{
.align = RTE_CACHE_LINE_SIZE,
.size = sizeof(*elts),
.addr = (void **)&elts,
},
{
.align = RTE_CACHE_LINE_SIZE,
.size = MLX4_MAX_WQE_SIZE,
.addr = (void **)&bounce_buf,
},
};
int ret;
uint64_t offloads;
offloads = conf->offloads | dev->data->dev_conf.txmode.offloads;
DEBUG("%p: configuring queue %u for %u descriptors",
(void *)dev, idx, desc);
if (idx >= dev->data->nb_tx_queues) {
rte_errno = EOVERFLOW;
ERROR("%p: queue index out of range (%u >= %u)",
(void *)dev, idx, dev->data->nb_tx_queues);
return -rte_errno;
}
txq = dev->data->tx_queues[idx];
if (txq) {
rte_errno = EEXIST;
DEBUG("%p: Tx queue %u already configured, release it first",
(void *)dev, idx);
return -rte_errno;
}
if (!desc) {
rte_errno = EINVAL;
ERROR("%p: invalid number of Tx descriptors", (void *)dev);
return -rte_errno;
}
if (desc != RTE_DIM(*elts)) {
desc = RTE_DIM(*elts);
WARN("%p: increased number of descriptors in Tx queue %u"
" to the next power of two (%u)",
(void *)dev, idx, desc);
}
/* Allocate and initialize Tx queue. */
mlx4_zmallocv_socket("TXQ", vec, RTE_DIM(vec), socket);
if (!txq) {
ERROR("%p: unable to allocate queue index %u",
(void *)dev, idx);
return -rte_errno;
}
*txq = (struct txq){
.priv = priv,
.port_id = dev->data->port_id,
.stats = {
.idx = idx,
},
.socket = socket,
.elts_n = desc,
.elts = elts,
.elts_head = 0,
.elts_tail = 0,
/*
* Request send completion every MLX4_PMD_TX_PER_COMP_REQ
* packets or at least 4 times per ring.
*/
.elts_comp_cd =
RTE_MIN(MLX4_PMD_TX_PER_COMP_REQ, desc / 4),
.elts_comp_cd_init =
RTE_MIN(MLX4_PMD_TX_PER_COMP_REQ, desc / 4),
.csum = priv->hw_csum &&
(offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM)),
.csum_l2tun = priv->hw_csum_l2tun &&
(offloads &
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM),
/* Enable Tx loopback for VF devices. */
.lb = !!priv->vf,
.bounce_buf = bounce_buf,
};
priv->verbs_alloc_ctx.type = MLX4_VERBS_ALLOC_TYPE_TX_QUEUE;
priv->verbs_alloc_ctx.obj = txq;
txq->cq = mlx4_glue->create_cq(priv->ctx, desc, NULL, NULL, 0);
if (!txq->cq) {
rte_errno = ENOMEM;
ERROR("%p: CQ creation failure: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
qp_init_attr = (struct ibv_qp_init_attr){
.send_cq = txq->cq,
.recv_cq = txq->cq,
.cap = {
.max_send_wr =
RTE_MIN(priv->device_attr.max_qp_wr, desc),
.max_send_sge = 1,
.max_inline_data = MLX4_PMD_MAX_INLINE,
},
.qp_type = IBV_QPT_RAW_PACKET,
/* No completion events must occur by default. */
.sq_sig_all = 0,
};
txq->qp = mlx4_glue->create_qp(priv->pd, &qp_init_attr);
if (!txq->qp) {
rte_errno = errno ? errno : EINVAL;
ERROR("%p: QP creation failure: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
txq->max_inline = qp_init_attr.cap.max_inline_data;
ret = mlx4_glue->modify_qp
(txq->qp,
&(struct ibv_qp_attr){
.qp_state = IBV_QPS_INIT,
.port_num = priv->port,
},
IBV_QP_STATE | IBV_QP_PORT);
if (ret) {
rte_errno = ret;
ERROR("%p: QP state to IBV_QPS_INIT failed: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
ret = mlx4_glue->modify_qp
(txq->qp,
&(struct ibv_qp_attr){
.qp_state = IBV_QPS_RTR,
},
IBV_QP_STATE);
if (ret) {
rte_errno = ret;
ERROR("%p: QP state to IBV_QPS_RTR failed: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
ret = mlx4_glue->modify_qp
(txq->qp,
&(struct ibv_qp_attr){
.qp_state = IBV_QPS_RTS,
},
IBV_QP_STATE);
if (ret) {
rte_errno = ret;
ERROR("%p: QP state to IBV_QPS_RTS failed: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
/* Retrieve device queue information. */
#ifdef HAVE_IBV_MLX4_UAR_MMAP_OFFSET
dv_qp = (struct mlx4dv_qp){
.comp_mask = MLX4DV_QP_MASK_UAR_MMAP_OFFSET,
};
#endif
mlxdv.cq.in = txq->cq;
mlxdv.cq.out = &dv_cq;
mlxdv.qp.in = txq->qp;
mlxdv.qp.out = &dv_qp;
ret = mlx4_glue->dv_init_obj(&mlxdv, MLX4DV_OBJ_QP | MLX4DV_OBJ_CQ);
if (ret) {
rte_errno = EINVAL;
ERROR("%p: failed to obtain information needed for"
" accessing the device queues", (void *)dev);
goto error;
}
#ifdef HAVE_IBV_MLX4_UAR_MMAP_OFFSET
if (!(dv_qp.comp_mask & MLX4DV_QP_MASK_UAR_MMAP_OFFSET)) {
WARN("%p: failed to obtain UAR mmap offset", (void *)dev);
dv_qp.uar_mmap_offset = -1; /* Make mmap() fail. */
}
#endif
mlx4_txq_fill_dv_obj_info(txq, &mlxdv);
txq_uar_init(txq);
/* Save first wqe pointer in the first element. */
(&(*txq->elts)[0])->wqe =
(volatile struct mlx4_wqe_ctrl_seg *)txq->msq.buf;
if (mlx4_mr_btree_init(&txq->mr_ctrl.cache_bh,
MLX4_MR_BTREE_CACHE_N, socket)) {
/* rte_errno is already set. */
goto error;
}
/* Save pointer of global generation number to check memory event. */
txq->mr_ctrl.dev_gen_ptr = &priv->mr.dev_gen;
DEBUG("%p: adding Tx queue %p to list", (void *)dev, (void *)txq);
dev->data->tx_queues[idx] = txq;
priv->verbs_alloc_ctx.type = MLX4_VERBS_ALLOC_TYPE_NONE;
return 0;
error:
dev->data->tx_queues[idx] = NULL;
ret = rte_errno;
mlx4_tx_queue_release(txq);
rte_errno = ret;
assert(rte_errno > 0);
priv->verbs_alloc_ctx.type = MLX4_VERBS_ALLOC_TYPE_NONE;
return -rte_errno;
}
/**
* DPDK callback to release a Tx queue.
*
* @param dpdk_txq
* Generic Tx queue pointer.
*/
void
mlx4_tx_queue_release(void *dpdk_txq)
{
struct txq *txq = (struct txq *)dpdk_txq;
struct mlx4_priv *priv;
unsigned int i;
if (txq == NULL)
return;
priv = txq->priv;
for (i = 0; i != ETH_DEV(priv)->data->nb_tx_queues; ++i)
if (ETH_DEV(priv)->data->tx_queues[i] == txq) {
DEBUG("%p: removing Tx queue %p from list",
(void *)ETH_DEV(priv), (void *)txq);
ETH_DEV(priv)->data->tx_queues[i] = NULL;
break;
}
mlx4_txq_free_elts(txq);
if (txq->qp)
claim_zero(mlx4_glue->destroy_qp(txq->qp));
if (txq->cq)
claim_zero(mlx4_glue->destroy_cq(txq->cq));
mlx4_mr_btree_free(&txq->mr_ctrl.cache_bh);
rte_free(txq);
}