711f43ba56
For different workloads and poll loops, the theshold may be different for when you want to scale up and down. This patch allows changing of the default branch ratio by using the -b command line argument (or --branch-ratio=) Signed-off-by: David Hunt <david.hunt@intel.com> Acked-by: Radu Nicolau <radu.nicolau@intel.com>
315 lines
6.2 KiB
C
315 lines
6.2 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <sys/un.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
|
|
#include <sys/sysinfo.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <rte_log.h>
|
|
#include <rte_power.h>
|
|
#include <rte_spinlock.h>
|
|
|
|
#include "channel_manager.h"
|
|
#include "power_manager.h"
|
|
#include "oob_monitor.h"
|
|
|
|
#define POWER_SCALE_CORE(DIRECTION, core_num , ret) do { \
|
|
if (core_num >= ci.core_count) \
|
|
return -1; \
|
|
if (!(ci.cd[core_num].global_enabled_cpus)) \
|
|
return -1; \
|
|
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); \
|
|
ret = rte_power_freq_##DIRECTION(core_num); \
|
|
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); \
|
|
} while (0)
|
|
|
|
#define POWER_SCALE_MASK(DIRECTION, core_mask, ret) do { \
|
|
int i; \
|
|
for (i = 0; core_mask; core_mask &= ~(1 << i++)) { \
|
|
if ((core_mask >> i) & 1) { \
|
|
if (!(ci.cd[i].global_enabled_cpus)) \
|
|
continue; \
|
|
rte_spinlock_lock(&global_core_freq_info[i].power_sl); \
|
|
if (rte_power_freq_##DIRECTION(i) != 1) \
|
|
ret = -1; \
|
|
rte_spinlock_unlock(&global_core_freq_info[i].power_sl); \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
struct freq_info {
|
|
rte_spinlock_t power_sl;
|
|
uint32_t freqs[RTE_MAX_LCORE_FREQS];
|
|
unsigned num_freqs;
|
|
} __rte_cache_aligned;
|
|
|
|
static struct freq_info global_core_freq_info[POWER_MGR_MAX_CPUS];
|
|
|
|
struct core_info ci;
|
|
|
|
#define SYSFS_CPU_PATH "/sys/devices/system/cpu/cpu%u/topology/core_id"
|
|
|
|
struct core_info *
|
|
get_core_info(void)
|
|
{
|
|
return &ci;
|
|
}
|
|
|
|
int
|
|
core_info_init(void)
|
|
{
|
|
struct core_info *ci;
|
|
int i;
|
|
|
|
ci = get_core_info();
|
|
|
|
ci->core_count = get_nprocs_conf();
|
|
ci->branch_ratio_threshold = BRANCH_RATIO_THRESHOLD;
|
|
ci->cd = malloc(ci->core_count * sizeof(struct core_details));
|
|
if (!ci->cd) {
|
|
RTE_LOG(ERR, POWER_MANAGER, "Failed to allocate memory for core info.");
|
|
return -1;
|
|
}
|
|
for (i = 0; i < ci->core_count; i++) {
|
|
ci->cd[i].global_enabled_cpus = 1;
|
|
ci->cd[i].oob_enabled = 0;
|
|
ci->cd[i].msr_fd = 0;
|
|
}
|
|
printf("%d cores in system\n", ci->core_count);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
power_manager_init(void)
|
|
{
|
|
unsigned int i, num_cpus = 0, num_freqs = 0;
|
|
int ret = 0;
|
|
struct core_info *ci;
|
|
|
|
rte_power_set_env(PM_ENV_ACPI_CPUFREQ);
|
|
|
|
ci = get_core_info();
|
|
if (!ci) {
|
|
RTE_LOG(ERR, POWER_MANAGER,
|
|
"Failed to get core info!\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < ci->core_count; i++) {
|
|
if (ci->cd[i].global_enabled_cpus) {
|
|
if (rte_power_init(i) < 0)
|
|
RTE_LOG(ERR, POWER_MANAGER,
|
|
"Unable to initialize power manager "
|
|
"for core %u\n", i);
|
|
num_cpus++;
|
|
num_freqs = rte_power_freqs(i,
|
|
global_core_freq_info[i].freqs,
|
|
RTE_MAX_LCORE_FREQS);
|
|
if (num_freqs == 0) {
|
|
RTE_LOG(ERR, POWER_MANAGER,
|
|
"Unable to get frequency list for core %u\n",
|
|
i);
|
|
ci->cd[i].oob_enabled = 0;
|
|
ret = -1;
|
|
}
|
|
global_core_freq_info[i].num_freqs = num_freqs;
|
|
|
|
rte_spinlock_init(&global_core_freq_info[i].power_sl);
|
|
}
|
|
if (ci->cd[i].oob_enabled)
|
|
add_core_to_monitor(i);
|
|
}
|
|
RTE_LOG(INFO, POWER_MANAGER, "Managing %u cores out of %u available host cores\n",
|
|
num_cpus, ci->core_count);
|
|
return ret;
|
|
|
|
}
|
|
|
|
uint32_t
|
|
power_manager_get_current_frequency(unsigned core_num)
|
|
{
|
|
uint32_t freq, index;
|
|
|
|
if (core_num >= POWER_MGR_MAX_CPUS) {
|
|
RTE_LOG(ERR, POWER_MANAGER, "Core(%u) is out of range 0...%d\n",
|
|
core_num, POWER_MGR_MAX_CPUS-1);
|
|
return -1;
|
|
}
|
|
if (!(ci.cd[core_num].global_enabled_cpus))
|
|
return 0;
|
|
|
|
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
|
|
index = rte_power_get_freq(core_num);
|
|
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
|
|
if (index >= POWER_MGR_MAX_CPUS)
|
|
freq = 0;
|
|
else
|
|
freq = global_core_freq_info[core_num].freqs[index];
|
|
|
|
return freq;
|
|
}
|
|
|
|
int
|
|
power_manager_exit(void)
|
|
{
|
|
unsigned int i;
|
|
int ret = 0;
|
|
struct core_info *ci;
|
|
|
|
ci = get_core_info();
|
|
if (!ci) {
|
|
RTE_LOG(ERR, POWER_MANAGER,
|
|
"Failed to get core info!\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < ci->core_count; i++) {
|
|
if (ci->cd[i].global_enabled_cpus) {
|
|
if (rte_power_exit(i) < 0) {
|
|
RTE_LOG(ERR, POWER_MANAGER, "Unable to shutdown power manager "
|
|
"for core %u\n", i);
|
|
ret = -1;
|
|
}
|
|
ci->cd[i].global_enabled_cpus = 0;
|
|
}
|
|
remove_core_from_monitor(i);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_mask_up(uint64_t core_mask)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_MASK(up, core_mask, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_mask_down(uint64_t core_mask)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_MASK(down, core_mask, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_mask_min(uint64_t core_mask)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_MASK(min, core_mask, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_mask_max(uint64_t core_mask)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_MASK(max, core_mask, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_enable_turbo_mask(uint64_t core_mask)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_MASK(enable_turbo, core_mask, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_disable_turbo_mask(uint64_t core_mask)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_MASK(disable_turbo, core_mask, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_core_up(unsigned core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(up, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_core_down(unsigned core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(down, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_core_min(unsigned core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(min, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_core_max(unsigned core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(max, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_enable_turbo_core(unsigned int core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(enable_turbo, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_disable_turbo_core(unsigned int core_num)
|
|
{
|
|
int ret = 0;
|
|
|
|
POWER_SCALE_CORE(disable_turbo, core_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
power_manager_scale_core_med(unsigned int core_num)
|
|
{
|
|
int ret = 0;
|
|
struct core_info *ci;
|
|
|
|
ci = get_core_info();
|
|
if (core_num >= POWER_MGR_MAX_CPUS)
|
|
return -1;
|
|
if (!(ci->cd[core_num].global_enabled_cpus))
|
|
return -1;
|
|
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
|
|
ret = rte_power_set_freq(core_num,
|
|
global_core_freq_info[core_num].num_freqs / 2);
|
|
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
|
|
return ret;
|
|
}
|