numam-dpdk/app/test-compress-perf/comp_perf_options_parse.c
Artur Trybula 2695db95a1 test/compress: add cycle-count mode to perf tool
This commit adds cycle-count mode to the compression perf tool.
The new mode enhances the compression performance tool to allow
cycle-count measurement of both hardware and softwate PMDs.

Signed-off-by: Artur Trybula <arturx.trybula@intel.com>
Acked-by: Fiona Trahe <fiona.trahe@intel.com>
2020-02-05 15:20:51 +01:00

676 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <getopt.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <stdlib.h>
#include <errno.h>
#include <rte_string_fns.h>
#include <rte_comp.h>
#include "comp_perf_options.h"
#define CPERF_PTEST_TYPE ("ptest")
#define CPERF_DRIVER_NAME ("driver-name")
#define CPERF_TEST_FILE ("input-file")
#define CPERF_SEG_SIZE ("seg-sz")
#define CPERF_BURST_SIZE ("burst-sz")
#define CPERF_EXTENDED_SIZE ("extended-input-sz")
#define CPERF_POOL_SIZE ("pool-sz")
#define CPERF_MAX_SGL_SEGS ("max-num-sgl-segs")
#define CPERF_NUM_ITER ("num-iter")
#define CPERF_OPTYPE ("operation")
#define CPERF_HUFFMAN_ENC ("huffman-enc")
#define CPERF_LEVEL ("compress-level")
#define CPERF_WINDOW_SIZE ("window-sz")
#define CPERF_EXTERNAL_MBUFS ("external-mbufs")
/* cyclecount-specific options */
#define CPERF_CYCLECOUNT_DELAY_US ("cc-delay-us")
struct name_id_map {
const char *name;
uint32_t id;
};
static void
usage(char *progname)
{
printf("%s [EAL options] --\n"
" --ptest throughput / verify / pmd-cyclecount\n"
" --driver-name NAME: compress driver to use\n"
" --input-file NAME: file to compress and decompress\n"
" --extended-input-sz N: extend file data up to this size (default: no extension)\n"
" --seg-sz N: size of segment to store the data (default: 2048)\n"
" --burst-sz N: compress operation burst size\n"
" --pool-sz N: mempool size for compress operations/mbufs\n"
" (default: 8192)\n"
" --max-num-sgl-segs N: maximum number of segments for each mbuf\n"
" (default: 16)\n"
" --num-iter N: number of times the file will be\n"
" compressed/decompressed (default: 10000)\n"
" --operation [comp/decomp/comp_and_decomp]: perform test on\n"
" compression, decompression or both operations\n"
" --huffman-enc [fixed/dynamic/default]: Huffman encoding\n"
" (default: dynamic)\n"
" --compress-level N: compression level, which could be a single value, list or range\n"
" (default: range between 1 and 9)\n"
" --window-sz N: base two log value of compression window size\n"
" (e.g.: 15 => 32k, default: max supported by PMD)\n"
" --external-mbufs: use memzones as external buffers instead of\n"
" keeping the data directly in mbuf area\n"
" --cc-delay-us N: delay between enqueue and dequeue operations in microseconds\n"
" valid only for cyclecount perf test (default: 500 us)\n"
" -h: prints this help\n",
progname);
}
static int
get_str_key_id_mapping(struct name_id_map *map, unsigned int map_len,
const char *str_key)
{
unsigned int i;
for (i = 0; i < map_len; i++) {
if (strcmp(str_key, map[i].name) == 0)
return map[i].id;
}
return -1;
}
static int
parse_cperf_test_type(struct comp_test_data *test_data, const char *arg)
{
struct name_id_map cperftest_namemap[] = {
{
comp_perf_test_type_strs[CPERF_TEST_TYPE_THROUGHPUT],
CPERF_TEST_TYPE_THROUGHPUT
},
{
comp_perf_test_type_strs[CPERF_TEST_TYPE_VERIFY],
CPERF_TEST_TYPE_VERIFY
},
{
comp_perf_test_type_strs[CPERF_TEST_TYPE_PMDCC],
CPERF_TEST_TYPE_PMDCC
}
};
int id = get_str_key_id_mapping(
(struct name_id_map *)cperftest_namemap,
RTE_DIM(cperftest_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "failed to parse test type");
return -1;
}
test_data->test = (enum cperf_test_type)id;
return 0;
}
static int
parse_uint32_t(uint32_t *value, const char *arg)
{
char *end = NULL;
unsigned long n = strtoul(arg, &end, 10);
if ((optarg[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (n > UINT32_MAX)
return -ERANGE;
*value = (uint32_t) n;
return 0;
}
static int
parse_uint16_t(uint16_t *value, const char *arg)
{
uint32_t val = 0;
int ret = parse_uint32_t(&val, arg);
if (ret < 0)
return ret;
if (val > UINT16_MAX)
return -ERANGE;
*value = (uint16_t) val;
return 0;
}
static int
parse_range(const char *arg, uint8_t *min, uint8_t *max, uint8_t *inc)
{
char *token;
uint8_t number;
char *copy_arg = strdup(arg);
if (copy_arg == NULL)
return -1;
errno = 0;
token = strtok(copy_arg, ":");
/* Parse minimum value */
if (token != NULL) {
number = strtoul(token, NULL, 10);
if (errno == EINVAL || errno == ERANGE)
goto err_range;
*min = number;
} else
goto err_range;
token = strtok(NULL, ":");
/* Parse increment value */
if (token != NULL) {
number = strtoul(token, NULL, 10);
if (errno == EINVAL || errno == ERANGE ||
number == 0)
goto err_range;
*inc = number;
} else
goto err_range;
token = strtok(NULL, ":");
/* Parse maximum value */
if (token != NULL) {
number = strtoul(token, NULL, 10);
if (errno == EINVAL || errno == ERANGE ||
number < *min)
goto err_range;
*max = number;
} else
goto err_range;
if (strtok(NULL, ":") != NULL)
goto err_range;
free(copy_arg);
return 0;
err_range:
free(copy_arg);
return -1;
}
static int
parse_list(const char *arg, uint8_t *list, uint8_t *min, uint8_t *max)
{
char *token;
uint32_t number;
uint8_t count = 0;
uint32_t temp_min;
uint32_t temp_max;
char *copy_arg = strdup(arg);
if (copy_arg == NULL)
return -1;
errno = 0;
token = strtok(copy_arg, ",");
/* Parse first value */
if (token != NULL) {
number = strtoul(token, NULL, 10);
if (errno == EINVAL || errno == ERANGE)
goto err_list;
list[count++] = number;
temp_min = number;
temp_max = number;
} else
goto err_list;
token = strtok(NULL, ",");
while (token != NULL) {
if (count == MAX_LIST) {
RTE_LOG(WARNING, USER1,
"Using only the first %u sizes\n",
MAX_LIST);
break;
}
number = strtoul(token, NULL, 10);
if (errno == EINVAL || errno == ERANGE)
goto err_list;
list[count++] = number;
if (number < temp_min)
temp_min = number;
if (number > temp_max)
temp_max = number;
token = strtok(NULL, ",");
}
if (min)
*min = temp_min;
if (max)
*max = temp_max;
free(copy_arg);
return count;
err_list:
free(copy_arg);
return -1;
}
static int
parse_num_iter(struct comp_test_data *test_data, const char *arg)
{
int ret = parse_uint32_t(&test_data->num_iter, arg);
if (ret) {
RTE_LOG(ERR, USER1, "Failed to parse total iteration count\n");
return -1;
}
if (test_data->num_iter == 0) {
RTE_LOG(ERR, USER1,
"Total number of iterations must be higher than 0\n");
return -1;
}
return ret;
}
static int
parse_pool_sz(struct comp_test_data *test_data, const char *arg)
{
int ret = parse_uint32_t(&test_data->pool_sz, arg);
if (ret) {
RTE_LOG(ERR, USER1, "Failed to parse pool size");
return -1;
}
if (test_data->pool_sz == 0) {
RTE_LOG(ERR, USER1, "Pool size must be higher than 0\n");
return -1;
}
return ret;
}
static int
parse_burst_sz(struct comp_test_data *test_data, const char *arg)
{
int ret = parse_uint16_t(&test_data->burst_sz, arg);
if (ret) {
RTE_LOG(ERR, USER1, "Failed to parse burst size/s\n");
return -1;
}
if (test_data->burst_sz == 0) {
RTE_LOG(ERR, USER1, "Burst size must be higher than 0\n");
return -1;
}
return 0;
}
static int
parse_extended_input_sz(struct comp_test_data *test_data, const char *arg)
{
uint32_t tmp;
int ret = parse_uint32_t(&tmp, arg);
if (ret) {
RTE_LOG(ERR, USER1, "Failed to parse extended input size\n");
return -1;
}
test_data->input_data_sz = tmp;
if (tmp == 0) {
RTE_LOG(ERR, USER1,
"Extended file size must be higher than 0\n");
return -1;
}
return 0;
}
static int
parse_seg_sz(struct comp_test_data *test_data, const char *arg)
{
int ret = parse_uint16_t(&test_data->seg_sz, arg);
if (ret) {
RTE_LOG(ERR, USER1, "Failed to parse segment size\n");
return -1;
}
if (test_data->seg_sz < MIN_COMPRESSED_BUF_SIZE) {
RTE_LOG(ERR, USER1, "Segment size must be higher than %d\n",
MIN_COMPRESSED_BUF_SIZE - 1);
return -1;
}
if (test_data->seg_sz > MAX_SEG_SIZE) {
RTE_LOG(ERR, USER1, "Segment size must be lower than %d\n",
MAX_SEG_SIZE + 1);
return -1;
}
return 0;
}
static int
parse_max_num_sgl_segs(struct comp_test_data *test_data, const char *arg)
{
int ret = parse_uint16_t(&test_data->max_sgl_segs, arg);
if (ret) {
RTE_LOG(ERR, USER1,
"Failed to parse max number of segments per mbuf chain\n");
return -1;
}
if (test_data->max_sgl_segs == 0) {
RTE_LOG(ERR, USER1, "Max number of segments per mbuf chain "
"must be higher than 0\n");
return -1;
}
return 0;
}
static int
parse_window_sz(struct comp_test_data *test_data, const char *arg)
{
uint16_t tmp;
int ret = parse_uint16_t(&tmp, arg);
if (ret) {
RTE_LOG(ERR, USER1, "Failed to parse window size\n");
return -1;
}
test_data->window_sz = (int)tmp;
return 0;
}
static int
parse_driver_name(struct comp_test_data *test_data, const char *arg)
{
if (strlen(arg) > (sizeof(test_data->driver_name) - 1))
return -1;
strlcpy(test_data->driver_name, arg,
sizeof(test_data->driver_name));
return 0;
}
static int
parse_test_file(struct comp_test_data *test_data, const char *arg)
{
if (strlen(arg) > (sizeof(test_data->input_file) - 1))
return -1;
strlcpy(test_data->input_file, arg, sizeof(test_data->input_file));
return 0;
}
static int
parse_op_type(struct comp_test_data *test_data, const char *arg)
{
struct name_id_map optype_namemap[] = {
{
"comp",
COMPRESS_ONLY
},
{
"decomp",
DECOMPRESS_ONLY
},
{
"comp_and_decomp",
COMPRESS_DECOMPRESS
}
};
int id = get_str_key_id_mapping(optype_namemap,
RTE_DIM(optype_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "Invalid operation type specified\n");
return -1;
}
test_data->test_op = (enum comp_operation)id;
return 0;
}
static int
parse_huffman_enc(struct comp_test_data *test_data, const char *arg)
{
struct name_id_map huffman_namemap[] = {
{
"default",
RTE_COMP_HUFFMAN_DEFAULT
},
{
"fixed",
RTE_COMP_HUFFMAN_FIXED
},
{
"dynamic",
RTE_COMP_HUFFMAN_DYNAMIC
}
};
int id = get_str_key_id_mapping(huffman_namemap,
RTE_DIM(huffman_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "Invalid Huffmane encoding specified\n");
return -1;
}
test_data->huffman_enc = (enum rte_comp_huffman)id;
return 0;
}
static int
parse_level(struct comp_test_data *test_data, const char *arg)
{
int ret;
/*
* Try parsing the argument as a range, if it fails,
* arse it as a list
*/
if (parse_range(arg, &test_data->level_lst.min,
&test_data->level_lst.max,
&test_data->level_lst.inc) < 0) {
ret = parse_list(arg, test_data->level_lst.list,
&test_data->level_lst.min,
&test_data->level_lst.max);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Failed to parse compression level/s\n");
return -1;
}
test_data->level_lst.count = ret;
if (test_data->level_lst.max > RTE_COMP_LEVEL_MAX) {
RTE_LOG(ERR, USER1, "Level cannot be higher than %u\n",
RTE_COMP_LEVEL_MAX);
return -1;
}
}
return 0;
}
static int
parse_external_mbufs(struct comp_test_data *test_data,
const char *arg __rte_unused)
{
test_data->use_external_mbufs = 1;
return 0;
}
static int
parse_cyclecount_delay_us(struct comp_test_data *test_data,
const char *arg)
{
int ret = parse_uint32_t(&(test_data->cyclecount_delay), arg);
if (ret) {
RTE_LOG(ERR, USER1, "Failed to parse cyclecount delay\n");
return -1;
}
return 0;
}
typedef int (*option_parser_t)(struct comp_test_data *test_data,
const char *arg);
struct long_opt_parser {
const char *lgopt_name;
option_parser_t parser_fn;
};
static struct option lgopts[] = {
{ CPERF_PTEST_TYPE, required_argument, 0, 0 },
{ CPERF_DRIVER_NAME, required_argument, 0, 0 },
{ CPERF_TEST_FILE, required_argument, 0, 0 },
{ CPERF_SEG_SIZE, required_argument, 0, 0 },
{ CPERF_BURST_SIZE, required_argument, 0, 0 },
{ CPERF_EXTENDED_SIZE, required_argument, 0, 0 },
{ CPERF_POOL_SIZE, required_argument, 0, 0 },
{ CPERF_MAX_SGL_SEGS, required_argument, 0, 0},
{ CPERF_NUM_ITER, required_argument, 0, 0 },
{ CPERF_OPTYPE, required_argument, 0, 0 },
{ CPERF_HUFFMAN_ENC, required_argument, 0, 0 },
{ CPERF_LEVEL, required_argument, 0, 0 },
{ CPERF_WINDOW_SIZE, required_argument, 0, 0 },
{ CPERF_EXTERNAL_MBUFS, 0, 0, 0 },
{ CPERF_CYCLECOUNT_DELAY_US, required_argument, 0, 0 },
{ NULL, 0, 0, 0 }
};
static int
comp_perf_opts_parse_long(int opt_idx, struct comp_test_data *test_data)
{
struct long_opt_parser parsermap[] = {
{ CPERF_PTEST_TYPE, parse_cperf_test_type },
{ CPERF_DRIVER_NAME, parse_driver_name },
{ CPERF_TEST_FILE, parse_test_file },
{ CPERF_SEG_SIZE, parse_seg_sz },
{ CPERF_BURST_SIZE, parse_burst_sz },
{ CPERF_EXTENDED_SIZE, parse_extended_input_sz },
{ CPERF_POOL_SIZE, parse_pool_sz },
{ CPERF_MAX_SGL_SEGS, parse_max_num_sgl_segs },
{ CPERF_NUM_ITER, parse_num_iter },
{ CPERF_OPTYPE, parse_op_type },
{ CPERF_HUFFMAN_ENC, parse_huffman_enc },
{ CPERF_LEVEL, parse_level },
{ CPERF_WINDOW_SIZE, parse_window_sz },
{ CPERF_EXTERNAL_MBUFS, parse_external_mbufs },
{ CPERF_CYCLECOUNT_DELAY_US, parse_cyclecount_delay_us },
};
unsigned int i;
for (i = 0; i < RTE_DIM(parsermap); i++) {
if (strncmp(lgopts[opt_idx].name, parsermap[i].lgopt_name,
strlen(lgopts[opt_idx].name)) == 0)
return parsermap[i].parser_fn(test_data, optarg);
}
return -EINVAL;
}
int
comp_perf_options_parse(struct comp_test_data *test_data, int argc, char **argv)
{
int opt, retval, opt_idx;
while ((opt = getopt_long(argc, argv, "h", lgopts, &opt_idx)) != EOF) {
switch (opt) {
case 'h':
usage(argv[0]);
rte_exit(EXIT_SUCCESS, "Displayed help\n");
break;
/* long options */
case 0:
retval = comp_perf_opts_parse_long(opt_idx, test_data);
if (retval != 0)
return retval;
break;
default:
usage(argv[0]);
return -EINVAL;
}
}
return 0;
}
void
comp_perf_options_default(struct comp_test_data *test_data)
{
test_data->seg_sz = 2048;
test_data->burst_sz = 32;
test_data->pool_sz = 8192;
test_data->max_sgl_segs = 16;
test_data->num_iter = 10000;
test_data->huffman_enc = RTE_COMP_HUFFMAN_DYNAMIC;
test_data->test_op = COMPRESS_DECOMPRESS;
test_data->window_sz = -1;
test_data->level_lst.min = RTE_COMP_LEVEL_MIN;
test_data->level_lst.max = RTE_COMP_LEVEL_MAX;
test_data->level_lst.inc = 1;
test_data->test = CPERF_TEST_TYPE_THROUGHPUT;
test_data->use_external_mbufs = 0;
test_data->cyclecount_delay = 500;
}
int
comp_perf_options_check(struct comp_test_data *test_data)
{
if (test_data->driver_name[0] == '\0') {
RTE_LOG(ERR, USER1, "Driver name has to be set\n");
return -1;
}
if (test_data->input_file[0] == '\0') {
RTE_LOG(ERR, USER1, "Input file name has to be set\n");
return -1;
}
return 0;
}