numam-dpdk/lib/librte_cryptodev/rte_cryptodev.c
Fan Zhang eb7eed345c cryptodev: add raw crypto datapath API
This patch adds raw data-path APIs for enqueue and dequeue
operations to cryptodev. The APIs support flexible user-define
enqueue and dequeue behaviors.

Signed-off-by: Fan Zhang <roy.fan.zhang@intel.com>
Signed-off-by: Piotr Bronowski <piotrx.bronowski@intel.com>
Acked-by: Adam Dybkowski <adamx.dybkowski@intel.com>
Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
2020-10-14 22:22:06 +02:00

2029 lines
47 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015-2020 Intel Corporation
*/
#include <sys/types.h>
#include <sys/queue.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <errno.h>
#include <stdint.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_dev.h>
#include <rte_interrupts.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_errno.h>
#include <rte_spinlock.h>
#include <rte_string_fns.h>
#include "rte_crypto.h"
#include "rte_cryptodev.h"
#include "rte_cryptodev_pmd.h"
#include "rte_cryptodev_trace.h"
static uint8_t nb_drivers;
static struct rte_cryptodev rte_crypto_devices[RTE_CRYPTO_MAX_DEVS];
struct rte_cryptodev *rte_cryptodevs = rte_crypto_devices;
static struct rte_cryptodev_global cryptodev_globals = {
.devs = rte_crypto_devices,
.data = { NULL },
.nb_devs = 0
};
/* spinlock for crypto device callbacks */
static rte_spinlock_t rte_cryptodev_cb_lock = RTE_SPINLOCK_INITIALIZER;
/**
* The user application callback description.
*
* It contains callback address to be registered by user application,
* the pointer to the parameters for callback, and the event type.
*/
struct rte_cryptodev_callback {
TAILQ_ENTRY(rte_cryptodev_callback) next; /**< Callbacks list */
rte_cryptodev_cb_fn cb_fn; /**< Callback address */
void *cb_arg; /**< Parameter for callback */
enum rte_cryptodev_event_type event; /**< Interrupt event type */
uint32_t active; /**< Callback is executing */
};
/**
* The crypto cipher algorithm strings identifiers.
* It could be used in application command line.
*/
const char *
rte_crypto_cipher_algorithm_strings[] = {
[RTE_CRYPTO_CIPHER_3DES_CBC] = "3des-cbc",
[RTE_CRYPTO_CIPHER_3DES_ECB] = "3des-ecb",
[RTE_CRYPTO_CIPHER_3DES_CTR] = "3des-ctr",
[RTE_CRYPTO_CIPHER_AES_CBC] = "aes-cbc",
[RTE_CRYPTO_CIPHER_AES_CTR] = "aes-ctr",
[RTE_CRYPTO_CIPHER_AES_DOCSISBPI] = "aes-docsisbpi",
[RTE_CRYPTO_CIPHER_AES_ECB] = "aes-ecb",
[RTE_CRYPTO_CIPHER_AES_F8] = "aes-f8",
[RTE_CRYPTO_CIPHER_AES_XTS] = "aes-xts",
[RTE_CRYPTO_CIPHER_ARC4] = "arc4",
[RTE_CRYPTO_CIPHER_DES_CBC] = "des-cbc",
[RTE_CRYPTO_CIPHER_DES_DOCSISBPI] = "des-docsisbpi",
[RTE_CRYPTO_CIPHER_NULL] = "null",
[RTE_CRYPTO_CIPHER_KASUMI_F8] = "kasumi-f8",
[RTE_CRYPTO_CIPHER_SNOW3G_UEA2] = "snow3g-uea2",
[RTE_CRYPTO_CIPHER_ZUC_EEA3] = "zuc-eea3"
};
/**
* The crypto cipher operation strings identifiers.
* It could be used in application command line.
*/
const char *
rte_crypto_cipher_operation_strings[] = {
[RTE_CRYPTO_CIPHER_OP_ENCRYPT] = "encrypt",
[RTE_CRYPTO_CIPHER_OP_DECRYPT] = "decrypt"
};
/**
* The crypto auth algorithm strings identifiers.
* It could be used in application command line.
*/
const char *
rte_crypto_auth_algorithm_strings[] = {
[RTE_CRYPTO_AUTH_AES_CBC_MAC] = "aes-cbc-mac",
[RTE_CRYPTO_AUTH_AES_CMAC] = "aes-cmac",
[RTE_CRYPTO_AUTH_AES_GMAC] = "aes-gmac",
[RTE_CRYPTO_AUTH_AES_XCBC_MAC] = "aes-xcbc-mac",
[RTE_CRYPTO_AUTH_MD5] = "md5",
[RTE_CRYPTO_AUTH_MD5_HMAC] = "md5-hmac",
[RTE_CRYPTO_AUTH_NULL] = "null",
[RTE_CRYPTO_AUTH_SHA1] = "sha1",
[RTE_CRYPTO_AUTH_SHA1_HMAC] = "sha1-hmac",
[RTE_CRYPTO_AUTH_SHA224] = "sha2-224",
[RTE_CRYPTO_AUTH_SHA224_HMAC] = "sha2-224-hmac",
[RTE_CRYPTO_AUTH_SHA256] = "sha2-256",
[RTE_CRYPTO_AUTH_SHA256_HMAC] = "sha2-256-hmac",
[RTE_CRYPTO_AUTH_SHA384] = "sha2-384",
[RTE_CRYPTO_AUTH_SHA384_HMAC] = "sha2-384-hmac",
[RTE_CRYPTO_AUTH_SHA512] = "sha2-512",
[RTE_CRYPTO_AUTH_SHA512_HMAC] = "sha2-512-hmac",
[RTE_CRYPTO_AUTH_KASUMI_F9] = "kasumi-f9",
[RTE_CRYPTO_AUTH_SNOW3G_UIA2] = "snow3g-uia2",
[RTE_CRYPTO_AUTH_ZUC_EIA3] = "zuc-eia3"
};
/**
* The crypto AEAD algorithm strings identifiers.
* It could be used in application command line.
*/
const char *
rte_crypto_aead_algorithm_strings[] = {
[RTE_CRYPTO_AEAD_AES_CCM] = "aes-ccm",
[RTE_CRYPTO_AEAD_AES_GCM] = "aes-gcm",
[RTE_CRYPTO_AEAD_CHACHA20_POLY1305] = "chacha20-poly1305"
};
/**
* The crypto AEAD operation strings identifiers.
* It could be used in application command line.
*/
const char *
rte_crypto_aead_operation_strings[] = {
[RTE_CRYPTO_AEAD_OP_ENCRYPT] = "encrypt",
[RTE_CRYPTO_AEAD_OP_DECRYPT] = "decrypt"
};
/**
* Asymmetric crypto transform operation strings identifiers.
*/
const char *rte_crypto_asym_xform_strings[] = {
[RTE_CRYPTO_ASYM_XFORM_NONE] = "none",
[RTE_CRYPTO_ASYM_XFORM_RSA] = "rsa",
[RTE_CRYPTO_ASYM_XFORM_MODEX] = "modexp",
[RTE_CRYPTO_ASYM_XFORM_MODINV] = "modinv",
[RTE_CRYPTO_ASYM_XFORM_DH] = "dh",
[RTE_CRYPTO_ASYM_XFORM_DSA] = "dsa",
[RTE_CRYPTO_ASYM_XFORM_ECDSA] = "ecdsa",
[RTE_CRYPTO_ASYM_XFORM_ECPM] = "ecpm",
};
/**
* Asymmetric crypto operation strings identifiers.
*/
const char *rte_crypto_asym_op_strings[] = {
[RTE_CRYPTO_ASYM_OP_ENCRYPT] = "encrypt",
[RTE_CRYPTO_ASYM_OP_DECRYPT] = "decrypt",
[RTE_CRYPTO_ASYM_OP_SIGN] = "sign",
[RTE_CRYPTO_ASYM_OP_VERIFY] = "verify",
[RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE] = "priv_key_generate",
[RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE] = "pub_key_generate",
[RTE_CRYPTO_ASYM_OP_SHARED_SECRET_COMPUTE] = "sharedsecret_compute",
};
/**
* The private data structure stored in the session mempool private data.
*/
struct rte_cryptodev_sym_session_pool_private_data {
uint16_t nb_drivers;
/**< number of elements in sess_data array */
uint16_t user_data_sz;
/**< session user data will be placed after sess_data */
};
int
rte_cryptodev_get_cipher_algo_enum(enum rte_crypto_cipher_algorithm *algo_enum,
const char *algo_string)
{
unsigned int i;
for (i = 1; i < RTE_DIM(rte_crypto_cipher_algorithm_strings); i++) {
if (strcmp(algo_string, rte_crypto_cipher_algorithm_strings[i]) == 0) {
*algo_enum = (enum rte_crypto_cipher_algorithm) i;
return 0;
}
}
/* Invalid string */
return -1;
}
int
rte_cryptodev_get_auth_algo_enum(enum rte_crypto_auth_algorithm *algo_enum,
const char *algo_string)
{
unsigned int i;
for (i = 1; i < RTE_DIM(rte_crypto_auth_algorithm_strings); i++) {
if (strcmp(algo_string, rte_crypto_auth_algorithm_strings[i]) == 0) {
*algo_enum = (enum rte_crypto_auth_algorithm) i;
return 0;
}
}
/* Invalid string */
return -1;
}
int
rte_cryptodev_get_aead_algo_enum(enum rte_crypto_aead_algorithm *algo_enum,
const char *algo_string)
{
unsigned int i;
for (i = 1; i < RTE_DIM(rte_crypto_aead_algorithm_strings); i++) {
if (strcmp(algo_string, rte_crypto_aead_algorithm_strings[i]) == 0) {
*algo_enum = (enum rte_crypto_aead_algorithm) i;
return 0;
}
}
/* Invalid string */
return -1;
}
int
rte_cryptodev_asym_get_xform_enum(enum rte_crypto_asym_xform_type *xform_enum,
const char *xform_string)
{
unsigned int i;
for (i = 1; i < RTE_DIM(rte_crypto_asym_xform_strings); i++) {
if (strcmp(xform_string,
rte_crypto_asym_xform_strings[i]) == 0) {
*xform_enum = (enum rte_crypto_asym_xform_type) i;
return 0;
}
}
/* Invalid string */
return -1;
}
/**
* The crypto auth operation strings identifiers.
* It could be used in application command line.
*/
const char *
rte_crypto_auth_operation_strings[] = {
[RTE_CRYPTO_AUTH_OP_VERIFY] = "verify",
[RTE_CRYPTO_AUTH_OP_GENERATE] = "generate"
};
const struct rte_cryptodev_symmetric_capability *
rte_cryptodev_sym_capability_get(uint8_t dev_id,
const struct rte_cryptodev_sym_capability_idx *idx)
{
const struct rte_cryptodev_capabilities *capability;
struct rte_cryptodev_info dev_info;
int i = 0;
rte_cryptodev_info_get(dev_id, &dev_info);
while ((capability = &dev_info.capabilities[i++])->op !=
RTE_CRYPTO_OP_TYPE_UNDEFINED) {
if (capability->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
continue;
if (capability->sym.xform_type != idx->type)
continue;
if (idx->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
capability->sym.auth.algo == idx->algo.auth)
return &capability->sym;
if (idx->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
capability->sym.cipher.algo == idx->algo.cipher)
return &capability->sym;
if (idx->type == RTE_CRYPTO_SYM_XFORM_AEAD &&
capability->sym.aead.algo == idx->algo.aead)
return &capability->sym;
}
return NULL;
}
static int
param_range_check(uint16_t size, const struct rte_crypto_param_range *range)
{
unsigned int next_size;
/* Check lower/upper bounds */
if (size < range->min)
return -1;
if (size > range->max)
return -1;
/* If range is actually only one value, size is correct */
if (range->increment == 0)
return 0;
/* Check if value is one of the supported sizes */
for (next_size = range->min; next_size <= range->max;
next_size += range->increment)
if (size == next_size)
return 0;
return -1;
}
const struct rte_cryptodev_asymmetric_xform_capability *
rte_cryptodev_asym_capability_get(uint8_t dev_id,
const struct rte_cryptodev_asym_capability_idx *idx)
{
const struct rte_cryptodev_capabilities *capability;
struct rte_cryptodev_info dev_info;
unsigned int i = 0;
memset(&dev_info, 0, sizeof(struct rte_cryptodev_info));
rte_cryptodev_info_get(dev_id, &dev_info);
while ((capability = &dev_info.capabilities[i++])->op !=
RTE_CRYPTO_OP_TYPE_UNDEFINED) {
if (capability->op != RTE_CRYPTO_OP_TYPE_ASYMMETRIC)
continue;
if (capability->asym.xform_capa.xform_type == idx->type)
return &capability->asym.xform_capa;
}
return NULL;
};
int
rte_cryptodev_sym_capability_check_cipher(
const struct rte_cryptodev_symmetric_capability *capability,
uint16_t key_size, uint16_t iv_size)
{
if (param_range_check(key_size, &capability->cipher.key_size) != 0)
return -1;
if (param_range_check(iv_size, &capability->cipher.iv_size) != 0)
return -1;
return 0;
}
int
rte_cryptodev_sym_capability_check_auth(
const struct rte_cryptodev_symmetric_capability *capability,
uint16_t key_size, uint16_t digest_size, uint16_t iv_size)
{
if (param_range_check(key_size, &capability->auth.key_size) != 0)
return -1;
if (param_range_check(digest_size, &capability->auth.digest_size) != 0)
return -1;
if (param_range_check(iv_size, &capability->auth.iv_size) != 0)
return -1;
return 0;
}
int
rte_cryptodev_sym_capability_check_aead(
const struct rte_cryptodev_symmetric_capability *capability,
uint16_t key_size, uint16_t digest_size, uint16_t aad_size,
uint16_t iv_size)
{
if (param_range_check(key_size, &capability->aead.key_size) != 0)
return -1;
if (param_range_check(digest_size, &capability->aead.digest_size) != 0)
return -1;
if (param_range_check(aad_size, &capability->aead.aad_size) != 0)
return -1;
if (param_range_check(iv_size, &capability->aead.iv_size) != 0)
return -1;
return 0;
}
int
rte_cryptodev_asym_xform_capability_check_optype(
const struct rte_cryptodev_asymmetric_xform_capability *capability,
enum rte_crypto_asym_op_type op_type)
{
if (capability->op_types & (1 << op_type))
return 1;
return 0;
}
int
rte_cryptodev_asym_xform_capability_check_modlen(
const struct rte_cryptodev_asymmetric_xform_capability *capability,
uint16_t modlen)
{
/* no need to check for limits, if min or max = 0 */
if (capability->modlen.min != 0) {
if (modlen < capability->modlen.min)
return -1;
}
if (capability->modlen.max != 0) {
if (modlen > capability->modlen.max)
return -1;
}
/* in any case, check if given modlen is module increment */
if (capability->modlen.increment != 0) {
if (modlen % (capability->modlen.increment))
return -1;
}
return 0;
}
const char *
rte_cryptodev_get_feature_name(uint64_t flag)
{
switch (flag) {
case RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO:
return "SYMMETRIC_CRYPTO";
case RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO:
return "ASYMMETRIC_CRYPTO";
case RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING:
return "SYM_OPERATION_CHAINING";
case RTE_CRYPTODEV_FF_CPU_SSE:
return "CPU_SSE";
case RTE_CRYPTODEV_FF_CPU_AVX:
return "CPU_AVX";
case RTE_CRYPTODEV_FF_CPU_AVX2:
return "CPU_AVX2";
case RTE_CRYPTODEV_FF_CPU_AVX512:
return "CPU_AVX512";
case RTE_CRYPTODEV_FF_CPU_AESNI:
return "CPU_AESNI";
case RTE_CRYPTODEV_FF_HW_ACCELERATED:
return "HW_ACCELERATED";
case RTE_CRYPTODEV_FF_IN_PLACE_SGL:
return "IN_PLACE_SGL";
case RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT:
return "OOP_SGL_IN_SGL_OUT";
case RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT:
return "OOP_SGL_IN_LB_OUT";
case RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT:
return "OOP_LB_IN_SGL_OUT";
case RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT:
return "OOP_LB_IN_LB_OUT";
case RTE_CRYPTODEV_FF_CPU_NEON:
return "CPU_NEON";
case RTE_CRYPTODEV_FF_CPU_ARM_CE:
return "CPU_ARM_CE";
case RTE_CRYPTODEV_FF_SECURITY:
return "SECURITY_PROTOCOL";
case RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_EXP:
return "RSA_PRIV_OP_KEY_EXP";
case RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT:
return "RSA_PRIV_OP_KEY_QT";
case RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED:
return "DIGEST_ENCRYPTED";
case RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO:
return "SYM_CPU_CRYPTO";
case RTE_CRYPTODEV_FF_ASYM_SESSIONLESS:
return "ASYM_SESSIONLESS";
case RTE_CRYPTODEV_FF_SYM_SESSIONLESS:
return "SYM_SESSIONLESS";
case RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA:
return "NON_BYTE_ALIGNED_DATA";
default:
return NULL;
}
}
struct rte_cryptodev *
rte_cryptodev_pmd_get_dev(uint8_t dev_id)
{
return &cryptodev_globals.devs[dev_id];
}
struct rte_cryptodev *
rte_cryptodev_pmd_get_named_dev(const char *name)
{
struct rte_cryptodev *dev;
unsigned int i;
if (name == NULL)
return NULL;
for (i = 0; i < RTE_CRYPTO_MAX_DEVS; i++) {
dev = &cryptodev_globals.devs[i];
if ((dev->attached == RTE_CRYPTODEV_ATTACHED) &&
(strcmp(dev->data->name, name) == 0))
return dev;
}
return NULL;
}
static inline uint8_t
rte_cryptodev_is_valid_device_data(uint8_t dev_id)
{
if (dev_id >= RTE_CRYPTO_MAX_DEVS ||
rte_crypto_devices[dev_id].data == NULL)
return 0;
return 1;
}
unsigned int
rte_cryptodev_pmd_is_valid_dev(uint8_t dev_id)
{
struct rte_cryptodev *dev = NULL;
if (!rte_cryptodev_is_valid_device_data(dev_id))
return 0;
dev = rte_cryptodev_pmd_get_dev(dev_id);
if (dev->attached != RTE_CRYPTODEV_ATTACHED)
return 0;
else
return 1;
}
int
rte_cryptodev_get_dev_id(const char *name)
{
unsigned i;
if (name == NULL)
return -1;
for (i = 0; i < RTE_CRYPTO_MAX_DEVS; i++) {
if (!rte_cryptodev_is_valid_device_data(i))
continue;
if ((strcmp(cryptodev_globals.devs[i].data->name, name)
== 0) &&
(cryptodev_globals.devs[i].attached ==
RTE_CRYPTODEV_ATTACHED))
return i;
}
return -1;
}
uint8_t
rte_cryptodev_count(void)
{
return cryptodev_globals.nb_devs;
}
uint8_t
rte_cryptodev_device_count_by_driver(uint8_t driver_id)
{
uint8_t i, dev_count = 0;
for (i = 0; i < RTE_CRYPTO_MAX_DEVS; i++)
if (cryptodev_globals.devs[i].driver_id == driver_id &&
cryptodev_globals.devs[i].attached ==
RTE_CRYPTODEV_ATTACHED)
dev_count++;
return dev_count;
}
uint8_t
rte_cryptodev_devices_get(const char *driver_name, uint8_t *devices,
uint8_t nb_devices)
{
uint8_t i, count = 0;
struct rte_cryptodev *devs = cryptodev_globals.devs;
for (i = 0; i < RTE_CRYPTO_MAX_DEVS && count < nb_devices; i++) {
if (!rte_cryptodev_is_valid_device_data(i))
continue;
if (devs[i].attached == RTE_CRYPTODEV_ATTACHED) {
int cmp;
cmp = strncmp(devs[i].device->driver->name,
driver_name,
strlen(driver_name) + 1);
if (cmp == 0)
devices[count++] = devs[i].data->dev_id;
}
}
return count;
}
void *
rte_cryptodev_get_sec_ctx(uint8_t dev_id)
{
if (dev_id < RTE_CRYPTO_MAX_DEVS &&
(rte_crypto_devices[dev_id].feature_flags &
RTE_CRYPTODEV_FF_SECURITY))
return rte_crypto_devices[dev_id].security_ctx;
return NULL;
}
int
rte_cryptodev_socket_id(uint8_t dev_id)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id))
return -1;
dev = rte_cryptodev_pmd_get_dev(dev_id);
return dev->data->socket_id;
}
static inline int
rte_cryptodev_data_alloc(uint8_t dev_id, struct rte_cryptodev_data **data,
int socket_id)
{
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
int n;
/* generate memzone name */
n = snprintf(mz_name, sizeof(mz_name), "rte_cryptodev_data_%u", dev_id);
if (n >= (int)sizeof(mz_name))
return -EINVAL;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
mz = rte_memzone_reserve(mz_name,
sizeof(struct rte_cryptodev_data),
socket_id, 0);
CDEV_LOG_DEBUG("PRIMARY:reserved memzone for %s (%p)",
mz_name, mz);
} else {
mz = rte_memzone_lookup(mz_name);
CDEV_LOG_DEBUG("SECONDARY:looked up memzone for %s (%p)",
mz_name, mz);
}
if (mz == NULL)
return -ENOMEM;
*data = mz->addr;
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
memset(*data, 0, sizeof(struct rte_cryptodev_data));
return 0;
}
static inline int
rte_cryptodev_data_free(uint8_t dev_id, struct rte_cryptodev_data **data)
{
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
int n;
/* generate memzone name */
n = snprintf(mz_name, sizeof(mz_name), "rte_cryptodev_data_%u", dev_id);
if (n >= (int)sizeof(mz_name))
return -EINVAL;
mz = rte_memzone_lookup(mz_name);
if (mz == NULL)
return -ENOMEM;
RTE_ASSERT(*data == mz->addr);
*data = NULL;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
CDEV_LOG_DEBUG("PRIMARY:free memzone of %s (%p)",
mz_name, mz);
return rte_memzone_free(mz);
} else {
CDEV_LOG_DEBUG("SECONDARY:don't free memzone of %s (%p)",
mz_name, mz);
}
return 0;
}
static uint8_t
rte_cryptodev_find_free_device_index(void)
{
uint8_t dev_id;
for (dev_id = 0; dev_id < RTE_CRYPTO_MAX_DEVS; dev_id++) {
if (rte_crypto_devices[dev_id].attached ==
RTE_CRYPTODEV_DETACHED)
return dev_id;
}
return RTE_CRYPTO_MAX_DEVS;
}
struct rte_cryptodev *
rte_cryptodev_pmd_allocate(const char *name, int socket_id)
{
struct rte_cryptodev *cryptodev;
uint8_t dev_id;
if (rte_cryptodev_pmd_get_named_dev(name) != NULL) {
CDEV_LOG_ERR("Crypto device with name %s already "
"allocated!", name);
return NULL;
}
dev_id = rte_cryptodev_find_free_device_index();
if (dev_id == RTE_CRYPTO_MAX_DEVS) {
CDEV_LOG_ERR("Reached maximum number of crypto devices");
return NULL;
}
cryptodev = rte_cryptodev_pmd_get_dev(dev_id);
if (cryptodev->data == NULL) {
struct rte_cryptodev_data **cryptodev_data =
&cryptodev_globals.data[dev_id];
int retval = rte_cryptodev_data_alloc(dev_id, cryptodev_data,
socket_id);
if (retval < 0 || *cryptodev_data == NULL)
return NULL;
cryptodev->data = *cryptodev_data;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
strlcpy(cryptodev->data->name, name,
RTE_CRYPTODEV_NAME_MAX_LEN);
cryptodev->data->dev_id = dev_id;
cryptodev->data->socket_id = socket_id;
cryptodev->data->dev_started = 0;
CDEV_LOG_DEBUG("PRIMARY:init data");
}
CDEV_LOG_DEBUG("Data for %s: dev_id %d, socket %d, started %d",
cryptodev->data->name,
cryptodev->data->dev_id,
cryptodev->data->socket_id,
cryptodev->data->dev_started);
/* init user callbacks */
TAILQ_INIT(&(cryptodev->link_intr_cbs));
cryptodev->attached = RTE_CRYPTODEV_ATTACHED;
cryptodev_globals.nb_devs++;
}
return cryptodev;
}
int
rte_cryptodev_pmd_release_device(struct rte_cryptodev *cryptodev)
{
int ret;
uint8_t dev_id;
if (cryptodev == NULL)
return -EINVAL;
dev_id = cryptodev->data->dev_id;
/* Close device only if device operations have been set */
if (cryptodev->dev_ops) {
ret = rte_cryptodev_close(dev_id);
if (ret < 0)
return ret;
}
ret = rte_cryptodev_data_free(dev_id, &cryptodev_globals.data[dev_id]);
if (ret < 0)
return ret;
cryptodev->attached = RTE_CRYPTODEV_DETACHED;
cryptodev_globals.nb_devs--;
return 0;
}
uint16_t
rte_cryptodev_queue_pair_count(uint8_t dev_id)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_is_valid_device_data(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return 0;
}
dev = &rte_crypto_devices[dev_id];
return dev->data->nb_queue_pairs;
}
static int
rte_cryptodev_queue_pairs_config(struct rte_cryptodev *dev, uint16_t nb_qpairs,
int socket_id)
{
struct rte_cryptodev_info dev_info;
void **qp;
unsigned i;
if ((dev == NULL) || (nb_qpairs < 1)) {
CDEV_LOG_ERR("invalid param: dev %p, nb_queues %u",
dev, nb_qpairs);
return -EINVAL;
}
CDEV_LOG_DEBUG("Setup %d queues pairs on device %u",
nb_qpairs, dev->data->dev_id);
memset(&dev_info, 0, sizeof(struct rte_cryptodev_info));
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->dev_infos_get, -ENOTSUP);
(*dev->dev_ops->dev_infos_get)(dev, &dev_info);
if (nb_qpairs > (dev_info.max_nb_queue_pairs)) {
CDEV_LOG_ERR("Invalid num queue_pairs (%u) for dev %u",
nb_qpairs, dev->data->dev_id);
return -EINVAL;
}
if (dev->data->queue_pairs == NULL) { /* first time configuration */
dev->data->queue_pairs = rte_zmalloc_socket(
"cryptodev->queue_pairs",
sizeof(dev->data->queue_pairs[0]) * nb_qpairs,
RTE_CACHE_LINE_SIZE, socket_id);
if (dev->data->queue_pairs == NULL) {
dev->data->nb_queue_pairs = 0;
CDEV_LOG_ERR("failed to get memory for qp meta data, "
"nb_queues %u",
nb_qpairs);
return -(ENOMEM);
}
} else { /* re-configure */
int ret;
uint16_t old_nb_queues = dev->data->nb_queue_pairs;
qp = dev->data->queue_pairs;
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->queue_pair_release,
-ENOTSUP);
for (i = nb_qpairs; i < old_nb_queues; i++) {
ret = (*dev->dev_ops->queue_pair_release)(dev, i);
if (ret < 0)
return ret;
}
qp = rte_realloc(qp, sizeof(qp[0]) * nb_qpairs,
RTE_CACHE_LINE_SIZE);
if (qp == NULL) {
CDEV_LOG_ERR("failed to realloc qp meta data,"
" nb_queues %u", nb_qpairs);
return -(ENOMEM);
}
if (nb_qpairs > old_nb_queues) {
uint16_t new_qs = nb_qpairs - old_nb_queues;
memset(qp + old_nb_queues, 0,
sizeof(qp[0]) * new_qs);
}
dev->data->queue_pairs = qp;
}
dev->data->nb_queue_pairs = nb_qpairs;
return 0;
}
int
rte_cryptodev_configure(uint8_t dev_id, struct rte_cryptodev_config *config)
{
struct rte_cryptodev *dev;
int diag;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return -EINVAL;
}
dev = &rte_crypto_devices[dev_id];
if (dev->data->dev_started) {
CDEV_LOG_ERR(
"device %d must be stopped to allow configuration", dev_id);
return -EBUSY;
}
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->dev_configure, -ENOTSUP);
/* Setup new number of queue pairs and reconfigure device. */
diag = rte_cryptodev_queue_pairs_config(dev, config->nb_queue_pairs,
config->socket_id);
if (diag != 0) {
CDEV_LOG_ERR("dev%d rte_crypto_dev_queue_pairs_config = %d",
dev_id, diag);
return diag;
}
rte_cryptodev_trace_configure(dev_id, config);
return (*dev->dev_ops->dev_configure)(dev, config);
}
int
rte_cryptodev_start(uint8_t dev_id)
{
struct rte_cryptodev *dev;
int diag;
CDEV_LOG_DEBUG("Start dev_id=%" PRIu8, dev_id);
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return -EINVAL;
}
dev = &rte_crypto_devices[dev_id];
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->dev_start, -ENOTSUP);
if (dev->data->dev_started != 0) {
CDEV_LOG_ERR("Device with dev_id=%" PRIu8 " already started",
dev_id);
return 0;
}
diag = (*dev->dev_ops->dev_start)(dev);
rte_cryptodev_trace_start(dev_id, diag);
if (diag == 0)
dev->data->dev_started = 1;
else
return diag;
return 0;
}
void
rte_cryptodev_stop(uint8_t dev_id)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return;
}
dev = &rte_crypto_devices[dev_id];
RTE_FUNC_PTR_OR_RET(*dev->dev_ops->dev_stop);
if (dev->data->dev_started == 0) {
CDEV_LOG_ERR("Device with dev_id=%" PRIu8 " already stopped",
dev_id);
return;
}
(*dev->dev_ops->dev_stop)(dev);
rte_cryptodev_trace_stop(dev_id);
dev->data->dev_started = 0;
}
int
rte_cryptodev_close(uint8_t dev_id)
{
struct rte_cryptodev *dev;
int retval;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return -1;
}
dev = &rte_crypto_devices[dev_id];
/* Device must be stopped before it can be closed */
if (dev->data->dev_started == 1) {
CDEV_LOG_ERR("Device %u must be stopped before closing",
dev_id);
return -EBUSY;
}
/* We can't close the device if there are outstanding sessions in use */
if (dev->data->session_pool != NULL) {
if (!rte_mempool_full(dev->data->session_pool)) {
CDEV_LOG_ERR("dev_id=%u close failed, session mempool "
"has sessions still in use, free "
"all sessions before calling close",
(unsigned)dev_id);
return -EBUSY;
}
}
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->dev_close, -ENOTSUP);
retval = (*dev->dev_ops->dev_close)(dev);
rte_cryptodev_trace_close(dev_id, retval);
if (retval < 0)
return retval;
return 0;
}
int
rte_cryptodev_get_qp_status(uint8_t dev_id, uint16_t queue_pair_id)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return -EINVAL;
}
dev = &rte_crypto_devices[dev_id];
if (queue_pair_id >= dev->data->nb_queue_pairs) {
CDEV_LOG_ERR("Invalid queue_pair_id=%d", queue_pair_id);
return -EINVAL;
}
void **qps = dev->data->queue_pairs;
if (qps[queue_pair_id]) {
CDEV_LOG_DEBUG("qp %d on dev %d is initialised",
queue_pair_id, dev_id);
return 1;
}
CDEV_LOG_DEBUG("qp %d on dev %d is not initialised",
queue_pair_id, dev_id);
return 0;
}
int
rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
const struct rte_cryptodev_qp_conf *qp_conf, int socket_id)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return -EINVAL;
}
dev = &rte_crypto_devices[dev_id];
if (queue_pair_id >= dev->data->nb_queue_pairs) {
CDEV_LOG_ERR("Invalid queue_pair_id=%d", queue_pair_id);
return -EINVAL;
}
if (!qp_conf) {
CDEV_LOG_ERR("qp_conf cannot be NULL\n");
return -EINVAL;
}
if ((qp_conf->mp_session && !qp_conf->mp_session_private) ||
(!qp_conf->mp_session && qp_conf->mp_session_private)) {
CDEV_LOG_ERR("Invalid mempools\n");
return -EINVAL;
}
if (qp_conf->mp_session) {
struct rte_cryptodev_sym_session_pool_private_data *pool_priv;
uint32_t obj_size = qp_conf->mp_session->elt_size;
uint32_t obj_priv_size = qp_conf->mp_session_private->elt_size;
struct rte_cryptodev_sym_session s = {0};
pool_priv = rte_mempool_get_priv(qp_conf->mp_session);
if (!pool_priv || qp_conf->mp_session->private_data_size <
sizeof(*pool_priv)) {
CDEV_LOG_ERR("Invalid mempool\n");
return -EINVAL;
}
s.nb_drivers = pool_priv->nb_drivers;
s.user_data_sz = pool_priv->user_data_sz;
if ((rte_cryptodev_sym_get_existing_header_session_size(&s) >
obj_size) || (s.nb_drivers <= dev->driver_id) ||
rte_cryptodev_sym_get_private_session_size(dev_id) >
obj_priv_size) {
CDEV_LOG_ERR("Invalid mempool\n");
return -EINVAL;
}
}
if (dev->data->dev_started) {
CDEV_LOG_ERR(
"device %d must be stopped to allow configuration", dev_id);
return -EBUSY;
}
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->queue_pair_setup, -ENOTSUP);
rte_cryptodev_trace_queue_pair_setup(dev_id, queue_pair_id, qp_conf);
return (*dev->dev_ops->queue_pair_setup)(dev, queue_pair_id, qp_conf,
socket_id);
}
int
rte_cryptodev_stats_get(uint8_t dev_id, struct rte_cryptodev_stats *stats)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%d", dev_id);
return -ENODEV;
}
if (stats == NULL) {
CDEV_LOG_ERR("Invalid stats ptr");
return -EINVAL;
}
dev = &rte_crypto_devices[dev_id];
memset(stats, 0, sizeof(*stats));
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->stats_get, -ENOTSUP);
(*dev->dev_ops->stats_get)(dev, stats);
return 0;
}
void
rte_cryptodev_stats_reset(uint8_t dev_id)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return;
}
dev = &rte_crypto_devices[dev_id];
RTE_FUNC_PTR_OR_RET(*dev->dev_ops->stats_reset);
(*dev->dev_ops->stats_reset)(dev);
}
void
rte_cryptodev_info_get(uint8_t dev_id, struct rte_cryptodev_info *dev_info)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%d", dev_id);
return;
}
dev = &rte_crypto_devices[dev_id];
memset(dev_info, 0, sizeof(struct rte_cryptodev_info));
RTE_FUNC_PTR_OR_RET(*dev->dev_ops->dev_infos_get);
(*dev->dev_ops->dev_infos_get)(dev, dev_info);
dev_info->driver_name = dev->device->driver->name;
dev_info->device = dev->device;
}
int
rte_cryptodev_callback_register(uint8_t dev_id,
enum rte_cryptodev_event_type event,
rte_cryptodev_cb_fn cb_fn, void *cb_arg)
{
struct rte_cryptodev *dev;
struct rte_cryptodev_callback *user_cb;
if (!cb_fn)
return -EINVAL;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return -EINVAL;
}
dev = &rte_crypto_devices[dev_id];
rte_spinlock_lock(&rte_cryptodev_cb_lock);
TAILQ_FOREACH(user_cb, &(dev->link_intr_cbs), next) {
if (user_cb->cb_fn == cb_fn &&
user_cb->cb_arg == cb_arg &&
user_cb->event == event) {
break;
}
}
/* create a new callback. */
if (user_cb == NULL) {
user_cb = rte_zmalloc("INTR_USER_CALLBACK",
sizeof(struct rte_cryptodev_callback), 0);
if (user_cb != NULL) {
user_cb->cb_fn = cb_fn;
user_cb->cb_arg = cb_arg;
user_cb->event = event;
TAILQ_INSERT_TAIL(&(dev->link_intr_cbs), user_cb, next);
}
}
rte_spinlock_unlock(&rte_cryptodev_cb_lock);
return (user_cb == NULL) ? -ENOMEM : 0;
}
int
rte_cryptodev_callback_unregister(uint8_t dev_id,
enum rte_cryptodev_event_type event,
rte_cryptodev_cb_fn cb_fn, void *cb_arg)
{
int ret;
struct rte_cryptodev *dev;
struct rte_cryptodev_callback *cb, *next;
if (!cb_fn)
return -EINVAL;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return -EINVAL;
}
dev = &rte_crypto_devices[dev_id];
rte_spinlock_lock(&rte_cryptodev_cb_lock);
ret = 0;
for (cb = TAILQ_FIRST(&dev->link_intr_cbs); cb != NULL; cb = next) {
next = TAILQ_NEXT(cb, next);
if (cb->cb_fn != cb_fn || cb->event != event ||
(cb->cb_arg != (void *)-1 &&
cb->cb_arg != cb_arg))
continue;
/*
* if this callback is not executing right now,
* then remove it.
*/
if (cb->active == 0) {
TAILQ_REMOVE(&(dev->link_intr_cbs), cb, next);
rte_free(cb);
} else {
ret = -EAGAIN;
}
}
rte_spinlock_unlock(&rte_cryptodev_cb_lock);
return ret;
}
void
rte_cryptodev_pmd_callback_process(struct rte_cryptodev *dev,
enum rte_cryptodev_event_type event)
{
struct rte_cryptodev_callback *cb_lst;
struct rte_cryptodev_callback dev_cb;
rte_spinlock_lock(&rte_cryptodev_cb_lock);
TAILQ_FOREACH(cb_lst, &(dev->link_intr_cbs), next) {
if (cb_lst->cb_fn == NULL || cb_lst->event != event)
continue;
dev_cb = *cb_lst;
cb_lst->active = 1;
rte_spinlock_unlock(&rte_cryptodev_cb_lock);
dev_cb.cb_fn(dev->data->dev_id, dev_cb.event,
dev_cb.cb_arg);
rte_spinlock_lock(&rte_cryptodev_cb_lock);
cb_lst->active = 0;
}
rte_spinlock_unlock(&rte_cryptodev_cb_lock);
}
int
rte_cryptodev_sym_session_init(uint8_t dev_id,
struct rte_cryptodev_sym_session *sess,
struct rte_crypto_sym_xform *xforms,
struct rte_mempool *mp)
{
struct rte_cryptodev *dev;
uint32_t sess_priv_sz = rte_cryptodev_sym_get_private_session_size(
dev_id);
uint8_t index;
int ret;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return -EINVAL;
}
dev = rte_cryptodev_pmd_get_dev(dev_id);
if (sess == NULL || xforms == NULL || dev == NULL || mp == NULL)
return -EINVAL;
if (mp->elt_size < sess_priv_sz)
return -EINVAL;
index = dev->driver_id;
if (index >= sess->nb_drivers)
return -EINVAL;
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->sym_session_configure, -ENOTSUP);
if (sess->sess_data[index].refcnt == 0) {
ret = dev->dev_ops->sym_session_configure(dev, xforms,
sess, mp);
if (ret < 0) {
CDEV_LOG_ERR(
"dev_id %d failed to configure session details",
dev_id);
return ret;
}
}
rte_cryptodev_trace_sym_session_init(dev_id, sess, xforms, mp);
sess->sess_data[index].refcnt++;
return 0;
}
int
rte_cryptodev_asym_session_init(uint8_t dev_id,
struct rte_cryptodev_asym_session *sess,
struct rte_crypto_asym_xform *xforms,
struct rte_mempool *mp)
{
struct rte_cryptodev *dev;
uint8_t index;
int ret;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return -EINVAL;
}
dev = rte_cryptodev_pmd_get_dev(dev_id);
if (sess == NULL || xforms == NULL || dev == NULL)
return -EINVAL;
index = dev->driver_id;
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->asym_session_configure,
-ENOTSUP);
if (sess->sess_private_data[index] == NULL) {
ret = dev->dev_ops->asym_session_configure(dev,
xforms,
sess, mp);
if (ret < 0) {
CDEV_LOG_ERR(
"dev_id %d failed to configure session details",
dev_id);
return ret;
}
}
rte_cryptodev_trace_asym_session_init(dev_id, sess, xforms, mp);
return 0;
}
struct rte_mempool *
rte_cryptodev_sym_session_pool_create(const char *name, uint32_t nb_elts,
uint32_t elt_size, uint32_t cache_size, uint16_t user_data_size,
int socket_id)
{
struct rte_mempool *mp;
struct rte_cryptodev_sym_session_pool_private_data *pool_priv;
uint32_t obj_sz;
obj_sz = rte_cryptodev_sym_get_header_session_size() + user_data_size;
if (obj_sz > elt_size)
CDEV_LOG_INFO("elt_size %u is expanded to %u\n", elt_size,
obj_sz);
else
obj_sz = elt_size;
mp = rte_mempool_create(name, nb_elts, obj_sz, cache_size,
(uint32_t)(sizeof(*pool_priv)),
NULL, NULL, NULL, NULL,
socket_id, 0);
if (mp == NULL) {
CDEV_LOG_ERR("%s(name=%s) failed, rte_errno=%d\n",
__func__, name, rte_errno);
return NULL;
}
pool_priv = rte_mempool_get_priv(mp);
if (!pool_priv) {
CDEV_LOG_ERR("%s(name=%s) failed to get private data\n",
__func__, name);
rte_mempool_free(mp);
return NULL;
}
pool_priv->nb_drivers = nb_drivers;
pool_priv->user_data_sz = user_data_size;
rte_cryptodev_trace_sym_session_pool_create(name, nb_elts,
elt_size, cache_size, user_data_size, mp);
return mp;
}
static unsigned int
rte_cryptodev_sym_session_data_size(struct rte_cryptodev_sym_session *sess)
{
return (sizeof(sess->sess_data[0]) * sess->nb_drivers) +
sess->user_data_sz;
}
static uint8_t
rte_cryptodev_sym_is_valid_session_pool(struct rte_mempool *mp)
{
struct rte_cryptodev_sym_session_pool_private_data *pool_priv;
if (!mp)
return 0;
pool_priv = rte_mempool_get_priv(mp);
if (!pool_priv || mp->private_data_size < sizeof(*pool_priv) ||
pool_priv->nb_drivers != nb_drivers ||
mp->elt_size <
rte_cryptodev_sym_get_header_session_size()
+ pool_priv->user_data_sz)
return 0;
return 1;
}
struct rte_cryptodev_sym_session *
rte_cryptodev_sym_session_create(struct rte_mempool *mp)
{
struct rte_cryptodev_sym_session *sess;
struct rte_cryptodev_sym_session_pool_private_data *pool_priv;
if (!rte_cryptodev_sym_is_valid_session_pool(mp)) {
CDEV_LOG_ERR("Invalid mempool\n");
return NULL;
}
pool_priv = rte_mempool_get_priv(mp);
/* Allocate a session structure from the session pool */
if (rte_mempool_get(mp, (void **)&sess)) {
CDEV_LOG_ERR("couldn't get object from session mempool");
return NULL;
}
sess->nb_drivers = pool_priv->nb_drivers;
sess->user_data_sz = pool_priv->user_data_sz;
sess->opaque_data = 0;
/* Clear device session pointer.
* Include the flag indicating presence of user data
*/
memset(sess->sess_data, 0,
rte_cryptodev_sym_session_data_size(sess));
rte_cryptodev_trace_sym_session_create(mp, sess);
return sess;
}
struct rte_cryptodev_asym_session *
rte_cryptodev_asym_session_create(struct rte_mempool *mp)
{
struct rte_cryptodev_asym_session *sess;
unsigned int session_size =
rte_cryptodev_asym_get_header_session_size();
if (!mp) {
CDEV_LOG_ERR("invalid mempool\n");
return NULL;
}
/* Verify if provided mempool can hold elements big enough. */
if (mp->elt_size < session_size) {
CDEV_LOG_ERR(
"mempool elements too small to hold session objects");
return NULL;
}
/* Allocate a session structure from the session pool */
if (rte_mempool_get(mp, (void **)&sess)) {
CDEV_LOG_ERR("couldn't get object from session mempool");
return NULL;
}
/* Clear device session pointer.
* Include the flag indicating presence of private data
*/
memset(sess, 0, session_size);
rte_cryptodev_trace_asym_session_create(mp, sess);
return sess;
}
int
rte_cryptodev_sym_session_clear(uint8_t dev_id,
struct rte_cryptodev_sym_session *sess)
{
struct rte_cryptodev *dev;
uint8_t driver_id;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return -EINVAL;
}
dev = rte_cryptodev_pmd_get_dev(dev_id);
if (dev == NULL || sess == NULL)
return -EINVAL;
driver_id = dev->driver_id;
if (sess->sess_data[driver_id].refcnt == 0)
return 0;
if (--sess->sess_data[driver_id].refcnt != 0)
return -EBUSY;
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->sym_session_clear, -ENOTSUP);
dev->dev_ops->sym_session_clear(dev, sess);
rte_cryptodev_trace_sym_session_clear(dev_id, sess);
return 0;
}
int
rte_cryptodev_asym_session_clear(uint8_t dev_id,
struct rte_cryptodev_asym_session *sess)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return -EINVAL;
}
dev = rte_cryptodev_pmd_get_dev(dev_id);
if (dev == NULL || sess == NULL)
return -EINVAL;
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->asym_session_clear, -ENOTSUP);
dev->dev_ops->asym_session_clear(dev, sess);
rte_cryptodev_trace_sym_session_clear(dev_id, sess);
return 0;
}
int
rte_cryptodev_sym_session_free(struct rte_cryptodev_sym_session *sess)
{
uint8_t i;
struct rte_mempool *sess_mp;
if (sess == NULL)
return -EINVAL;
/* Check that all device private data has been freed */
for (i = 0; i < sess->nb_drivers; i++) {
if (sess->sess_data[i].refcnt != 0)
return -EBUSY;
}
/* Return session to mempool */
sess_mp = rte_mempool_from_obj(sess);
rte_mempool_put(sess_mp, sess);
rte_cryptodev_trace_sym_session_free(sess);
return 0;
}
int
rte_cryptodev_asym_session_free(struct rte_cryptodev_asym_session *sess)
{
uint8_t i;
void *sess_priv;
struct rte_mempool *sess_mp;
if (sess == NULL)
return -EINVAL;
/* Check that all device private data has been freed */
for (i = 0; i < nb_drivers; i++) {
sess_priv = get_asym_session_private_data(sess, i);
if (sess_priv != NULL)
return -EBUSY;
}
/* Return session to mempool */
sess_mp = rte_mempool_from_obj(sess);
rte_mempool_put(sess_mp, sess);
rte_cryptodev_trace_asym_session_free(sess);
return 0;
}
unsigned int
rte_cryptodev_sym_get_header_session_size(void)
{
/*
* Header contains pointers to the private data of all registered
* drivers and all necessary information to ensure safely clear
* or free al session.
*/
struct rte_cryptodev_sym_session s = {0};
s.nb_drivers = nb_drivers;
return (unsigned int)(sizeof(s) +
rte_cryptodev_sym_session_data_size(&s));
}
unsigned int
rte_cryptodev_sym_get_existing_header_session_size(
struct rte_cryptodev_sym_session *sess)
{
if (!sess)
return 0;
else
return (unsigned int)(sizeof(*sess) +
rte_cryptodev_sym_session_data_size(sess));
}
unsigned int
rte_cryptodev_asym_get_header_session_size(void)
{
/*
* Header contains pointers to the private data
* of all registered drivers, and a flag which
* indicates presence of private data
*/
return ((sizeof(void *) * nb_drivers) + sizeof(uint8_t));
}
unsigned int
rte_cryptodev_sym_get_private_session_size(uint8_t dev_id)
{
struct rte_cryptodev *dev;
unsigned int priv_sess_size;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id))
return 0;
dev = rte_cryptodev_pmd_get_dev(dev_id);
if (*dev->dev_ops->sym_session_get_size == NULL)
return 0;
priv_sess_size = (*dev->dev_ops->sym_session_get_size)(dev);
return priv_sess_size;
}
unsigned int
rte_cryptodev_asym_get_private_session_size(uint8_t dev_id)
{
struct rte_cryptodev *dev;
unsigned int header_size = sizeof(void *) * nb_drivers;
unsigned int priv_sess_size;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id))
return 0;
dev = rte_cryptodev_pmd_get_dev(dev_id);
if (*dev->dev_ops->asym_session_get_size == NULL)
return 0;
priv_sess_size = (*dev->dev_ops->asym_session_get_size)(dev);
if (priv_sess_size < header_size)
return header_size;
return priv_sess_size;
}
int
rte_cryptodev_sym_session_set_user_data(
struct rte_cryptodev_sym_session *sess,
void *data,
uint16_t size)
{
if (sess == NULL)
return -EINVAL;
if (sess->user_data_sz < size)
return -ENOMEM;
rte_memcpy(sess->sess_data + sess->nb_drivers, data, size);
return 0;
}
void *
rte_cryptodev_sym_session_get_user_data(
struct rte_cryptodev_sym_session *sess)
{
if (sess == NULL || sess->user_data_sz == 0)
return NULL;
return (void *)(sess->sess_data + sess->nb_drivers);
}
static inline void
sym_crypto_fill_status(struct rte_crypto_sym_vec *vec, int32_t errnum)
{
uint32_t i;
for (i = 0; i < vec->num; i++)
vec->status[i] = errnum;
}
uint32_t
rte_cryptodev_sym_cpu_crypto_process(uint8_t dev_id,
struct rte_cryptodev_sym_session *sess, union rte_crypto_sym_ofs ofs,
struct rte_crypto_sym_vec *vec)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id)) {
sym_crypto_fill_status(vec, EINVAL);
return 0;
}
dev = rte_cryptodev_pmd_get_dev(dev_id);
if (*dev->dev_ops->sym_cpu_process == NULL ||
!(dev->feature_flags & RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO)) {
sym_crypto_fill_status(vec, ENOTSUP);
return 0;
}
return dev->dev_ops->sym_cpu_process(dev, sess, ofs, vec);
}
int
rte_cryptodev_get_raw_dp_ctx_size(uint8_t dev_id)
{
struct rte_cryptodev *dev;
int32_t size = sizeof(struct rte_crypto_raw_dp_ctx);
int32_t priv_size;
if (!rte_cryptodev_pmd_is_valid_dev(dev_id))
return -EINVAL;
dev = rte_cryptodev_pmd_get_dev(dev_id);
if (*dev->dev_ops->sym_get_raw_dp_ctx_size == NULL ||
!(dev->feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP)) {
return -ENOTSUP;
}
priv_size = (*dev->dev_ops->sym_get_raw_dp_ctx_size)(dev);
if (priv_size < 0)
return -ENOTSUP;
return RTE_ALIGN_CEIL((size + priv_size), 8);
}
int
rte_cryptodev_configure_raw_dp_ctx(uint8_t dev_id, uint16_t qp_id,
struct rte_crypto_raw_dp_ctx *ctx,
enum rte_crypto_op_sess_type sess_type,
union rte_cryptodev_session_ctx session_ctx,
uint8_t is_update)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_get_qp_status(dev_id, qp_id))
return -EINVAL;
dev = rte_cryptodev_pmd_get_dev(dev_id);
if (!(dev->feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP)
|| dev->dev_ops->sym_configure_raw_dp_ctx == NULL)
return -ENOTSUP;
return (*dev->dev_ops->sym_configure_raw_dp_ctx)(dev, qp_id, ctx,
sess_type, session_ctx, is_update);
}
uint32_t
rte_cryptodev_raw_enqueue_burst(struct rte_crypto_raw_dp_ctx *ctx,
struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs,
void **user_data, int *enqueue_status)
{
return (*ctx->enqueue_burst)(ctx->qp_data, ctx->drv_ctx_data, vec,
ofs, user_data, enqueue_status);
}
int
rte_cryptodev_raw_enqueue_done(struct rte_crypto_raw_dp_ctx *ctx,
uint32_t n)
{
return (*ctx->enqueue_done)(ctx->qp_data, ctx->drv_ctx_data, n);
}
uint32_t
rte_cryptodev_raw_dequeue_burst(struct rte_crypto_raw_dp_ctx *ctx,
rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count,
rte_cryptodev_raw_post_dequeue_t post_dequeue,
void **out_user_data, uint8_t is_user_data_array,
uint32_t *n_success_jobs, int *status)
{
return (*ctx->dequeue_burst)(ctx->qp_data, ctx->drv_ctx_data,
get_dequeue_count, post_dequeue, out_user_data,
is_user_data_array, n_success_jobs, status);
}
int
rte_cryptodev_raw_dequeue_done(struct rte_crypto_raw_dp_ctx *ctx,
uint32_t n)
{
return (*ctx->dequeue_done)(ctx->qp_data, ctx->drv_ctx_data, n);
}
/** Initialise rte_crypto_op mempool element */
static void
rte_crypto_op_init(struct rte_mempool *mempool,
void *opaque_arg,
void *_op_data,
__rte_unused unsigned i)
{
struct rte_crypto_op *op = _op_data;
enum rte_crypto_op_type type = *(enum rte_crypto_op_type *)opaque_arg;
memset(_op_data, 0, mempool->elt_size);
__rte_crypto_op_reset(op, type);
op->phys_addr = rte_mem_virt2iova(_op_data);
op->mempool = mempool;
}
struct rte_mempool *
rte_crypto_op_pool_create(const char *name, enum rte_crypto_op_type type,
unsigned nb_elts, unsigned cache_size, uint16_t priv_size,
int socket_id)
{
struct rte_crypto_op_pool_private *priv;
unsigned elt_size = sizeof(struct rte_crypto_op) +
priv_size;
if (type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
elt_size += sizeof(struct rte_crypto_sym_op);
} else if (type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC) {
elt_size += sizeof(struct rte_crypto_asym_op);
} else if (type == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
elt_size += RTE_MAX(sizeof(struct rte_crypto_sym_op),
sizeof(struct rte_crypto_asym_op));
} else {
CDEV_LOG_ERR("Invalid op_type\n");
return NULL;
}
/* lookup mempool in case already allocated */
struct rte_mempool *mp = rte_mempool_lookup(name);
if (mp != NULL) {
priv = (struct rte_crypto_op_pool_private *)
rte_mempool_get_priv(mp);
if (mp->elt_size != elt_size ||
mp->cache_size < cache_size ||
mp->size < nb_elts ||
priv->priv_size < priv_size) {
mp = NULL;
CDEV_LOG_ERR("Mempool %s already exists but with "
"incompatible parameters", name);
return NULL;
}
return mp;
}
mp = rte_mempool_create(
name,
nb_elts,
elt_size,
cache_size,
sizeof(struct rte_crypto_op_pool_private),
NULL,
NULL,
rte_crypto_op_init,
&type,
socket_id,
0);
if (mp == NULL) {
CDEV_LOG_ERR("Failed to create mempool %s", name);
return NULL;
}
priv = (struct rte_crypto_op_pool_private *)
rte_mempool_get_priv(mp);
priv->priv_size = priv_size;
priv->type = type;
return mp;
}
int
rte_cryptodev_pmd_create_dev_name(char *name, const char *dev_name_prefix)
{
struct rte_cryptodev *dev = NULL;
uint32_t i = 0;
if (name == NULL)
return -EINVAL;
for (i = 0; i < RTE_CRYPTO_MAX_DEVS; i++) {
int ret = snprintf(name, RTE_CRYPTODEV_NAME_MAX_LEN,
"%s_%u", dev_name_prefix, i);
if (ret < 0)
return ret;
dev = rte_cryptodev_pmd_get_named_dev(name);
if (!dev)
return 0;
}
return -1;
}
TAILQ_HEAD(cryptodev_driver_list, cryptodev_driver);
static struct cryptodev_driver_list cryptodev_driver_list =
TAILQ_HEAD_INITIALIZER(cryptodev_driver_list);
int
rte_cryptodev_driver_id_get(const char *name)
{
struct cryptodev_driver *driver;
const char *driver_name;
if (name == NULL) {
RTE_LOG(DEBUG, CRYPTODEV, "name pointer NULL");
return -1;
}
TAILQ_FOREACH(driver, &cryptodev_driver_list, next) {
driver_name = driver->driver->name;
if (strncmp(driver_name, name, strlen(driver_name) + 1) == 0)
return driver->id;
}
return -1;
}
const char *
rte_cryptodev_name_get(uint8_t dev_id)
{
struct rte_cryptodev *dev;
if (!rte_cryptodev_is_valid_device_data(dev_id)) {
CDEV_LOG_ERR("Invalid dev_id=%" PRIu8, dev_id);
return NULL;
}
dev = rte_cryptodev_pmd_get_dev(dev_id);
if (dev == NULL)
return NULL;
return dev->data->name;
}
const char *
rte_cryptodev_driver_name_get(uint8_t driver_id)
{
struct cryptodev_driver *driver;
TAILQ_FOREACH(driver, &cryptodev_driver_list, next)
if (driver->id == driver_id)
return driver->driver->name;
return NULL;
}
uint8_t
rte_cryptodev_allocate_driver(struct cryptodev_driver *crypto_drv,
const struct rte_driver *drv)
{
crypto_drv->driver = drv;
crypto_drv->id = nb_drivers;
TAILQ_INSERT_TAIL(&cryptodev_driver_list, crypto_drv, next);
return nb_drivers++;
}