numam-dpdk/lib/librte_ether/rte_flow.h
Olivier Matz 32fa181c54 ethdev: use SPDX tags in 6WIND copyrighted files
Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
2018-02-01 02:32:52 +01:00

1484 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2016 6WIND S.A.
* Copyright 2016 Mellanox.
*/
#ifndef RTE_FLOW_H_
#define RTE_FLOW_H_
/**
* @file
* RTE generic flow API
*
* This interface provides the ability to program packet matching and
* associated actions in hardware through flow rules.
*/
#include <rte_arp.h>
#include <rte_ether.h>
#include <rte_icmp.h>
#include <rte_ip.h>
#include <rte_sctp.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_byteorder.h>
#include <rte_esp.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* Flow rule attributes.
*
* Priorities are set on two levels: per group and per rule within groups.
*
* Lower values denote higher priority, the highest priority for both levels
* is 0, so that a rule with priority 0 in group 8 is always matched after a
* rule with priority 8 in group 0.
*
* Although optional, applications are encouraged to group similar rules as
* much as possible to fully take advantage of hardware capabilities
* (e.g. optimized matching) and work around limitations (e.g. a single
* pattern type possibly allowed in a given group).
*
* Group and priority levels are arbitrary and up to the application, they
* do not need to be contiguous nor start from 0, however the maximum number
* varies between devices and may be affected by existing flow rules.
*
* If a packet is matched by several rules of a given group for a given
* priority level, the outcome is undefined. It can take any path, may be
* duplicated or even cause unrecoverable errors.
*
* Note that support for more than a single group and priority level is not
* guaranteed.
*
* Flow rules can apply to inbound and/or outbound traffic (ingress/egress).
*
* Several pattern items and actions are valid and can be used in both
* directions. Those valid for only one direction are described as such.
*
* At least one direction must be specified.
*
* Specifying both directions at once for a given rule is not recommended
* but may be valid in a few cases (e.g. shared counter).
*/
struct rte_flow_attr {
uint32_t group; /**< Priority group. */
uint32_t priority; /**< Priority level within group. */
uint32_t ingress:1; /**< Rule applies to ingress traffic. */
uint32_t egress:1; /**< Rule applies to egress traffic. */
uint32_t reserved:30; /**< Reserved, must be zero. */
};
/**
* Matching pattern item types.
*
* Pattern items fall in two categories:
*
* - Matching protocol headers and packet data (ANY, RAW, ETH, VLAN, IPV4,
* IPV6, ICMP, UDP, TCP, SCTP, VXLAN and so on), usually associated with a
* specification structure. These must be stacked in the same order as the
* protocol layers to match, starting from the lowest.
*
* - Matching meta-data or affecting pattern processing (END, VOID, INVERT,
* PF, VF, PORT and so on), often without a specification structure. Since
* they do not match packet contents, these can be specified anywhere
* within item lists without affecting others.
*
* See the description of individual types for more information. Those
* marked with [META] fall into the second category.
*/
enum rte_flow_item_type {
/**
* [META]
*
* End marker for item lists. Prevents further processing of items,
* thereby ending the pattern.
*
* No associated specification structure.
*/
RTE_FLOW_ITEM_TYPE_END,
/**
* [META]
*
* Used as a placeholder for convenience. It is ignored and simply
* discarded by PMDs.
*
* No associated specification structure.
*/
RTE_FLOW_ITEM_TYPE_VOID,
/**
* [META]
*
* Inverted matching, i.e. process packets that do not match the
* pattern.
*
* No associated specification structure.
*/
RTE_FLOW_ITEM_TYPE_INVERT,
/**
* Matches any protocol in place of the current layer, a single ANY
* may also stand for several protocol layers.
*
* See struct rte_flow_item_any.
*/
RTE_FLOW_ITEM_TYPE_ANY,
/**
* [META]
*
* Matches packets addressed to the physical function of the device.
*
* If the underlying device function differs from the one that would
* normally receive the matched traffic, specifying this item
* prevents it from reaching that device unless the flow rule
* contains a PF action. Packets are not duplicated between device
* instances by default.
*
* No associated specification structure.
*/
RTE_FLOW_ITEM_TYPE_PF,
/**
* [META]
*
* Matches packets addressed to a virtual function ID of the device.
*
* If the underlying device function differs from the one that would
* normally receive the matched traffic, specifying this item
* prevents it from reaching that device unless the flow rule
* contains a VF action. Packets are not duplicated between device
* instances by default.
*
* See struct rte_flow_item_vf.
*/
RTE_FLOW_ITEM_TYPE_VF,
/**
* [META]
*
* Matches packets coming from the specified physical port of the
* underlying device.
*
* The first PORT item overrides the physical port normally
* associated with the specified DPDK input port (port_id). This
* item can be provided several times to match additional physical
* ports.
*
* See struct rte_flow_item_port.
*/
RTE_FLOW_ITEM_TYPE_PORT,
/**
* Matches a byte string of a given length at a given offset.
*
* See struct rte_flow_item_raw.
*/
RTE_FLOW_ITEM_TYPE_RAW,
/**
* Matches an Ethernet header.
*
* See struct rte_flow_item_eth.
*/
RTE_FLOW_ITEM_TYPE_ETH,
/**
* Matches an 802.1Q/ad VLAN tag.
*
* See struct rte_flow_item_vlan.
*/
RTE_FLOW_ITEM_TYPE_VLAN,
/**
* Matches an IPv4 header.
*
* See struct rte_flow_item_ipv4.
*/
RTE_FLOW_ITEM_TYPE_IPV4,
/**
* Matches an IPv6 header.
*
* See struct rte_flow_item_ipv6.
*/
RTE_FLOW_ITEM_TYPE_IPV6,
/**
* Matches an ICMP header.
*
* See struct rte_flow_item_icmp.
*/
RTE_FLOW_ITEM_TYPE_ICMP,
/**
* Matches a UDP header.
*
* See struct rte_flow_item_udp.
*/
RTE_FLOW_ITEM_TYPE_UDP,
/**
* Matches a TCP header.
*
* See struct rte_flow_item_tcp.
*/
RTE_FLOW_ITEM_TYPE_TCP,
/**
* Matches a SCTP header.
*
* See struct rte_flow_item_sctp.
*/
RTE_FLOW_ITEM_TYPE_SCTP,
/**
* Matches a VXLAN header.
*
* See struct rte_flow_item_vxlan.
*/
RTE_FLOW_ITEM_TYPE_VXLAN,
/**
* Matches a E_TAG header.
*
* See struct rte_flow_item_e_tag.
*/
RTE_FLOW_ITEM_TYPE_E_TAG,
/**
* Matches a NVGRE header.
*
* See struct rte_flow_item_nvgre.
*/
RTE_FLOW_ITEM_TYPE_NVGRE,
/**
* Matches a MPLS header.
*
* See struct rte_flow_item_mpls.
*/
RTE_FLOW_ITEM_TYPE_MPLS,
/**
* Matches a GRE header.
*
* See struct rte_flow_item_gre.
*/
RTE_FLOW_ITEM_TYPE_GRE,
/**
* [META]
*
* Fuzzy pattern match, expect faster than default.
*
* This is for device that support fuzzy matching option.
* Usually a fuzzy matching is fast but the cost is accuracy.
*
* See struct rte_flow_item_fuzzy.
*/
RTE_FLOW_ITEM_TYPE_FUZZY,
/**
* Matches a GTP header.
*
* Configure flow for GTP packets.
*
* See struct rte_flow_item_gtp.
*/
RTE_FLOW_ITEM_TYPE_GTP,
/**
* Matches a GTP header.
*
* Configure flow for GTP-C packets.
*
* See struct rte_flow_item_gtp.
*/
RTE_FLOW_ITEM_TYPE_GTPC,
/**
* Matches a GTP header.
*
* Configure flow for GTP-U packets.
*
* See struct rte_flow_item_gtp.
*/
RTE_FLOW_ITEM_TYPE_GTPU,
/**
* Matches a ESP header.
*
* See struct rte_flow_item_esp.
*/
RTE_FLOW_ITEM_TYPE_ESP,
/**
* Matches a GENEVE header.
*
* See struct rte_flow_item_geneve.
*/
RTE_FLOW_ITEM_TYPE_GENEVE,
};
/**
* RTE_FLOW_ITEM_TYPE_ANY
*
* Matches any protocol in place of the current layer, a single ANY may also
* stand for several protocol layers.
*
* This is usually specified as the first pattern item when looking for a
* protocol anywhere in a packet.
*
* A zeroed mask stands for any number of layers.
*/
struct rte_flow_item_any {
uint32_t num; /**< Number of layers covered. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_ANY. */
#ifndef __cplusplus
static const struct rte_flow_item_any rte_flow_item_any_mask = {
.num = 0x00000000,
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_VF
*
* Matches packets addressed to a virtual function ID of the device.
*
* If the underlying device function differs from the one that would
* normally receive the matched traffic, specifying this item prevents it
* from reaching that device unless the flow rule contains a VF
* action. Packets are not duplicated between device instances by default.
*
* - Likely to return an error or never match any traffic if this causes a
* VF device to match traffic addressed to a different VF.
* - Can be specified multiple times to match traffic addressed to several
* VF IDs.
* - Can be combined with a PF item to match both PF and VF traffic.
*
* A zeroed mask can be used to match any VF ID.
*/
struct rte_flow_item_vf {
uint32_t id; /**< Destination VF ID. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_VF. */
#ifndef __cplusplus
static const struct rte_flow_item_vf rte_flow_item_vf_mask = {
.id = 0x00000000,
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_PORT
*
* Matches packets coming from the specified physical port of the underlying
* device.
*
* The first PORT item overrides the physical port normally associated with
* the specified DPDK input port (port_id). This item can be provided
* several times to match additional physical ports.
*
* Note that physical ports are not necessarily tied to DPDK input ports
* (port_id) when those are not under DPDK control. Possible values are
* specific to each device, they are not necessarily indexed from zero and
* may not be contiguous.
*
* As a device property, the list of allowed values as well as the value
* associated with a port_id should be retrieved by other means.
*
* A zeroed mask can be used to match any port index.
*/
struct rte_flow_item_port {
uint32_t index; /**< Physical port index. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_PORT. */
#ifndef __cplusplus
static const struct rte_flow_item_port rte_flow_item_port_mask = {
.index = 0x00000000,
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_RAW
*
* Matches a byte string of a given length at a given offset.
*
* Offset is either absolute (using the start of the packet) or relative to
* the end of the previous matched item in the stack, in which case negative
* values are allowed.
*
* If search is enabled, offset is used as the starting point. The search
* area can be delimited by setting limit to a nonzero value, which is the
* maximum number of bytes after offset where the pattern may start.
*
* Matching a zero-length pattern is allowed, doing so resets the relative
* offset for subsequent items.
*
* This type does not support ranges (struct rte_flow_item.last).
*/
struct rte_flow_item_raw {
uint32_t relative:1; /**< Look for pattern after the previous item. */
uint32_t search:1; /**< Search pattern from offset (see also limit). */
uint32_t reserved:30; /**< Reserved, must be set to zero. */
int32_t offset; /**< Absolute or relative offset for pattern. */
uint16_t limit; /**< Search area limit for start of pattern. */
uint16_t length; /**< Pattern length. */
uint8_t pattern[]; /**< Byte string to look for. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_RAW. */
#ifndef __cplusplus
static const struct rte_flow_item_raw rte_flow_item_raw_mask = {
.relative = 1,
.search = 1,
.reserved = 0x3fffffff,
.offset = 0xffffffff,
.limit = 0xffff,
.length = 0xffff,
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_ETH
*
* Matches an Ethernet header.
*/
struct rte_flow_item_eth {
struct ether_addr dst; /**< Destination MAC. */
struct ether_addr src; /**< Source MAC. */
rte_be16_t type; /**< EtherType. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_ETH. */
#ifndef __cplusplus
static const struct rte_flow_item_eth rte_flow_item_eth_mask = {
.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
.type = RTE_BE16(0x0000),
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_VLAN
*
* Matches an 802.1Q/ad VLAN tag.
*
* This type normally follows either RTE_FLOW_ITEM_TYPE_ETH or
* RTE_FLOW_ITEM_TYPE_VLAN.
*/
struct rte_flow_item_vlan {
rte_be16_t tpid; /**< Tag protocol identifier. */
rte_be16_t tci; /**< Tag control information. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_VLAN. */
#ifndef __cplusplus
static const struct rte_flow_item_vlan rte_flow_item_vlan_mask = {
.tpid = RTE_BE16(0x0000),
.tci = RTE_BE16(0xffff),
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_IPV4
*
* Matches an IPv4 header.
*
* Note: IPv4 options are handled by dedicated pattern items.
*/
struct rte_flow_item_ipv4 {
struct ipv4_hdr hdr; /**< IPv4 header definition. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_IPV4. */
#ifndef __cplusplus
static const struct rte_flow_item_ipv4 rte_flow_item_ipv4_mask = {
.hdr = {
.src_addr = RTE_BE32(0xffffffff),
.dst_addr = RTE_BE32(0xffffffff),
},
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_IPV6.
*
* Matches an IPv6 header.
*
* Note: IPv6 options are handled by dedicated pattern items.
*/
struct rte_flow_item_ipv6 {
struct ipv6_hdr hdr; /**< IPv6 header definition. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_IPV6. */
#ifndef __cplusplus
static const struct rte_flow_item_ipv6 rte_flow_item_ipv6_mask = {
.hdr = {
.src_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
.dst_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
},
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_ICMP.
*
* Matches an ICMP header.
*/
struct rte_flow_item_icmp {
struct icmp_hdr hdr; /**< ICMP header definition. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_ICMP. */
#ifndef __cplusplus
static const struct rte_flow_item_icmp rte_flow_item_icmp_mask = {
.hdr = {
.icmp_type = 0xff,
.icmp_code = 0xff,
},
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_UDP.
*
* Matches a UDP header.
*/
struct rte_flow_item_udp {
struct udp_hdr hdr; /**< UDP header definition. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_UDP. */
#ifndef __cplusplus
static const struct rte_flow_item_udp rte_flow_item_udp_mask = {
.hdr = {
.src_port = RTE_BE16(0xffff),
.dst_port = RTE_BE16(0xffff),
},
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_TCP.
*
* Matches a TCP header.
*/
struct rte_flow_item_tcp {
struct tcp_hdr hdr; /**< TCP header definition. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_TCP. */
#ifndef __cplusplus
static const struct rte_flow_item_tcp rte_flow_item_tcp_mask = {
.hdr = {
.src_port = RTE_BE16(0xffff),
.dst_port = RTE_BE16(0xffff),
},
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_SCTP.
*
* Matches a SCTP header.
*/
struct rte_flow_item_sctp {
struct sctp_hdr hdr; /**< SCTP header definition. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_SCTP. */
#ifndef __cplusplus
static const struct rte_flow_item_sctp rte_flow_item_sctp_mask = {
.hdr = {
.src_port = RTE_BE16(0xffff),
.dst_port = RTE_BE16(0xffff),
},
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_VXLAN.
*
* Matches a VXLAN header (RFC 7348).
*/
struct rte_flow_item_vxlan {
uint8_t flags; /**< Normally 0x08 (I flag). */
uint8_t rsvd0[3]; /**< Reserved, normally 0x000000. */
uint8_t vni[3]; /**< VXLAN identifier. */
uint8_t rsvd1; /**< Reserved, normally 0x00. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_VXLAN. */
#ifndef __cplusplus
static const struct rte_flow_item_vxlan rte_flow_item_vxlan_mask = {
.vni = "\xff\xff\xff",
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_E_TAG.
*
* Matches a E-tag header.
*/
struct rte_flow_item_e_tag {
rte_be16_t tpid; /**< Tag protocol identifier (0x893F). */
/**
* E-Tag control information (E-TCI).
* E-PCP (3b), E-DEI (1b), ingress E-CID base (12b).
*/
rte_be16_t epcp_edei_in_ecid_b;
/** Reserved (2b), GRP (2b), E-CID base (12b). */
rte_be16_t rsvd_grp_ecid_b;
uint8_t in_ecid_e; /**< Ingress E-CID ext. */
uint8_t ecid_e; /**< E-CID ext. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_E_TAG. */
#ifndef __cplusplus
static const struct rte_flow_item_e_tag rte_flow_item_e_tag_mask = {
.rsvd_grp_ecid_b = RTE_BE16(0x3fff),
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_NVGRE.
*
* Matches a NVGRE header.
*/
struct rte_flow_item_nvgre {
/**
* Checksum (1b), undefined (1b), key bit (1b), sequence number (1b),
* reserved 0 (9b), version (3b).
*
* c_k_s_rsvd0_ver must have value 0x2000 according to RFC 7637.
*/
rte_be16_t c_k_s_rsvd0_ver;
rte_be16_t protocol; /**< Protocol type (0x6558). */
uint8_t tni[3]; /**< Virtual subnet ID. */
uint8_t flow_id; /**< Flow ID. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_NVGRE. */
#ifndef __cplusplus
static const struct rte_flow_item_nvgre rte_flow_item_nvgre_mask = {
.tni = "\xff\xff\xff",
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_MPLS.
*
* Matches a MPLS header.
*/
struct rte_flow_item_mpls {
/**
* Label (20b), TC (3b), Bottom of Stack (1b).
*/
uint8_t label_tc_s[3];
uint8_t ttl; /** Time-to-Live. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_MPLS. */
#ifndef __cplusplus
static const struct rte_flow_item_mpls rte_flow_item_mpls_mask = {
.label_tc_s = "\xff\xff\xf0",
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_GRE.
*
* Matches a GRE header.
*/
struct rte_flow_item_gre {
/**
* Checksum (1b), reserved 0 (12b), version (3b).
* Refer to RFC 2784.
*/
rte_be16_t c_rsvd0_ver;
rte_be16_t protocol; /**< Protocol type. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_GRE. */
#ifndef __cplusplus
static const struct rte_flow_item_gre rte_flow_item_gre_mask = {
.protocol = RTE_BE16(0xffff),
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_FUZZY
*
* Fuzzy pattern match, expect faster than default.
*
* This is for device that support fuzzy match option.
* Usually a fuzzy match is fast but the cost is accuracy.
* i.e. Signature Match only match pattern's hash value, but it is
* possible two different patterns have the same hash value.
*
* Matching accuracy level can be configure by threshold.
* Driver can divide the range of threshold and map to different
* accuracy levels that device support.
*
* Threshold 0 means perfect match (no fuzziness), while threshold
* 0xffffffff means fuzziest match.
*/
struct rte_flow_item_fuzzy {
uint32_t thresh; /**< Accuracy threshold. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_FUZZY. */
#ifndef __cplusplus
static const struct rte_flow_item_fuzzy rte_flow_item_fuzzy_mask = {
.thresh = 0xffffffff,
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_GTP.
*
* Matches a GTPv1 header.
*/
struct rte_flow_item_gtp {
/**
* Version (3b), protocol type (1b), reserved (1b),
* Extension header flag (1b),
* Sequence number flag (1b),
* N-PDU number flag (1b).
*/
uint8_t v_pt_rsv_flags;
uint8_t msg_type; /**< Message type. */
rte_be16_t msg_len; /**< Message length. */
rte_be32_t teid; /**< Tunnel endpoint identifier. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_GTP. */
#ifndef __cplusplus
static const struct rte_flow_item_gtp rte_flow_item_gtp_mask = {
.teid = RTE_BE32(0xffffffff),
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_ESP
*
* Matches an ESP header.
*/
struct rte_flow_item_esp {
struct esp_hdr hdr; /**< ESP header definition. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_ESP. */
#ifndef __cplusplus
static const struct rte_flow_item_esp rte_flow_item_esp_mask = {
.hdr = {
.spi = 0xffffffff,
},
};
#endif
/**
* RTE_FLOW_ITEM_TYPE_GENEVE.
*
* Matches a GENEVE header.
*/
struct rte_flow_item_geneve {
/**
* Version (2b), length of the options fields (6b), OAM packet (1b),
* critical options present (1b), reserved 0 (6b).
*/
rte_be16_t ver_opt_len_o_c_rsvd0;
rte_be16_t protocol; /**< Protocol type. */
uint8_t vni[3]; /**< Virtual Network Identifier. */
uint8_t rsvd1; /**< Reserved, normally 0x00. */
};
/** Default mask for RTE_FLOW_ITEM_TYPE_GENEVE. */
#ifndef __cplusplus
static const struct rte_flow_item_geneve rte_flow_item_geneve_mask = {
.vni = "\xff\xff\xff",
};
#endif
/**
* Matching pattern item definition.
*
* A pattern is formed by stacking items starting from the lowest protocol
* layer to match. This stacking restriction does not apply to meta items
* which can be placed anywhere in the stack without affecting the meaning
* of the resulting pattern.
*
* Patterns are terminated by END items.
*
* The spec field should be a valid pointer to a structure of the related
* item type. It may remain unspecified (NULL) in many cases to request
* broad (nonspecific) matching. In such cases, last and mask must also be
* set to NULL.
*
* Optionally, last can point to a structure of the same type to define an
* inclusive range. This is mostly supported by integer and address fields,
* may cause errors otherwise. Fields that do not support ranges must be set
* to 0 or to the same value as the corresponding fields in spec.
*
* Only the fields defined to nonzero values in the default masks (see
* rte_flow_item_{name}_mask constants) are considered relevant by
* default. This can be overridden by providing a mask structure of the
* same type with applicable bits set to one. It can also be used to
* partially filter out specific fields (e.g. as an alternate mean to match
* ranges of IP addresses).
*
* Mask is a simple bit-mask applied before interpreting the contents of
* spec and last, which may yield unexpected results if not used
* carefully. For example, if for an IPv4 address field, spec provides
* 10.1.2.3, last provides 10.3.4.5 and mask provides 255.255.0.0, the
* effective range becomes 10.1.0.0 to 10.3.255.255.
*/
struct rte_flow_item {
enum rte_flow_item_type type; /**< Item type. */
const void *spec; /**< Pointer to item specification structure. */
const void *last; /**< Defines an inclusive range (spec to last). */
const void *mask; /**< Bit-mask applied to spec and last. */
};
/**
* Action types.
*
* Each possible action is represented by a type. Some have associated
* configuration structures. Several actions combined in a list can be
* affected to a flow rule. That list is not ordered.
*
* They fall in three categories:
*
* - Terminating actions (such as QUEUE, DROP, RSS, PF, VF) that prevent
* processing matched packets by subsequent flow rules, unless overridden
* with PASSTHRU.
*
* - Non terminating actions (PASSTHRU, DUP) that leave matched packets up
* for additional processing by subsequent flow rules.
*
* - Other non terminating meta actions that do not affect the fate of
* packets (END, VOID, MARK, FLAG, COUNT).
*
* When several actions are combined in a flow rule, they should all have
* different types (e.g. dropping a packet twice is not possible).
*
* Only the last action of a given type is taken into account. PMDs still
* perform error checking on the entire list.
*
* Note that PASSTHRU is the only action able to override a terminating
* rule.
*/
enum rte_flow_action_type {
/**
* [META]
*
* End marker for action lists. Prevents further processing of
* actions, thereby ending the list.
*
* No associated configuration structure.
*/
RTE_FLOW_ACTION_TYPE_END,
/**
* [META]
*
* Used as a placeholder for convenience. It is ignored and simply
* discarded by PMDs.
*
* No associated configuration structure.
*/
RTE_FLOW_ACTION_TYPE_VOID,
/**
* Leaves packets up for additional processing by subsequent flow
* rules. This is the default when a rule does not contain a
* terminating action, but can be specified to force a rule to
* become non-terminating.
*
* No associated configuration structure.
*/
RTE_FLOW_ACTION_TYPE_PASSTHRU,
/**
* [META]
*
* Attaches an integer value to packets and sets PKT_RX_FDIR and
* PKT_RX_FDIR_ID mbuf flags.
*
* See struct rte_flow_action_mark.
*/
RTE_FLOW_ACTION_TYPE_MARK,
/**
* [META]
*
* Flags packets. Similar to MARK without a specific value; only
* sets the PKT_RX_FDIR mbuf flag.
*
* No associated configuration structure.
*/
RTE_FLOW_ACTION_TYPE_FLAG,
/**
* Assigns packets to a given queue index.
*
* See struct rte_flow_action_queue.
*/
RTE_FLOW_ACTION_TYPE_QUEUE,
/**
* Drops packets.
*
* PASSTHRU overrides this action if both are specified.
*
* No associated configuration structure.
*/
RTE_FLOW_ACTION_TYPE_DROP,
/**
* [META]
*
* Enables counters for this rule.
*
* These counters can be retrieved and reset through rte_flow_query(),
* see struct rte_flow_query_count.
*
* No associated configuration structure.
*/
RTE_FLOW_ACTION_TYPE_COUNT,
/**
* Duplicates packets to a given queue index.
*
* This is normally combined with QUEUE, however when used alone, it
* is actually similar to QUEUE + PASSTHRU.
*
* See struct rte_flow_action_dup.
*/
RTE_FLOW_ACTION_TYPE_DUP,
/**
* Similar to QUEUE, except RSS is additionally performed on packets
* to spread them among several queues according to the provided
* parameters.
*
* See struct rte_flow_action_rss.
*/
RTE_FLOW_ACTION_TYPE_RSS,
/**
* Redirects packets to the physical function (PF) of the current
* device.
*
* No associated configuration structure.
*/
RTE_FLOW_ACTION_TYPE_PF,
/**
* Redirects packets to the virtual function (VF) of the current
* device with the specified ID.
*
* See struct rte_flow_action_vf.
*/
RTE_FLOW_ACTION_TYPE_VF,
/**
* Traffic metering and policing (MTR).
*
* See struct rte_flow_action_meter.
* See file rte_mtr.h for MTR object configuration.
*/
RTE_FLOW_ACTION_TYPE_METER,
/**
* Redirects packets to security engine of current device for security
* processing as specified by security session.
*
* See struct rte_flow_action_security.
*/
RTE_FLOW_ACTION_TYPE_SECURITY
};
/**
* RTE_FLOW_ACTION_TYPE_MARK
*
* Attaches an integer value to packets and sets PKT_RX_FDIR and
* PKT_RX_FDIR_ID mbuf flags.
*
* This value is arbitrary and application-defined. Maximum allowed value
* depends on the underlying implementation. It is returned in the
* hash.fdir.hi mbuf field.
*/
struct rte_flow_action_mark {
uint32_t id; /**< Integer value to return with packets. */
};
/**
* RTE_FLOW_ACTION_TYPE_QUEUE
*
* Assign packets to a given queue index.
*
* Terminating by default.
*/
struct rte_flow_action_queue {
uint16_t index; /**< Queue index to use. */
};
/**
* RTE_FLOW_ACTION_TYPE_COUNT (query)
*
* Query structure to retrieve and reset flow rule counters.
*/
struct rte_flow_query_count {
uint32_t reset:1; /**< Reset counters after query [in]. */
uint32_t hits_set:1; /**< hits field is set [out]. */
uint32_t bytes_set:1; /**< bytes field is set [out]. */
uint32_t reserved:29; /**< Reserved, must be zero [in, out]. */
uint64_t hits; /**< Number of hits for this rule [out]. */
uint64_t bytes; /**< Number of bytes through this rule [out]. */
};
/**
* RTE_FLOW_ACTION_TYPE_DUP
*
* Duplicates packets to a given queue index.
*
* This is normally combined with QUEUE, however when used alone, it is
* actually similar to QUEUE + PASSTHRU.
*
* Non-terminating by default.
*/
struct rte_flow_action_dup {
uint16_t index; /**< Queue index to duplicate packets to. */
};
/**
* RTE_FLOW_ACTION_TYPE_RSS
*
* Similar to QUEUE, except RSS is additionally performed on packets to
* spread them among several queues according to the provided parameters.
*
* Note: RSS hash result is stored in the hash.rss mbuf field which overlaps
* hash.fdir.lo. Since the MARK action sets the hash.fdir.hi field only,
* both can be requested simultaneously.
*
* Terminating by default.
*/
struct rte_flow_action_rss {
const struct rte_eth_rss_conf *rss_conf; /**< RSS parameters. */
uint16_t num; /**< Number of entries in queue[]. */
uint16_t queue[]; /**< Queues indices to use. */
};
/**
* RTE_FLOW_ACTION_TYPE_VF
*
* Redirects packets to a virtual function (VF) of the current device.
*
* Packets matched by a VF pattern item can be redirected to their original
* VF ID instead of the specified one. This parameter may not be available
* and is not guaranteed to work properly if the VF part is matched by a
* prior flow rule or if packets are not addressed to a VF in the first
* place.
*
* Terminating by default.
*/
struct rte_flow_action_vf {
uint32_t original:1; /**< Use original VF ID if possible. */
uint32_t reserved:31; /**< Reserved, must be zero. */
uint32_t id; /**< VF ID to redirect packets to. */
};
/**
* RTE_FLOW_ACTION_TYPE_METER
*
* Traffic metering and policing (MTR).
*
* Packets matched by items of this type can be either dropped or passed to the
* next item with their color set by the MTR object.
*
* Non-terminating by default.
*/
struct rte_flow_action_meter {
uint32_t mtr_id; /**< MTR object ID created with rte_mtr_create(). */
};
/**
* RTE_FLOW_ACTION_TYPE_SECURITY
*
* Perform the security action on flows matched by the pattern items
* according to the configuration of the security session.
*
* This action modifies the payload of matched flows. For INLINE_CRYPTO, the
* security protocol headers and IV are fully provided by the application as
* specified in the flow pattern. The payload of matching packets is
* encrypted on egress, and decrypted and authenticated on ingress.
* For INLINE_PROTOCOL, the security protocol is fully offloaded to HW,
* providing full encapsulation and decapsulation of packets in security
* protocols. The flow pattern specifies both the outer security header fields
* and the inner packet fields. The security session specified in the action
* must match the pattern parameters.
*
* The security session specified in the action must be created on the same
* port as the flow action that is being specified.
*
* The ingress/egress flow attribute should match that specified in the
* security session if the security session supports the definition of the
* direction.
*
* Multiple flows can be configured to use the same security session.
*
* Non-terminating by default.
*/
struct rte_flow_action_security {
void *security_session; /**< Pointer to security session structure. */
};
/**
* Definition of a single action.
*
* A list of actions is terminated by a END action.
*
* For simple actions without a configuration structure, conf remains NULL.
*/
struct rte_flow_action {
enum rte_flow_action_type type; /**< Action type. */
const void *conf; /**< Pointer to action configuration structure. */
};
/**
* Opaque type returned after successfully creating a flow.
*
* This handle can be used to manage and query the related flow (e.g. to
* destroy it or retrieve counters).
*/
struct rte_flow;
/**
* Verbose error types.
*
* Most of them provide the type of the object referenced by struct
* rte_flow_error.cause.
*/
enum rte_flow_error_type {
RTE_FLOW_ERROR_TYPE_NONE, /**< No error. */
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, /**< Cause unspecified. */
RTE_FLOW_ERROR_TYPE_HANDLE, /**< Flow rule (handle). */
RTE_FLOW_ERROR_TYPE_ATTR_GROUP, /**< Group field. */
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, /**< Priority field. */
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, /**< Ingress field. */
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, /**< Egress field. */
RTE_FLOW_ERROR_TYPE_ATTR, /**< Attributes structure. */
RTE_FLOW_ERROR_TYPE_ITEM_NUM, /**< Pattern length. */
RTE_FLOW_ERROR_TYPE_ITEM, /**< Specific pattern item. */
RTE_FLOW_ERROR_TYPE_ACTION_NUM, /**< Number of actions. */
RTE_FLOW_ERROR_TYPE_ACTION, /**< Specific action. */
};
/**
* Verbose error structure definition.
*
* This object is normally allocated by applications and set by PMDs, the
* message points to a constant string which does not need to be freed by
* the application, however its pointer can be considered valid only as long
* as its associated DPDK port remains configured. Closing the underlying
* device or unloading the PMD invalidates it.
*
* Both cause and message may be NULL regardless of the error type.
*/
struct rte_flow_error {
enum rte_flow_error_type type; /**< Cause field and error types. */
const void *cause; /**< Object responsible for the error. */
const char *message; /**< Human-readable error message. */
};
/**
* Check whether a flow rule can be created on a given port.
*
* The flow rule is validated for correctness and whether it could be accepted
* by the device given sufficient resources. The rule is checked against the
* current device mode and queue configuration. The flow rule may also
* optionally be validated against existing flow rules and device resources.
* This function has no effect on the target device.
*
* The returned value is guaranteed to remain valid only as long as no
* successful calls to rte_flow_create() or rte_flow_destroy() are made in
* the meantime and no device parameter affecting flow rules in any way are
* modified, due to possible collisions or resource limitations (although in
* such cases EINVAL should not be returned).
*
* @param port_id
* Port identifier of Ethernet device.
* @param[in] attr
* Flow rule attributes.
* @param[in] pattern
* Pattern specification (list terminated by the END pattern item).
* @param[in] actions
* Associated actions (list terminated by the END action).
* @param[out] error
* Perform verbose error reporting if not NULL. PMDs initialize this
* structure in case of error only.
*
* @return
* 0 if flow rule is valid and can be created. A negative errno value
* otherwise (rte_errno is also set), the following errors are defined:
*
* -ENOSYS: underlying device does not support this functionality.
*
* -EIO: underlying device is removed.
*
* -EINVAL: unknown or invalid rule specification.
*
* -ENOTSUP: valid but unsupported rule specification (e.g. partial
* bit-masks are unsupported).
*
* -EEXIST: collision with an existing rule. Only returned if device
* supports flow rule collision checking and there was a flow rule
* collision. Not receiving this return code is no guarantee that creating
* the rule will not fail due to a collision.
*
* -ENOMEM: not enough memory to execute the function, or if the device
* supports resource validation, resource limitation on the device.
*
* -EBUSY: action cannot be performed due to busy device resources, may
* succeed if the affected queues or even the entire port are in a stopped
* state (see rte_eth_dev_rx_queue_stop() and rte_eth_dev_stop()).
*/
int
rte_flow_validate(uint16_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error);
/**
* Create a flow rule on a given port.
*
* @param port_id
* Port identifier of Ethernet device.
* @param[in] attr
* Flow rule attributes.
* @param[in] pattern
* Pattern specification (list terminated by the END pattern item).
* @param[in] actions
* Associated actions (list terminated by the END action).
* @param[out] error
* Perform verbose error reporting if not NULL. PMDs initialize this
* structure in case of error only.
*
* @return
* A valid handle in case of success, NULL otherwise and rte_errno is set
* to the positive version of one of the error codes defined for
* rte_flow_validate().
*/
struct rte_flow *
rte_flow_create(uint16_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error);
/**
* Destroy a flow rule on a given port.
*
* Failure to destroy a flow rule handle may occur when other flow rules
* depend on it, and destroying it would result in an inconsistent state.
*
* This function is only guaranteed to succeed if handles are destroyed in
* reverse order of their creation.
*
* @param port_id
* Port identifier of Ethernet device.
* @param flow
* Flow rule handle to destroy.
* @param[out] error
* Perform verbose error reporting if not NULL. PMDs initialize this
* structure in case of error only.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
rte_flow_destroy(uint16_t port_id,
struct rte_flow *flow,
struct rte_flow_error *error);
/**
* Destroy all flow rules associated with a port.
*
* In the unlikely event of failure, handles are still considered destroyed
* and no longer valid but the port must be assumed to be in an inconsistent
* state.
*
* @param port_id
* Port identifier of Ethernet device.
* @param[out] error
* Perform verbose error reporting if not NULL. PMDs initialize this
* structure in case of error only.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
rte_flow_flush(uint16_t port_id,
struct rte_flow_error *error);
/**
* Query an existing flow rule.
*
* This function allows retrieving flow-specific data such as counters.
* Data is gathered by special actions which must be present in the flow
* rule definition.
*
* \see RTE_FLOW_ACTION_TYPE_COUNT
*
* @param port_id
* Port identifier of Ethernet device.
* @param flow
* Flow rule handle to query.
* @param action
* Action type to query.
* @param[in, out] data
* Pointer to storage for the associated query data type.
* @param[out] error
* Perform verbose error reporting if not NULL. PMDs initialize this
* structure in case of error only.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
rte_flow_query(uint16_t port_id,
struct rte_flow *flow,
enum rte_flow_action_type action,
void *data,
struct rte_flow_error *error);
/**
* Restrict ingress traffic to the defined flow rules.
*
* Isolated mode guarantees that all ingress traffic comes from defined flow
* rules only (current and future).
*
* Besides making ingress more deterministic, it allows PMDs to safely reuse
* resources otherwise assigned to handle the remaining traffic, such as
* global RSS configuration settings, VLAN filters, MAC address entries,
* legacy filter API rules and so on in order to expand the set of possible
* flow rule types.
*
* Calling this function as soon as possible after device initialization,
* ideally before the first call to rte_eth_dev_configure(), is recommended
* to avoid possible failures due to conflicting settings.
*
* Once effective, leaving isolated mode may not be possible depending on
* PMD implementation.
*
* Additionally, the following functionality has no effect on the underlying
* port and may return errors such as ENOTSUP ("not supported"):
*
* - Toggling promiscuous mode.
* - Toggling allmulticast mode.
* - Configuring MAC addresses.
* - Configuring multicast addresses.
* - Configuring VLAN filters.
* - Configuring Rx filters through the legacy API (e.g. FDIR).
* - Configuring global RSS settings.
*
* @param port_id
* Port identifier of Ethernet device.
* @param set
* Nonzero to enter isolated mode, attempt to leave it otherwise.
* @param[out] error
* Perform verbose error reporting if not NULL. PMDs initialize this
* structure in case of error only.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
rte_flow_isolate(uint16_t port_id, int set, struct rte_flow_error *error);
/**
* Initialize flow error structure.
*
* @param[out] error
* Pointer to flow error structure (may be NULL).
* @param code
* Related error code (rte_errno).
* @param type
* Cause field and error types.
* @param cause
* Object responsible for the error.
* @param message
* Human-readable error message.
*
* @return
* Negative error code (errno value) and rte_errno is set.
*/
int
rte_flow_error_set(struct rte_flow_error *error,
int code,
enum rte_flow_error_type type,
const void *cause,
const char *message);
/**
* Generic flow representation.
*
* This form is sufficient to describe an rte_flow independently from any
* PMD implementation and allows for replayability and identification.
*/
struct rte_flow_desc {
size_t size; /**< Allocated space including data[]. */
struct rte_flow_attr attr; /**< Attributes. */
struct rte_flow_item *items; /**< Items. */
struct rte_flow_action *actions; /**< Actions. */
uint8_t data[]; /**< Storage for items/actions. */
};
/**
* Copy an rte_flow rule description.
*
* @param[in] fd
* Flow rule description.
* @param[in] len
* Total size of allocated data for the flow description.
* @param[in] attr
* Flow rule attributes.
* @param[in] items
* Pattern specification (list terminated by the END pattern item).
* @param[in] actions
* Associated actions (list terminated by the END action).
*
* @return
* If len is greater or equal to the size of the flow, the total size of the
* flow description and its data.
* If len is lower than the size of the flow, the number of bytes that would
* have been written to desc had it been sufficient. Nothing is written.
*/
size_t
rte_flow_copy(struct rte_flow_desc *fd, size_t len,
const struct rte_flow_attr *attr,
const struct rte_flow_item *items,
const struct rte_flow_action *actions);
#ifdef __cplusplus
}
#endif
#endif /* RTE_FLOW_H_ */