Jasvinder Singh 0edf18eee2 sched: add 64-bit values
To support high bandwidth network interfaces, all rates (port,
subport level token bucket and traffic class rates, pipe level
token bucket and traffic class rates) and stats counters defined
in public data structures (rte_sched.h) are modified to support
64 bit counters.

Signed-off-by: Jasvinder Singh <jasvinder.singh@intel.com>
Signed-off-by: Lukasz Krakowiak <lukaszx.krakowiak@intel.com>
Acked-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com>
2019-10-25 18:07:26 +02:00

515 lines
15 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef __INCLUDE_RTE_SCHED_H__
#define __INCLUDE_RTE_SCHED_H__
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file
* RTE Hierarchical Scheduler
*
* The hierarchical scheduler prioritizes the transmission of packets
* from different users and traffic classes according to the Service
* Level Agreements (SLAs) defined for the current network node.
*
* The scheduler supports thousands of packet queues grouped under a
* 5-level hierarchy:
* 1. Port:
* - Typical usage: output Ethernet port;
* - Multiple ports are scheduled in round robin order with
* equal priority;
* 2. Subport:
* - Typical usage: group of users;
* - Traffic shaping using the token bucket algorithm
* (one bucket per subport);
* - Upper limit enforced per traffic class at subport level;
* - Lower priority traffic classes able to reuse subport
* bandwidth currently unused by higher priority traffic
* classes of the same subport;
* - When any subport traffic class is oversubscribed
* (configuration time event), the usage of subport member
* pipes with high demand for that traffic class pipes is
* truncated to a dynamically adjusted value with no
* impact to low demand pipes;
* 3. Pipe:
* - Typical usage: individual user/subscriber;
* - Traffic shaping using the token bucket algorithm
* (one bucket per pipe);
* 4. Traffic class:
* - Traffic classes of the same pipe handled in strict
* priority order;
* - Upper limit enforced per traffic class at the pipe level;
* - Lower priority traffic classes able to reuse pipe
* bandwidth currently unused by higher priority traffic
* classes of the same pipe;
* 5. Queue:
* - Typical usage: queue hosting packets from one or
* multiple connections of same traffic class belonging to
* the same user;
* - Weighted Round Robin (WRR) is used to service the
* queues within same pipe lowest priority traffic class (best-effort).
*
*/
#include <sys/types.h>
#include <rte_compat.h>
#include <rte_mbuf.h>
#include <rte_meter.h>
/** Random Early Detection (RED) */
#ifdef RTE_SCHED_RED
#include "rte_red.h"
#endif
/** Maximum number of queues per pipe.
* Note that the multiple queues (power of 2) can only be assigned to
* lowest priority (best-effort) traffic class. Other higher priority traffic
* classes can only have one queue.
* Can not change.
*
* @see struct rte_sched_port_params
*/
#define RTE_SCHED_QUEUES_PER_PIPE 16
/** Number of WRR queues for best-effort traffic class per pipe.
*
* @see struct rte_sched_pipe_params
*/
#define RTE_SCHED_BE_QUEUES_PER_PIPE 4
/** Number of traffic classes per pipe (as well as subport).
* @see struct rte_sched_subport_params
* @see struct rte_sched_pipe_params
*/
#define RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE \
(RTE_SCHED_QUEUES_PER_PIPE - RTE_SCHED_BE_QUEUES_PER_PIPE + 1)
/** Best-effort traffic class ID
* Can not change.
*/
#define RTE_SCHED_TRAFFIC_CLASS_BE (RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE - 1)
/*
* Ethernet framing overhead. Overhead fields per Ethernet frame:
* 1. Preamble: 7 bytes;
* 2. Start of Frame Delimiter (SFD): 1 byte;
* 3. Frame Check Sequence (FCS): 4 bytes;
* 4. Inter Frame Gap (IFG): 12 bytes.
*
* The FCS is considered overhead only if not included in the packet
* length (field pkt_len of struct rte_mbuf).
*
* @see struct rte_sched_port_params
*/
#ifndef RTE_SCHED_FRAME_OVERHEAD_DEFAULT
#define RTE_SCHED_FRAME_OVERHEAD_DEFAULT 24
#endif
/*
* Pipe configuration parameters. The period and credits_per_period
* parameters are measured in bytes, with one byte meaning the time
* duration associated with the transmission of one byte on the
* physical medium of the output port, with pipe or pipe traffic class
* rate (measured as percentage of output port rate) determined as
* credits_per_period divided by period. One credit represents one
* byte.
*/
struct rte_sched_pipe_params {
/** Token bucket rate (measured in bytes per second) */
uint64_t tb_rate;
/** Token bucket size (measured in credits) */
uint64_t tb_size;
/** Traffic class rates (measured in bytes per second) */
uint64_t tc_rate[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/** Enforcement period (measured in milliseconds) */
uint64_t tc_period;
/** Best-effort traffic class oversubscription weight */
uint8_t tc_ov_weight;
/** WRR weights of best-effort traffic class queues */
uint8_t wrr_weights[RTE_SCHED_BE_QUEUES_PER_PIPE];
};
/*
* Subport configuration parameters. The period and credits_per_period
* parameters are measured in bytes, with one byte meaning the time
* duration associated with the transmission of one byte on the
* physical medium of the output port, with pipe or pipe traffic class
* rate (measured as percentage of output port rate) determined as
* credits_per_period divided by period. One credit represents one
* byte.
*/
struct rte_sched_subport_params {
/** Token bucket rate (measured in bytes per second) */
uint64_t tb_rate;
/** Token bucket size (measured in credits) */
uint64_t tb_size;
/** Traffic class rates (measured in bytes per second) */
uint64_t tc_rate[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/** Enforcement period for rates (measured in milliseconds) */
uint64_t tc_period;
/** Number of subport pipes.
* The subport can enable/allocate fewer pipes than the maximum
* number set through struct port_params::n_max_pipes_per_subport,
* as needed, to avoid memory allocation for the queues of the
* pipes that are not really needed.
*/
uint32_t n_pipes_per_subport_enabled;
/** Packet queue size for each traffic class.
* All the pipes within the same subport share the similar
* configuration for the queues.
*/
uint16_t qsize[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/** Pipe profile table.
* Every pipe is configured using one of the profiles from this table.
*/
struct rte_sched_pipe_params *pipe_profiles;
/** Profiles in the pipe profile table */
uint32_t n_pipe_profiles;
/** Max allowed profiles in the pipe profile table */
uint32_t n_max_pipe_profiles;
#ifdef RTE_SCHED_RED
/** RED parameters */
struct rte_red_params red_params[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE][RTE_COLORS];
#endif
};
/** Subport statistics */
struct rte_sched_subport_stats {
/** Number of packets successfully written */
uint64_t n_pkts_tc[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/** Number of packets dropped */
uint64_t n_pkts_tc_dropped[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/** Number of bytes successfully written for each traffic class */
uint64_t n_bytes_tc[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/** Number of bytes dropped for each traffic class */
uint64_t n_bytes_tc_dropped[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
#ifdef RTE_SCHED_RED
/** Number of packets dropped by red */
uint64_t n_pkts_red_dropped[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
#endif
};
/** Queue statistics */
struct rte_sched_queue_stats {
/** Packets successfully written */
uint64_t n_pkts;
/** Packets dropped */
uint64_t n_pkts_dropped;
#ifdef RTE_SCHED_RED
/** Packets dropped by RED */
uint64_t n_pkts_red_dropped;
#endif
/** Bytes successfully written */
uint64_t n_bytes;
/** Bytes dropped */
uint64_t n_bytes_dropped;
};
/** Port configuration parameters. */
struct rte_sched_port_params {
/** Name of the port to be associated */
const char *name;
/** CPU socket ID */
int socket;
/** Output port rate (measured in bytes per second) */
uint64_t rate;
/** Maximum Ethernet frame size (measured in bytes).
* Should not include the framing overhead.
*/
uint32_t mtu;
/** Framing overhead per packet (measured in bytes) */
uint32_t frame_overhead;
/** Number of subports */
uint32_t n_subports_per_port;
/** Maximum number of subport pipes.
* This parameter is used to reserve a fixed number of bits
* in struct rte_mbuf::sched.queue_id for the pipe_id for all
* the subports of the same port.
*/
uint32_t n_pipes_per_subport;
};
/*
* Configuration
*
***/
/**
* Hierarchical scheduler port configuration
*
* @param params
* Port scheduler configuration parameter structure
* @return
* Handle to port scheduler instance upon success or NULL otherwise.
*/
struct rte_sched_port *
rte_sched_port_config(struct rte_sched_port_params *params);
/**
* Hierarchical scheduler port free
*
* @param port
* Handle to port scheduler instance
*/
void
rte_sched_port_free(struct rte_sched_port *port);
/**
* @warning
* @b EXPERIMENTAL: this API may change without prior notice.
*
* Hierarchical scheduler pipe profile add
*
* @param port
* Handle to port scheduler instance
* @param subport_id
* Subport ID
* @param params
* Pipe profile parameters
* @param pipe_profile_id
* Set to valid profile id when profile is added successfully.
* @return
* 0 upon success, error code otherwise
*/
__rte_experimental
int
rte_sched_subport_pipe_profile_add(struct rte_sched_port *port,
uint32_t subport_id,
struct rte_sched_pipe_params *params,
uint32_t *pipe_profile_id);
/**
* Hierarchical scheduler subport configuration
*
* @param port
* Handle to port scheduler instance
* @param subport_id
* Subport ID
* @param params
* Subport configuration parameters
* @return
* 0 upon success, error code otherwise
*/
int
rte_sched_subport_config(struct rte_sched_port *port,
uint32_t subport_id,
struct rte_sched_subport_params *params);
/**
* Hierarchical scheduler pipe configuration
*
* @param port
* Handle to port scheduler instance
* @param subport_id
* Subport ID
* @param pipe_id
* Pipe ID within subport
* @param pipe_profile
* ID of subport-level pre-configured pipe profile
* @return
* 0 upon success, error code otherwise
*/
int
rte_sched_pipe_config(struct rte_sched_port *port,
uint32_t subport_id,
uint32_t pipe_id,
int32_t pipe_profile);
/**
* Hierarchical scheduler memory footprint size per port
*
* @param port_params
* Port scheduler configuration parameter structure
* @param subport_params
* Array of subport parameter structures
* @return
* Memory footprint size in bytes upon success, 0 otherwise
*/
uint32_t
rte_sched_port_get_memory_footprint(struct rte_sched_port_params *port_params,
struct rte_sched_subport_params **subport_params);
/*
* Statistics
*
***/
/**
* Hierarchical scheduler subport statistics read
*
* @param port
* Handle to port scheduler instance
* @param subport_id
* Subport ID
* @param stats
* Pointer to pre-allocated subport statistics structure where the statistics
* counters should be stored
* @param tc_ov
* Pointer to pre-allocated RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE-entry array
* where the oversubscription status for each of the subport traffic classes
* should be stored.
* @return
* 0 upon success, error code otherwise
*/
int
rte_sched_subport_read_stats(struct rte_sched_port *port,
uint32_t subport_id,
struct rte_sched_subport_stats *stats,
uint32_t *tc_ov);
/**
* Hierarchical scheduler queue statistics read
*
* @param port
* Handle to port scheduler instance
* @param queue_id
* Queue ID within port scheduler
* @param stats
* Pointer to pre-allocated subport statistics structure where the statistics
* counters should be stored
* @param qlen
* Pointer to pre-allocated variable where the current queue length
* should be stored.
* @return
* 0 upon success, error code otherwise
*/
int
rte_sched_queue_read_stats(struct rte_sched_port *port,
uint32_t queue_id,
struct rte_sched_queue_stats *stats,
uint16_t *qlen);
/**
* Scheduler hierarchy path write to packet descriptor. Typically
* called by the packet classification stage.
*
* @param port
* Handle to port scheduler instance
* @param pkt
* Packet descriptor handle
* @param subport
* Subport ID
* @param pipe
* Pipe ID within subport
* @param traffic_class
* Traffic class ID within pipe (0 .. RTE_SCHED_TRAFFIC_CLASS_BE)
* @param queue
* Queue ID within pipe traffic class, 0 for high priority TCs, and
* 0 .. (RTE_SCHED_BE_QUEUES_PER_PIPE - 1) for best-effort TC
* @param color
* Packet color set
*/
void
rte_sched_port_pkt_write(struct rte_sched_port *port,
struct rte_mbuf *pkt,
uint32_t subport, uint32_t pipe, uint32_t traffic_class,
uint32_t queue, enum rte_color color);
/**
* Scheduler hierarchy path read from packet descriptor (struct
* rte_mbuf). Typically called as part of the hierarchical scheduler
* enqueue operation. The subport, pipe, traffic class and queue
* parameters need to be pre-allocated by the caller.
*
* @param port
* Handle to port scheduler instance
* @param pkt
* Packet descriptor handle
* @param subport
* Subport ID
* @param pipe
* Pipe ID within subport
* @param traffic_class
* Traffic class ID within pipe (0 .. RTE_SCHED_TRAFFIC_CLASS_BE)
* @param queue
* Queue ID within pipe traffic class, 0 for high priority TCs, and
* 0 .. (RTE_SCHED_BE_QUEUES_PER_PIPE - 1) for best-effort TC
*/
void
rte_sched_port_pkt_read_tree_path(struct rte_sched_port *port,
const struct rte_mbuf *pkt,
uint32_t *subport, uint32_t *pipe,
uint32_t *traffic_class, uint32_t *queue);
enum rte_color
rte_sched_port_pkt_read_color(const struct rte_mbuf *pkt);
/**
* Hierarchical scheduler port enqueue. Writes up to n_pkts to port
* scheduler and returns the number of packets actually written. For
* each packet, the port scheduler queue to write the packet to is
* identified by reading the hierarchy path from the packet
* descriptor; if the queue is full or congested and the packet is not
* written to the queue, then the packet is automatically dropped
* without any action required from the caller.
*
* @param port
* Handle to port scheduler instance
* @param pkts
* Array storing the packet descriptor handles
* @param n_pkts
* Number of packets to enqueue from the pkts array into the port scheduler
* @return
* Number of packets successfully enqueued
*/
int
rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts);
/**
* Hierarchical scheduler port dequeue. Reads up to n_pkts from the
* port scheduler and stores them in the pkts array and returns the
* number of packets actually read. The pkts array needs to be
* pre-allocated by the caller with at least n_pkts entries.
*
* @param port
* Handle to port scheduler instance
* @param pkts
* Pre-allocated packet descriptor array where the packets dequeued
* from the port
* scheduler should be stored
* @param n_pkts
* Number of packets to dequeue from the port scheduler
* @return
* Number of packets successfully dequeued and placed in the pkts array
*/
int
rte_sched_port_dequeue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts);
#ifdef __cplusplus
}
#endif
#endif /* __INCLUDE_RTE_SCHED_H__ */