numam-dpdk/lib/librte_fib/trie.c
Vladimir Medvedkin c3e12e0f03 fib: add dataplane algorithm for IPv6
Add fib implementation for ipv6 using modified DIR24_8 algorithm.
Implementation is similar to current LPM6 implementation but has
few enhancements:
faster control plane operations
more bits for userdata in table entries
configurable userdata size

Signed-off-by: Vladimir Medvedkin <vladimir.medvedkin@intel.com>
2019-11-06 00:11:44 +01:00

761 lines
17 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Vladimir Medvedkin <medvedkinv@gmail.com>
* Copyright(c) 2019 Intel Corporation
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <rte_debug.h>
#include <rte_malloc.h>
#include <rte_prefetch.h>
#include <rte_errno.h>
#include <rte_memory.h>
#include <rte_branch_prediction.h>
#include <rte_rib6.h>
#include <rte_fib6.h>
#include "trie.h"
/* @internal Total number of tbl24 entries. */
#define TRIE_TBL24_NUM_ENT (1 << 24)
/* Maximum depth value possible for IPv6 LPM. */
#define TRIE_MAX_DEPTH 128
/* @internal Number of entries in a tbl8 group. */
#define TRIE_TBL8_GRP_NUM_ENT 256ULL
/* @internal Total number of tbl8 groups in the tbl8. */
#define TRIE_TBL8_NUM_GROUPS 65536
/* @internal bitmask with valid and valid_group fields set */
#define TRIE_EXT_ENT 1
#define TRIE_NAMESIZE 64
#define BITMAP_SLAB_BIT_SIZE_LOG2 6
#define BITMAP_SLAB_BIT_SIZE (1ULL << BITMAP_SLAB_BIT_SIZE_LOG2)
#define BITMAP_SLAB_BITMASK (BITMAP_SLAB_BIT_SIZE - 1)
struct rte_trie_tbl {
uint32_t number_tbl8s; /**< Total number of tbl8s */
uint32_t rsvd_tbl8s; /**< Number of reserved tbl8s */
uint32_t cur_tbl8s; /**< Current cumber of tbl8s */
uint64_t def_nh; /**< Default next hop */
enum rte_fib_trie_nh_sz nh_sz; /**< Size of nexthop entry */
uint64_t *tbl8; /**< tbl8 table. */
uint32_t *tbl8_pool; /**< bitmap containing free tbl8 idxes*/
uint32_t tbl8_pool_pos;
/* tbl24 table. */
__extension__ uint64_t tbl24[0] __rte_cache_aligned;
};
enum edge {
LEDGE,
REDGE
};
enum lookup_type {
MACRO,
INLINE,
UNI
};
static enum lookup_type test_lookup = MACRO;
static inline uint32_t
get_tbl24_idx(const uint8_t *ip)
{
return ip[0] << 16|ip[1] << 8|ip[2];
}
static inline void *
get_tbl24_p(struct rte_trie_tbl *dp, const uint8_t *ip, uint8_t nh_sz)
{
uint32_t tbl24_idx;
tbl24_idx = get_tbl24_idx(ip);
return (void *)&((uint8_t *)dp->tbl24)[tbl24_idx << nh_sz];
}
static inline uint8_t
bits_in_nh(uint8_t nh_sz)
{
return 8 * (1 << nh_sz);
}
static inline uint64_t
get_max_nh(uint8_t nh_sz)
{
return ((1ULL << (bits_in_nh(nh_sz) - 1)) - 1);
}
static inline uint64_t
lookup_msk(uint8_t nh_sz)
{
return ((1ULL << ((1 << (nh_sz + 3)) - 1)) << 1) - 1;
}
static inline uint8_t
get_psd_idx(uint32_t val, uint8_t nh_sz)
{
return val & ((1 << (3 - nh_sz)) - 1);
}
static inline uint32_t
get_tbl_pos(uint32_t val, uint8_t nh_sz)
{
return val >> (3 - nh_sz);
}
static inline uint64_t
get_tbl_val_by_idx(uint64_t *tbl, uint32_t idx, uint8_t nh_sz)
{
return ((tbl[get_tbl_pos(idx, nh_sz)] >> (get_psd_idx(idx, nh_sz) *
bits_in_nh(nh_sz))) & lookup_msk(nh_sz));
}
static inline void *
get_tbl_p_by_idx(uint64_t *tbl, uint64_t idx, uint8_t nh_sz)
{
return (uint8_t *)tbl + (idx << nh_sz);
}
static inline int
is_entry_extended(uint64_t ent)
{
return (ent & TRIE_EXT_ENT) == TRIE_EXT_ENT;
}
#define LOOKUP_FUNC(suffix, type, nh_sz) \
static void rte_trie_lookup_bulk_##suffix(void *p, \
uint8_t ips[][RTE_FIB6_IPV6_ADDR_SIZE], \
uint64_t *next_hops, const unsigned int n) \
{ \
struct rte_trie_tbl *dp = (struct rte_trie_tbl *)p; \
uint64_t tmp; \
uint32_t i, j; \
\
for (i = 0; i < n; i++) { \
tmp = ((type *)dp->tbl24)[get_tbl24_idx(&ips[i][0])]; \
j = 3; \
while (is_entry_extended(tmp)) { \
tmp = ((type *)dp->tbl8)[ips[i][j++] + \
((tmp >> 1) * TRIE_TBL8_GRP_NUM_ENT)]; \
} \
next_hops[i] = tmp >> 1; \
} \
}
LOOKUP_FUNC(2b, uint16_t, 1)
LOOKUP_FUNC(4b, uint32_t, 2)
LOOKUP_FUNC(8b, uint64_t, 3)
rte_fib6_lookup_fn_t
rte_trie_get_lookup_fn(struct rte_fib6_conf *conf)
{
enum rte_fib_trie_nh_sz nh_sz = conf->trie.nh_sz;
if (test_lookup == MACRO) {
switch (nh_sz) {
case RTE_FIB6_TRIE_2B:
return rte_trie_lookup_bulk_2b;
case RTE_FIB6_TRIE_4B:
return rte_trie_lookup_bulk_4b;
case RTE_FIB6_TRIE_8B:
return rte_trie_lookup_bulk_8b;
}
}
return NULL;
}
static void
write_to_dp(void *ptr, uint64_t val, enum rte_fib_trie_nh_sz size, int n)
{
int i;
uint16_t *ptr16 = (uint16_t *)ptr;
uint32_t *ptr32 = (uint32_t *)ptr;
uint64_t *ptr64 = (uint64_t *)ptr;
switch (size) {
case RTE_FIB6_TRIE_2B:
for (i = 0; i < n; i++)
ptr16[i] = (uint16_t)val;
break;
case RTE_FIB6_TRIE_4B:
for (i = 0; i < n; i++)
ptr32[i] = (uint32_t)val;
break;
case RTE_FIB6_TRIE_8B:
for (i = 0; i < n; i++)
ptr64[i] = (uint64_t)val;
break;
}
}
static void
tbl8_pool_init(struct rte_trie_tbl *dp)
{
uint32_t i;
/* put entire range of indexes to the tbl8 pool */
for (i = 0; i < dp->number_tbl8s; i++)
dp->tbl8_pool[i] = i;
dp->tbl8_pool_pos = 0;
}
/*
* Get an index of a free tbl8 from the pool
*/
static inline int32_t
tbl8_get(struct rte_trie_tbl *dp)
{
if (dp->tbl8_pool_pos == dp->number_tbl8s)
/* no more free tbl8 */
return -ENOSPC;
/* next index */
return dp->tbl8_pool[dp->tbl8_pool_pos++];
}
/*
* Put an index of a free tbl8 back to the pool
*/
static inline void
tbl8_put(struct rte_trie_tbl *dp, uint32_t tbl8_ind)
{
dp->tbl8_pool[--dp->tbl8_pool_pos] = tbl8_ind;
}
static int
tbl8_alloc(struct rte_trie_tbl *dp, uint64_t nh)
{
int64_t tbl8_idx;
uint8_t *tbl8_ptr;
tbl8_idx = tbl8_get(dp);
if (tbl8_idx < 0)
return tbl8_idx;
tbl8_ptr = (uint8_t *)dp->tbl8 +
((tbl8_idx * TRIE_TBL8_GRP_NUM_ENT) <<
dp->nh_sz);
/*Init tbl8 entries with nexthop from tbl24*/
write_to_dp((void *)tbl8_ptr, nh, dp->nh_sz,
TRIE_TBL8_GRP_NUM_ENT);
return tbl8_idx;
}
static void
tbl8_recycle(struct rte_trie_tbl *dp, void *par, uint64_t tbl8_idx)
{
uint32_t i;
uint64_t nh;
uint16_t *ptr16;
uint32_t *ptr32;
uint64_t *ptr64;
switch (dp->nh_sz) {
case RTE_FIB6_TRIE_2B:
ptr16 = &((uint16_t *)dp->tbl8)[tbl8_idx *
TRIE_TBL8_GRP_NUM_ENT];
nh = *ptr16;
if (nh & TRIE_EXT_ENT)
return;
for (i = 1; i < TRIE_TBL8_GRP_NUM_ENT; i++) {
if (nh != ptr16[i])
return;
}
write_to_dp(par, nh, dp->nh_sz, 1);
for (i = 0; i < TRIE_TBL8_GRP_NUM_ENT; i++)
ptr16[i] = 0;
break;
case RTE_FIB6_TRIE_4B:
ptr32 = &((uint32_t *)dp->tbl8)[tbl8_idx *
TRIE_TBL8_GRP_NUM_ENT];
nh = *ptr32;
if (nh & TRIE_EXT_ENT)
return;
for (i = 1; i < TRIE_TBL8_GRP_NUM_ENT; i++) {
if (nh != ptr32[i])
return;
}
write_to_dp(par, nh, dp->nh_sz, 1);
for (i = 0; i < TRIE_TBL8_GRP_NUM_ENT; i++)
ptr32[i] = 0;
break;
case RTE_FIB6_TRIE_8B:
ptr64 = &((uint64_t *)dp->tbl8)[tbl8_idx *
TRIE_TBL8_GRP_NUM_ENT];
nh = *ptr64;
if (nh & TRIE_EXT_ENT)
return;
for (i = 1; i < TRIE_TBL8_GRP_NUM_ENT; i++) {
if (nh != ptr64[i])
return;
}
write_to_dp(par, nh, dp->nh_sz, 1);
for (i = 0; i < TRIE_TBL8_GRP_NUM_ENT; i++)
ptr64[i] = 0;
break;
}
tbl8_put(dp, tbl8_idx);
}
#define BYTE_SIZE 8
static inline uint32_t
get_idx(const uint8_t *ip, uint32_t prev_idx, int bytes, int first_byte)
{
int i;
uint32_t idx = 0;
uint8_t bitshift;
for (i = first_byte; i < (first_byte + bytes); i++) {
bitshift = (int8_t)(((first_byte + bytes - 1) - i)*BYTE_SIZE);
idx |= ip[i] << bitshift;
}
return (prev_idx * 256) + idx;
}
static inline uint64_t
get_val_by_p(void *p, uint8_t nh_sz)
{
uint64_t val = 0;
switch (nh_sz) {
case RTE_FIB6_TRIE_2B:
val = *(uint16_t *)p;
break;
case RTE_FIB6_TRIE_4B:
val = *(uint32_t *)p;
break;
case RTE_FIB6_TRIE_8B:
val = *(uint64_t *)p;
break;
}
return val;
}
/*
* recursively recycle tbl8's
*/
static void
recycle_root_path(struct rte_trie_tbl *dp, const uint8_t *ip_part,
uint8_t common_tbl8, void *prev)
{
void *p;
uint64_t val;
val = get_val_by_p(prev, dp->nh_sz);
if (unlikely((val & TRIE_EXT_ENT) != TRIE_EXT_ENT))
return;
if (common_tbl8 != 0) {
p = get_tbl_p_by_idx(dp->tbl8, (val >> 1) * 256 + *ip_part,
dp->nh_sz);
recycle_root_path(dp, ip_part + 1, common_tbl8 - 1, p);
}
tbl8_recycle(dp, prev, val >> 1);
}
static inline int
build_common_root(struct rte_trie_tbl *dp, const uint8_t *ip,
int common_bytes, void **tbl)
{
void *tbl_ptr = NULL;
uint64_t *cur_tbl;
uint64_t val;
int i, j, idx, prev_idx = 0;
cur_tbl = dp->tbl24;
for (i = 3, j = 0; i <= common_bytes; i++) {
idx = get_idx(ip, prev_idx, i - j, j);
val = get_tbl_val_by_idx(cur_tbl, idx, dp->nh_sz);
tbl_ptr = get_tbl_p_by_idx(cur_tbl, idx, dp->nh_sz);
if ((val & TRIE_EXT_ENT) != TRIE_EXT_ENT) {
idx = tbl8_alloc(dp, val);
if (unlikely(idx < 0))
return idx;
write_to_dp(tbl_ptr, (idx << 1) |
TRIE_EXT_ENT, dp->nh_sz, 1);
prev_idx = idx;
} else
prev_idx = val >> 1;
j = i;
cur_tbl = dp->tbl8;
}
*tbl = get_tbl_p_by_idx(cur_tbl, prev_idx * 256, dp->nh_sz);
return 0;
}
static int
write_edge(struct rte_trie_tbl *dp, const uint8_t *ip_part, uint64_t next_hop,
int len, enum edge edge, void *ent)
{
uint64_t val = next_hop << 1;
int tbl8_idx;
int ret = 0;
void *p;
if (len != 0) {
val = get_val_by_p(ent, dp->nh_sz);
if ((val & TRIE_EXT_ENT) == TRIE_EXT_ENT)
tbl8_idx = val >> 1;
else {
tbl8_idx = tbl8_alloc(dp, val);
if (tbl8_idx < 0)
return tbl8_idx;
val = (tbl8_idx << 1)|TRIE_EXT_ENT;
}
p = get_tbl_p_by_idx(dp->tbl8, (tbl8_idx * 256) + *ip_part,
dp->nh_sz);
ret = write_edge(dp, ip_part + 1, next_hop, len - 1, edge, p);
if (ret < 0)
return ret;
if (edge == LEDGE) {
write_to_dp((uint8_t *)p + (1 << dp->nh_sz),
next_hop << 1, dp->nh_sz, UINT8_MAX - *ip_part);
} else {
write_to_dp(get_tbl_p_by_idx(dp->tbl8, tbl8_idx * 256,
dp->nh_sz),
next_hop << 1, dp->nh_sz, *ip_part);
}
tbl8_recycle(dp, &val, tbl8_idx);
}
write_to_dp(ent, val, dp->nh_sz, 1);
return ret;
}
#define IPV6_MAX_IDX (RTE_FIB6_IPV6_ADDR_SIZE - 1)
#define TBL24_BYTES 3
#define TBL8_LEN (RTE_FIB6_IPV6_ADDR_SIZE - TBL24_BYTES)
static int
install_to_dp(struct rte_trie_tbl *dp, const uint8_t *ledge, const uint8_t *r,
uint64_t next_hop)
{
void *common_root_tbl;
void *ent;
int ret;
int i;
int common_bytes;
int llen, rlen;
uint8_t redge[16];
/* decrement redge by 1*/
rte_rib6_copy_addr(redge, r);
for (i = 15; i >= 0; i--) {
redge[i]--;
if (redge[i] != 0xff)
break;
}
for (common_bytes = 0; common_bytes < 15; common_bytes++) {
if (ledge[common_bytes] != redge[common_bytes])
break;
}
ret = build_common_root(dp, ledge, common_bytes, &common_root_tbl);
if (unlikely(ret != 0))
return ret;
/*first uncommon tbl8 byte idx*/
uint8_t first_tbl8_byte = RTE_MAX(common_bytes, TBL24_BYTES);
for (i = IPV6_MAX_IDX; i > first_tbl8_byte; i--) {
if (ledge[i] != 0)
break;
}
llen = i - first_tbl8_byte + (common_bytes < 3);
for (i = IPV6_MAX_IDX; i > first_tbl8_byte; i--) {
if (redge[i] != UINT8_MAX)
break;
}
rlen = i - first_tbl8_byte + (common_bytes < 3);
/*first noncommon byte*/
uint8_t first_byte_idx = (common_bytes < 3) ? 0 : common_bytes;
uint8_t first_idx_len = (common_bytes < 3) ? 3 : 1;
uint32_t left_idx = get_idx(ledge, 0, first_idx_len, first_byte_idx);
uint32_t right_idx = get_idx(redge, 0, first_idx_len, first_byte_idx);
ent = get_tbl_p_by_idx(common_root_tbl, left_idx, dp->nh_sz);
ret = write_edge(dp, &ledge[first_tbl8_byte + !(common_bytes < 3)],
next_hop, llen, LEDGE, ent);
if (ret < 0)
return ret;
if (right_idx > left_idx + 1) {
ent = get_tbl_p_by_idx(common_root_tbl, left_idx + 1,
dp->nh_sz);
write_to_dp(ent, next_hop << 1, dp->nh_sz,
right_idx - (left_idx + 1));
}
ent = get_tbl_p_by_idx(common_root_tbl, right_idx, dp->nh_sz);
ret = write_edge(dp, &redge[first_tbl8_byte + !((common_bytes < 3))],
next_hop, rlen, REDGE, ent);
if (ret < 0)
return ret;
uint8_t common_tbl8 = (common_bytes < TBL24_BYTES) ?
0 : common_bytes - (TBL24_BYTES - 1);
ent = get_tbl24_p(dp, ledge, dp->nh_sz);
recycle_root_path(dp, ledge + TBL24_BYTES, common_tbl8, ent);
return 0;
}
static void
get_nxt_net(uint8_t *ip, uint8_t depth)
{
int i;
uint8_t part_depth;
uint8_t prev_byte;
for (i = 0, part_depth = depth; part_depth > 8; part_depth -= 8, i++)
;
prev_byte = ip[i];
ip[i] += 1 << (8 - part_depth);
if (ip[i] < prev_byte) {
while (i > 0) {
ip[--i] += 1;
if (ip[i] != 0)
break;
}
}
}
static int
modify_dp(struct rte_trie_tbl *dp, struct rte_rib6 *rib,
const uint8_t ip[RTE_FIB6_IPV6_ADDR_SIZE],
uint8_t depth, uint64_t next_hop)
{
struct rte_rib6_node *tmp = NULL;
uint8_t ledge[RTE_FIB6_IPV6_ADDR_SIZE];
uint8_t redge[RTE_FIB6_IPV6_ADDR_SIZE];
int ret;
uint8_t tmp_depth;
if (next_hop > get_max_nh(dp->nh_sz))
return -EINVAL;
rte_rib6_copy_addr(ledge, ip);
do {
tmp = rte_rib6_get_nxt(rib, ip, depth, tmp,
RTE_RIB6_GET_NXT_COVER);
if (tmp != NULL) {
rte_rib6_get_depth(tmp, &tmp_depth);
if (tmp_depth == depth)
continue;
rte_rib6_get_ip(tmp, redge);
if (rte_rib6_is_equal(ledge, redge)) {
get_nxt_net(ledge, tmp_depth);
continue;
}
ret = install_to_dp(dp, ledge, redge,
next_hop);
if (ret != 0)
return ret;
get_nxt_net(redge, tmp_depth);
rte_rib6_copy_addr(ledge, redge);
} else {
rte_rib6_copy_addr(redge, ip);
get_nxt_net(redge, depth);
if (rte_rib6_is_equal(ledge, redge))
break;
ret = install_to_dp(dp, ledge, redge,
next_hop);
if (ret != 0)
return ret;
}
} while (tmp);
return 0;
}
int
trie_modify(struct rte_fib6 *fib, const uint8_t ip[RTE_FIB6_IPV6_ADDR_SIZE],
uint8_t depth, uint64_t next_hop, int op)
{
struct rte_trie_tbl *dp;
struct rte_rib6 *rib;
struct rte_rib6_node *tmp = NULL;
struct rte_rib6_node *node;
struct rte_rib6_node *parent;
uint8_t ip_masked[RTE_FIB6_IPV6_ADDR_SIZE];
int i, ret = 0;
uint64_t par_nh, node_nh;
uint8_t tmp_depth, depth_diff = 0, parent_depth = 24;
if ((fib == NULL) || (ip == NULL) || (depth > RTE_FIB6_MAXDEPTH))
return -EINVAL;
dp = rte_fib6_get_dp(fib);
RTE_ASSERT(dp);
rib = rte_fib6_get_rib(fib);
RTE_ASSERT(rib);
for (i = 0; i < RTE_FIB6_IPV6_ADDR_SIZE; i++)
ip_masked[i] = ip[i] & get_msk_part(depth, i);
if (depth > 24) {
tmp = rte_rib6_get_nxt(rib, ip_masked,
RTE_ALIGN_FLOOR(depth, 8), NULL,
RTE_RIB6_GET_NXT_COVER);
if (tmp == NULL) {
tmp = rte_rib6_lookup(rib, ip);
if (tmp != NULL) {
rte_rib6_get_depth(tmp, &tmp_depth);
parent_depth = RTE_MAX(tmp_depth, 24);
}
depth_diff = RTE_ALIGN_CEIL(depth, 8) -
RTE_ALIGN_CEIL(parent_depth, 8);
depth_diff = depth_diff >> 3;
}
}
node = rte_rib6_lookup_exact(rib, ip_masked, depth);
switch (op) {
case RTE_FIB6_ADD:
if (node != NULL) {
rte_rib6_get_nh(node, &node_nh);
if (node_nh == next_hop)
return 0;
ret = modify_dp(dp, rib, ip_masked, depth, next_hop);
if (ret == 0)
rte_rib6_set_nh(node, next_hop);
return 0;
}
if ((depth > 24) && (dp->rsvd_tbl8s >=
dp->number_tbl8s - depth_diff))
return -ENOSPC;
node = rte_rib6_insert(rib, ip_masked, depth);
if (node == NULL)
return -rte_errno;
rte_rib6_set_nh(node, next_hop);
parent = rte_rib6_lookup_parent(node);
if (parent != NULL) {
rte_rib6_get_nh(parent, &par_nh);
if (par_nh == next_hop)
return 0;
}
ret = modify_dp(dp, rib, ip_masked, depth, next_hop);
if (ret != 0) {
rte_rib6_remove(rib, ip_masked, depth);
return ret;
}
dp->rsvd_tbl8s += depth_diff;
return 0;
case RTE_FIB6_DEL:
if (node == NULL)
return -ENOENT;
parent = rte_rib6_lookup_parent(node);
if (parent != NULL) {
rte_rib6_get_nh(parent, &par_nh);
rte_rib6_get_nh(node, &node_nh);
if (par_nh != node_nh)
ret = modify_dp(dp, rib, ip_masked, depth,
par_nh);
} else
ret = modify_dp(dp, rib, ip_masked, depth, dp->def_nh);
if (ret != 0)
return ret;
rte_rib6_remove(rib, ip, depth);
dp->rsvd_tbl8s -= depth_diff;
return 0;
default:
break;
}
return -EINVAL;
}
void *
trie_create(const char *name, int socket_id,
struct rte_fib6_conf *conf)
{
char mem_name[TRIE_NAMESIZE];
struct rte_trie_tbl *dp = NULL;
uint64_t def_nh;
uint32_t num_tbl8;
enum rte_fib_trie_nh_sz nh_sz;
if ((name == NULL) || (conf == NULL) ||
(conf->trie.nh_sz < RTE_FIB6_TRIE_2B) ||
(conf->trie.nh_sz > RTE_FIB6_TRIE_8B) ||
(conf->trie.num_tbl8 >
get_max_nh(conf->trie.nh_sz)) ||
(conf->trie.num_tbl8 == 0) ||
(conf->default_nh >
get_max_nh(conf->trie.nh_sz))) {
rte_errno = EINVAL;
return NULL;
}
def_nh = conf->default_nh;
nh_sz = conf->trie.nh_sz;
num_tbl8 = conf->trie.num_tbl8;
snprintf(mem_name, sizeof(mem_name), "DP_%s", name);
dp = rte_zmalloc_socket(name, sizeof(struct rte_trie_tbl) +
TRIE_TBL24_NUM_ENT * (1 << nh_sz), RTE_CACHE_LINE_SIZE,
socket_id);
if (dp == NULL) {
rte_errno = ENOMEM;
return dp;
}
write_to_dp(&dp->tbl24, (def_nh << 1), nh_sz, 1 << 24);
snprintf(mem_name, sizeof(mem_name), "TBL8_%p", dp);
dp->tbl8 = rte_zmalloc_socket(mem_name, TRIE_TBL8_GRP_NUM_ENT *
(1ll << nh_sz) * (num_tbl8 + 1),
RTE_CACHE_LINE_SIZE, socket_id);
if (dp->tbl8 == NULL) {
rte_errno = ENOMEM;
rte_free(dp);
return NULL;
}
dp->def_nh = def_nh;
dp->nh_sz = nh_sz;
dp->number_tbl8s = num_tbl8;
snprintf(mem_name, sizeof(mem_name), "TBL8_idxes_%p", dp);
dp->tbl8_pool = rte_zmalloc_socket(mem_name,
sizeof(uint32_t) * dp->number_tbl8s,
RTE_CACHE_LINE_SIZE, socket_id);
if (dp->tbl8_pool == NULL) {
rte_errno = ENOMEM;
rte_free(dp->tbl8);
rte_free(dp);
return NULL;
}
tbl8_pool_init(dp);
return dp;
}
void
trie_free(void *p)
{
struct rte_trie_tbl *dp = (struct rte_trie_tbl *)p;
rte_free(dp->tbl8_pool);
rte_free(dp->tbl8);
rte_free(dp);
}