numam-dpdk/drivers/net/bnxt/bnxt_ethdev.c
David Marchand 1acb7f5474 dev: hide driver object
Make rte_driver opaque for non internal users.
This will make extending this object possible without breaking the ABI.

Introduce a new driver header and move rte_driver definition.
Update drivers and library to use the internal header.

Some applications may have been dereferencing rte_driver objects, mark
this object's accessors as stable.

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Jay Jayatheerthan <jay.jayatheerthan@intel.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Akhil Goyal <gakhil@marvell.com>
Acked-by: Abhinandan Gujjar <abhinandan.gujjar@intel.com>
2022-09-23 16:14:34 +02:00

6362 lines
158 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2021 Broadcom
* All rights reserved.
*/
#include <inttypes.h>
#include <stdbool.h>
#include <dev_driver.h>
#include <ethdev_driver.h>
#include <ethdev_pci.h>
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_alarm.h>
#include <rte_kvargs.h>
#include <rte_vect.h>
#include "bnxt.h"
#include "bnxt_filter.h"
#include "bnxt_hwrm.h"
#include "bnxt_irq.h"
#include "bnxt_reps.h"
#include "bnxt_ring.h"
#include "bnxt_rxq.h"
#include "bnxt_rxr.h"
#include "bnxt_stats.h"
#include "bnxt_txq.h"
#include "bnxt_txr.h"
#include "bnxt_vnic.h"
#include "hsi_struct_def_dpdk.h"
#include "bnxt_nvm_defs.h"
#include "bnxt_tf_common.h"
#include "ulp_flow_db.h"
#include "rte_pmd_bnxt.h"
#define DRV_MODULE_NAME "bnxt"
static const char bnxt_version[] =
"Broadcom NetXtreme driver " DRV_MODULE_NAME;
/*
* The set of PCI devices this driver supports
*/
static const struct rte_pci_id bnxt_pci_id_map[] = {
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF1) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF2) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF1) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF1) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF1) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF2) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF2) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF2) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58812) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58814) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58818) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58818_VF) },
{ .vendor_id = 0, /* sentinel */ },
};
#define BNXT_DEVARG_FLOW_XSTAT "flow-xstat"
#define BNXT_DEVARG_MAX_NUM_KFLOWS "max-num-kflows"
#define BNXT_DEVARG_REPRESENTOR "representor"
#define BNXT_DEVARG_REP_BASED_PF "rep-based-pf"
#define BNXT_DEVARG_REP_IS_PF "rep-is-pf"
#define BNXT_DEVARG_REP_Q_R2F "rep-q-r2f"
#define BNXT_DEVARG_REP_Q_F2R "rep-q-f2r"
#define BNXT_DEVARG_REP_FC_R2F "rep-fc-r2f"
#define BNXT_DEVARG_REP_FC_F2R "rep-fc-f2r"
#define BNXT_DEVARG_APP_ID "app-id"
static const char *const bnxt_dev_args[] = {
BNXT_DEVARG_REPRESENTOR,
BNXT_DEVARG_FLOW_XSTAT,
BNXT_DEVARG_MAX_NUM_KFLOWS,
BNXT_DEVARG_REP_BASED_PF,
BNXT_DEVARG_REP_IS_PF,
BNXT_DEVARG_REP_Q_R2F,
BNXT_DEVARG_REP_Q_F2R,
BNXT_DEVARG_REP_FC_R2F,
BNXT_DEVARG_REP_FC_F2R,
BNXT_DEVARG_APP_ID,
NULL
};
/*
* app-id = an non-negative 8-bit number
*/
#define BNXT_DEVARG_APP_ID_INVALID(val) ((val) > 255)
/*
* flow_xstat == false to disable the feature
* flow_xstat == true to enable the feature
*/
#define BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat) ((flow_xstat) > 1)
/*
* rep_is_pf == false to indicate VF representor
* rep_is_pf == true to indicate PF representor
*/
#define BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf) ((rep_is_pf) > 1)
/*
* rep_based_pf == Physical index of the PF
*/
#define BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf) ((rep_based_pf) > 15)
/*
* rep_q_r2f == Logical COS Queue index for the rep to endpoint direction
*/
#define BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f) ((rep_q_r2f) > 3)
/*
* rep_q_f2r == Logical COS Queue index for the endpoint to rep direction
*/
#define BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r) ((rep_q_f2r) > 3)
/*
* rep_fc_r2f == Flow control for the representor to endpoint direction
*/
#define BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f) ((rep_fc_r2f) > 1)
/*
* rep_fc_f2r == Flow control for the endpoint to representor direction
*/
#define BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r) ((rep_fc_f2r) > 1)
int bnxt_cfa_code_dynfield_offset = -1;
/*
* max_num_kflows must be >= 32
* and must be a power-of-2 supported value
* return: 1 -> invalid
* 0 -> valid
*/
static int bnxt_devarg_max_num_kflow_invalid(uint16_t max_num_kflows)
{
if (max_num_kflows < 32 || !rte_is_power_of_2(max_num_kflows))
return 1;
return 0;
}
static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev);
static int bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev);
static void bnxt_cancel_fw_health_check(struct bnxt *bp);
static int bnxt_restore_vlan_filters(struct bnxt *bp);
static void bnxt_dev_recover(void *arg);
static void bnxt_free_error_recovery_info(struct bnxt *bp);
static void bnxt_free_rep_info(struct bnxt *bp);
static int bnxt_check_fw_ready(struct bnxt *bp);
int is_bnxt_in_error(struct bnxt *bp)
{
if (bp->flags & BNXT_FLAG_FATAL_ERROR)
return -EIO;
if (bp->flags & BNXT_FLAG_FW_RESET)
return -EBUSY;
return 0;
}
/***********************/
/*
* High level utility functions
*/
static uint16_t bnxt_rss_ctxts(const struct bnxt *bp)
{
unsigned int num_rss_rings = RTE_MIN(bp->rx_nr_rings,
BNXT_RSS_TBL_SIZE_P5);
if (!BNXT_CHIP_P5(bp))
return 1;
return RTE_ALIGN_MUL_CEIL(num_rss_rings,
BNXT_RSS_ENTRIES_PER_CTX_P5) /
BNXT_RSS_ENTRIES_PER_CTX_P5;
}
uint16_t bnxt_rss_hash_tbl_size(const struct bnxt *bp)
{
if (!BNXT_CHIP_P5(bp))
return HW_HASH_INDEX_SIZE;
return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_P5;
}
static void bnxt_free_parent_info(struct bnxt *bp)
{
rte_free(bp->parent);
bp->parent = NULL;
}
static void bnxt_free_pf_info(struct bnxt *bp)
{
rte_free(bp->pf);
bp->pf = NULL;
}
static void bnxt_free_link_info(struct bnxt *bp)
{
rte_free(bp->link_info);
bp->link_info = NULL;
}
static void bnxt_free_leds_info(struct bnxt *bp)
{
if (BNXT_VF(bp))
return;
rte_free(bp->leds);
bp->leds = NULL;
}
static void bnxt_free_flow_stats_info(struct bnxt *bp)
{
rte_free(bp->flow_stat);
bp->flow_stat = NULL;
}
static void bnxt_free_cos_queues(struct bnxt *bp)
{
rte_free(bp->rx_cos_queue);
bp->rx_cos_queue = NULL;
rte_free(bp->tx_cos_queue);
bp->tx_cos_queue = NULL;
}
static void bnxt_free_mem(struct bnxt *bp, bool reconfig)
{
bnxt_free_filter_mem(bp);
bnxt_free_vnic_attributes(bp);
bnxt_free_vnic_mem(bp);
/* tx/rx rings are configured as part of *_queue_setup callbacks.
* If the number of rings change across fw update,
* we don't have much choice except to warn the user.
*/
if (!reconfig) {
bnxt_free_stats(bp);
bnxt_free_tx_rings(bp);
bnxt_free_rx_rings(bp);
}
bnxt_free_async_cp_ring(bp);
bnxt_free_rxtx_nq_ring(bp);
rte_free(bp->grp_info);
bp->grp_info = NULL;
}
static int bnxt_alloc_parent_info(struct bnxt *bp)
{
bp->parent = rte_zmalloc("bnxt_parent_info",
sizeof(struct bnxt_parent_info), 0);
if (bp->parent == NULL)
return -ENOMEM;
return 0;
}
static int bnxt_alloc_pf_info(struct bnxt *bp)
{
bp->pf = rte_zmalloc("bnxt_pf_info", sizeof(struct bnxt_pf_info), 0);
if (bp->pf == NULL)
return -ENOMEM;
return 0;
}
static int bnxt_alloc_link_info(struct bnxt *bp)
{
bp->link_info =
rte_zmalloc("bnxt_link_info", sizeof(struct bnxt_link_info), 0);
if (bp->link_info == NULL)
return -ENOMEM;
return 0;
}
static int bnxt_alloc_leds_info(struct bnxt *bp)
{
if (BNXT_VF(bp))
return 0;
bp->leds = rte_zmalloc("bnxt_leds",
BNXT_MAX_LED * sizeof(struct bnxt_led_info),
0);
if (bp->leds == NULL)
return -ENOMEM;
return 0;
}
static int bnxt_alloc_cos_queues(struct bnxt *bp)
{
bp->rx_cos_queue =
rte_zmalloc("bnxt_rx_cosq",
BNXT_COS_QUEUE_COUNT *
sizeof(struct bnxt_cos_queue_info),
0);
if (bp->rx_cos_queue == NULL)
return -ENOMEM;
bp->tx_cos_queue =
rte_zmalloc("bnxt_tx_cosq",
BNXT_COS_QUEUE_COUNT *
sizeof(struct bnxt_cos_queue_info),
0);
if (bp->tx_cos_queue == NULL)
return -ENOMEM;
return 0;
}
static int bnxt_alloc_flow_stats_info(struct bnxt *bp)
{
bp->flow_stat = rte_zmalloc("bnxt_flow_xstat",
sizeof(struct bnxt_flow_stat_info), 0);
if (bp->flow_stat == NULL)
return -ENOMEM;
return 0;
}
static int bnxt_alloc_mem(struct bnxt *bp, bool reconfig)
{
int rc;
rc = bnxt_alloc_ring_grps(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_async_ring_struct(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_vnic_mem(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_vnic_attributes(bp, reconfig);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_filter_mem(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_async_cp_ring(bp);
if (rc)
goto alloc_mem_err;
rc = bnxt_alloc_rxtx_nq_ring(bp);
if (rc)
goto alloc_mem_err;
if (BNXT_FLOW_XSTATS_EN(bp)) {
rc = bnxt_alloc_flow_stats_info(bp);
if (rc)
goto alloc_mem_err;
}
return 0;
alloc_mem_err:
bnxt_free_mem(bp, reconfig);
return rc;
}
static int bnxt_setup_one_vnic(struct bnxt *bp, uint16_t vnic_id)
{
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
uint64_t rx_offloads = dev_conf->rxmode.offloads;
struct bnxt_rx_queue *rxq;
unsigned int j;
int rc;
rc = bnxt_vnic_grp_alloc(bp, vnic);
if (rc)
goto err_out;
PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
vnic_id, vnic, vnic->fw_grp_ids);
rc = bnxt_hwrm_vnic_alloc(bp, vnic);
if (rc)
goto err_out;
/* Alloc RSS context only if RSS mode is enabled */
if (dev_conf->rxmode.mq_mode & RTE_ETH_MQ_RX_RSS) {
int j, nr_ctxs = bnxt_rss_ctxts(bp);
/* RSS table size in Thor is 512.
* Cap max Rx rings to same value
*/
if (bp->rx_nr_rings > BNXT_RSS_TBL_SIZE_P5) {
PMD_DRV_LOG(ERR, "RxQ cnt %d > reta_size %d\n",
bp->rx_nr_rings, BNXT_RSS_TBL_SIZE_P5);
goto err_out;
}
rc = 0;
for (j = 0; j < nr_ctxs; j++) {
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j);
if (rc)
break;
}
if (rc) {
PMD_DRV_LOG(ERR,
"HWRM vnic %d ctx %d alloc failure rc: %x\n",
vnic_id, j, rc);
goto err_out;
}
vnic->num_lb_ctxts = nr_ctxs;
}
/*
* Firmware sets pf pair in default vnic cfg. If the VLAN strip
* setting is not available at this time, it will not be
* configured correctly in the CFA.
*/
if (rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
vnic->vlan_strip = true;
else
vnic->vlan_strip = false;
rc = bnxt_hwrm_vnic_cfg(bp, vnic);
if (rc)
goto err_out;
rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
if (rc)
goto err_out;
for (j = 0; j < bp->rx_num_qs_per_vnic; j++) {
rxq = bp->eth_dev->data->rx_queues[j];
PMD_DRV_LOG(DEBUG,
"rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
j, rxq->vnic, rxq->vnic->fw_grp_ids);
if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start)
rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
else
vnic->rx_queue_cnt++;
}
PMD_DRV_LOG(DEBUG, "vnic->rx_queue_cnt = %d\n", vnic->rx_queue_cnt);
rc = bnxt_vnic_rss_configure(bp, vnic);
if (rc)
goto err_out;
bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
rc = bnxt_hwrm_vnic_tpa_cfg(bp, vnic,
(rx_offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO) ?
true : false);
if (rc)
goto err_out;
return 0;
err_out:
PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
vnic_id, rc);
return rc;
}
static int bnxt_register_fc_ctx_mem(struct bnxt *bp)
{
int rc = 0;
rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_in_tbl.dma,
&bp->flow_stat->rx_fc_in_tbl.ctx_id);
if (rc)
return rc;
PMD_DRV_LOG(DEBUG,
"rx_fc_in_tbl.va = %p rx_fc_in_tbl.dma = %p"
" rx_fc_in_tbl.ctx_id = %d\n",
bp->flow_stat->rx_fc_in_tbl.va,
(void *)((uintptr_t)bp->flow_stat->rx_fc_in_tbl.dma),
bp->flow_stat->rx_fc_in_tbl.ctx_id);
rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_out_tbl.dma,
&bp->flow_stat->rx_fc_out_tbl.ctx_id);
if (rc)
return rc;
PMD_DRV_LOG(DEBUG,
"rx_fc_out_tbl.va = %p rx_fc_out_tbl.dma = %p"
" rx_fc_out_tbl.ctx_id = %d\n",
bp->flow_stat->rx_fc_out_tbl.va,
(void *)((uintptr_t)bp->flow_stat->rx_fc_out_tbl.dma),
bp->flow_stat->rx_fc_out_tbl.ctx_id);
rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_in_tbl.dma,
&bp->flow_stat->tx_fc_in_tbl.ctx_id);
if (rc)
return rc;
PMD_DRV_LOG(DEBUG,
"tx_fc_in_tbl.va = %p tx_fc_in_tbl.dma = %p"
" tx_fc_in_tbl.ctx_id = %d\n",
bp->flow_stat->tx_fc_in_tbl.va,
(void *)((uintptr_t)bp->flow_stat->tx_fc_in_tbl.dma),
bp->flow_stat->tx_fc_in_tbl.ctx_id);
rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_out_tbl.dma,
&bp->flow_stat->tx_fc_out_tbl.ctx_id);
if (rc)
return rc;
PMD_DRV_LOG(DEBUG,
"tx_fc_out_tbl.va = %p tx_fc_out_tbl.dma = %p"
" tx_fc_out_tbl.ctx_id = %d\n",
bp->flow_stat->tx_fc_out_tbl.va,
(void *)((uintptr_t)bp->flow_stat->tx_fc_out_tbl.dma),
bp->flow_stat->tx_fc_out_tbl.ctx_id);
memset(bp->flow_stat->rx_fc_out_tbl.va,
0,
bp->flow_stat->rx_fc_out_tbl.size);
rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
bp->flow_stat->rx_fc_out_tbl.ctx_id,
bp->flow_stat->max_fc,
true);
if (rc)
return rc;
memset(bp->flow_stat->tx_fc_out_tbl.va,
0,
bp->flow_stat->tx_fc_out_tbl.size);
rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
bp->flow_stat->tx_fc_out_tbl.ctx_id,
bp->flow_stat->max_fc,
true);
return rc;
}
static int bnxt_alloc_ctx_mem_buf(struct bnxt *bp, char *type, size_t size,
struct bnxt_ctx_mem_buf_info *ctx)
{
if (!ctx)
return -EINVAL;
ctx->va = rte_zmalloc_socket(type, size, 0,
bp->eth_dev->device->numa_node);
if (ctx->va == NULL)
return -ENOMEM;
rte_mem_lock_page(ctx->va);
ctx->size = size;
ctx->dma = rte_mem_virt2iova(ctx->va);
if (ctx->dma == RTE_BAD_IOVA)
return -ENOMEM;
return 0;
}
static int bnxt_init_fc_ctx_mem(struct bnxt *bp)
{
struct rte_pci_device *pdev = bp->pdev;
char type[RTE_MEMZONE_NAMESIZE];
uint16_t max_fc;
int rc = 0;
max_fc = bp->flow_stat->max_fc;
sprintf(type, "bnxt_rx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
/* 4 bytes for each counter-id */
rc = bnxt_alloc_ctx_mem_buf(bp, type,
max_fc * 4,
&bp->flow_stat->rx_fc_in_tbl);
if (rc)
return rc;
sprintf(type, "bnxt_rx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
rc = bnxt_alloc_ctx_mem_buf(bp, type,
max_fc * 16,
&bp->flow_stat->rx_fc_out_tbl);
if (rc)
return rc;
sprintf(type, "bnxt_tx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
/* 4 bytes for each counter-id */
rc = bnxt_alloc_ctx_mem_buf(bp, type,
max_fc * 4,
&bp->flow_stat->tx_fc_in_tbl);
if (rc)
return rc;
sprintf(type, "bnxt_tx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
rc = bnxt_alloc_ctx_mem_buf(bp, type,
max_fc * 16,
&bp->flow_stat->tx_fc_out_tbl);
if (rc)
return rc;
rc = bnxt_register_fc_ctx_mem(bp);
return rc;
}
static int bnxt_init_ctx_mem(struct bnxt *bp)
{
int rc = 0;
if (!(bp->fw_cap & BNXT_FW_CAP_ADV_FLOW_COUNTERS) ||
!(BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) ||
!BNXT_FLOW_XSTATS_EN(bp))
return 0;
rc = bnxt_hwrm_cfa_counter_qcaps(bp, &bp->flow_stat->max_fc);
if (rc)
return rc;
rc = bnxt_init_fc_ctx_mem(bp);
return rc;
}
static inline bool bnxt_force_link_config(struct bnxt *bp)
{
uint16_t subsystem_device_id = bp->pdev->id.subsystem_device_id;
switch (subsystem_device_id) {
case BROADCOM_DEV_957508_N2100:
case BROADCOM_DEV_957414_N225:
return true;
default:
return false;
}
}
static int bnxt_update_phy_setting(struct bnxt *bp)
{
struct rte_eth_link new;
int rc;
rc = bnxt_get_hwrm_link_config(bp, &new);
if (rc) {
PMD_DRV_LOG(ERR, "Failed to get link settings\n");
return rc;
}
/*
* Device is not obliged link down in certain scenarios, even
* when forced. When FW does not allow any user other than BMC
* to shutdown the port, bnxt_get_hwrm_link_config() call always
* returns link up. Force phy update always in that case.
*/
if (!new.link_status || bnxt_force_link_config(bp)) {
rc = bnxt_set_hwrm_link_config(bp, true);
if (rc) {
PMD_DRV_LOG(ERR, "Failed to update PHY settings\n");
return rc;
}
}
return rc;
}
static void bnxt_free_prev_ring_stats(struct bnxt *bp)
{
rte_free(bp->prev_rx_ring_stats);
rte_free(bp->prev_tx_ring_stats);
bp->prev_rx_ring_stats = NULL;
bp->prev_tx_ring_stats = NULL;
}
static int bnxt_alloc_prev_ring_stats(struct bnxt *bp)
{
bp->prev_rx_ring_stats = rte_zmalloc("bnxt_prev_rx_ring_stats",
sizeof(struct bnxt_ring_stats) *
bp->rx_cp_nr_rings,
0);
if (bp->prev_rx_ring_stats == NULL)
return -ENOMEM;
bp->prev_tx_ring_stats = rte_zmalloc("bnxt_prev_tx_ring_stats",
sizeof(struct bnxt_ring_stats) *
bp->tx_cp_nr_rings,
0);
if (bp->tx_cp_nr_rings > 0 && bp->prev_tx_ring_stats == NULL)
goto error;
return 0;
error:
bnxt_free_prev_ring_stats(bp);
return -ENOMEM;
}
static int bnxt_start_nic(struct bnxt *bp)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
uint32_t intr_vector = 0;
uint32_t queue_id, base = BNXT_MISC_VEC_ID;
uint32_t vec = BNXT_MISC_VEC_ID;
unsigned int i, j;
int rc;
if (bp->eth_dev->data->mtu > RTE_ETHER_MTU)
bp->flags |= BNXT_FLAG_JUMBO;
else
bp->flags &= ~BNXT_FLAG_JUMBO;
/* THOR does not support ring groups.
* But we will use the array to save RSS context IDs.
*/
if (BNXT_CHIP_P5(bp))
bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_P5;
rc = bnxt_alloc_hwrm_rings(bp);
if (rc) {
PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
goto err_out;
}
rc = bnxt_alloc_all_hwrm_ring_grps(bp);
if (rc) {
PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
goto err_out;
}
if (!(bp->vnic_cap_flags & BNXT_VNIC_CAP_COS_CLASSIFY))
goto skip_cosq_cfg;
for (j = 0, i = 0; i < BNXT_COS_QUEUE_COUNT; i++) {
if (bp->rx_cos_queue[i].id != 0xff) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[j++];
if (!vnic) {
PMD_DRV_LOG(ERR,
"Num pools more than FW profile\n");
rc = -EINVAL;
goto err_out;
}
vnic->cos_queue_id = bp->rx_cos_queue[i].id;
bp->rx_cosq_cnt++;
}
}
skip_cosq_cfg:
rc = bnxt_mq_rx_configure(bp);
if (rc) {
PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
goto err_out;
}
for (j = 0; j < bp->rx_nr_rings; j++) {
struct bnxt_rx_queue *rxq = bp->rx_queues[j];
if (!rxq->rx_deferred_start) {
bp->eth_dev->data->rx_queue_state[j] =
RTE_ETH_QUEUE_STATE_STARTED;
rxq->rx_started = true;
}
}
/* VNIC configuration */
for (i = 0; i < bp->nr_vnics; i++) {
rc = bnxt_setup_one_vnic(bp, i);
if (rc)
goto err_out;
}
for (j = 0; j < bp->tx_nr_rings; j++) {
struct bnxt_tx_queue *txq = bp->tx_queues[j];
if (!txq->tx_deferred_start) {
bp->eth_dev->data->tx_queue_state[j] =
RTE_ETH_QUEUE_STATE_STARTED;
txq->tx_started = true;
}
}
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
if (rc) {
PMD_DRV_LOG(ERR,
"HWRM cfa l2 rx mask failure rc: %x\n", rc);
goto err_out;
}
/* check and configure queue intr-vector mapping */
if ((rte_intr_cap_multiple(intr_handle) ||
!RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
intr_vector = bp->eth_dev->data->nb_rx_queues;
PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
if (intr_vector > bp->rx_cp_nr_rings) {
PMD_DRV_LOG(ERR, "At most %d intr queues supported",
bp->rx_cp_nr_rings);
return -ENOTSUP;
}
rc = rte_intr_efd_enable(intr_handle, intr_vector);
if (rc)
return rc;
}
if (rte_intr_dp_is_en(intr_handle)) {
if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
bp->eth_dev->data->nb_rx_queues)) {
PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
" intr_vec", bp->eth_dev->data->nb_rx_queues);
rc = -ENOMEM;
goto err_out;
}
PMD_DRV_LOG(DEBUG, "intr_handle->nb_efd = %d "
"intr_handle->max_intr = %d\n",
rte_intr_nb_efd_get(intr_handle),
rte_intr_max_intr_get(intr_handle));
for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
queue_id++) {
rte_intr_vec_list_index_set(intr_handle,
queue_id, vec + BNXT_RX_VEC_START);
if (vec < base + rte_intr_nb_efd_get(intr_handle)
- 1)
vec++;
}
}
/* enable uio/vfio intr/eventfd mapping */
rc = rte_intr_enable(intr_handle);
#ifndef RTE_EXEC_ENV_FREEBSD
/* In FreeBSD OS, nic_uio driver does not support interrupts */
if (rc)
goto err_out;
#endif
rc = bnxt_update_phy_setting(bp);
if (rc)
goto err_out;
bp->mark_table = rte_zmalloc("bnxt_mark_table", BNXT_MARK_TABLE_SZ, 0);
if (!bp->mark_table)
PMD_DRV_LOG(ERR, "Allocation of mark table failed\n");
return 0;
err_out:
/* Some of the error status returned by FW may not be from errno.h */
if (rc > 0)
rc = -EIO;
return rc;
}
static int bnxt_shutdown_nic(struct bnxt *bp)
{
bnxt_free_all_hwrm_resources(bp);
bnxt_free_all_filters(bp);
bnxt_free_all_vnics(bp);
return 0;
}
/*
* Device configuration and status function
*/
uint32_t bnxt_get_speed_capabilities(struct bnxt *bp)
{
uint32_t pam4_link_speed = 0;
uint32_t link_speed = 0;
uint32_t speed_capa = 0;
if (bp->link_info == NULL)
return 0;
link_speed = bp->link_info->support_speeds;
/* If PAM4 is configured, use PAM4 supported speed */
if (bp->link_info->support_pam4_speeds > 0)
pam4_link_speed = bp->link_info->support_pam4_speeds;
if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_100MB)
speed_capa |= RTE_ETH_LINK_SPEED_100M;
if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100MBHD)
speed_capa |= RTE_ETH_LINK_SPEED_100M_HD;
if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_1GB)
speed_capa |= RTE_ETH_LINK_SPEED_1G;
if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_2_5GB)
speed_capa |= RTE_ETH_LINK_SPEED_2_5G;
if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_10GB)
speed_capa |= RTE_ETH_LINK_SPEED_10G;
if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_20GB)
speed_capa |= RTE_ETH_LINK_SPEED_20G;
if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_25GB)
speed_capa |= RTE_ETH_LINK_SPEED_25G;
if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_40GB)
speed_capa |= RTE_ETH_LINK_SPEED_40G;
if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_50GB)
speed_capa |= RTE_ETH_LINK_SPEED_50G;
if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100GB)
speed_capa |= RTE_ETH_LINK_SPEED_100G;
if (pam4_link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_50G)
speed_capa |= RTE_ETH_LINK_SPEED_50G;
if (pam4_link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_100G)
speed_capa |= RTE_ETH_LINK_SPEED_100G;
if (pam4_link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_200G)
speed_capa |= RTE_ETH_LINK_SPEED_200G;
if (bp->link_info->auto_mode ==
HWRM_PORT_PHY_QCFG_OUTPUT_AUTO_MODE_NONE)
speed_capa |= RTE_ETH_LINK_SPEED_FIXED;
return speed_capa;
}
static int bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
struct rte_eth_dev_info *dev_info)
{
struct rte_pci_device *pdev = RTE_DEV_TO_PCI(eth_dev->device);
struct bnxt *bp = eth_dev->data->dev_private;
uint16_t max_vnics, i, j, vpool, vrxq;
unsigned int max_rx_rings;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
/* MAC Specifics */
dev_info->max_mac_addrs = RTE_MIN(bp->max_l2_ctx, RTE_ETH_NUM_RECEIVE_MAC_ADDR);
dev_info->max_hash_mac_addrs = 0;
/* PF/VF specifics */
if (BNXT_PF(bp))
dev_info->max_vfs = pdev->max_vfs;
max_rx_rings = bnxt_max_rings(bp);
/* For the sake of symmetry, max_rx_queues = max_tx_queues */
dev_info->max_rx_queues = max_rx_rings;
dev_info->max_tx_queues = max_rx_rings;
dev_info->reta_size = bnxt_rss_hash_tbl_size(bp);
dev_info->hash_key_size = HW_HASH_KEY_SIZE;
max_vnics = bp->max_vnics;
/* MTU specifics */
dev_info->min_mtu = RTE_ETHER_MIN_MTU;
dev_info->max_mtu = BNXT_MAX_MTU;
/* Fast path specifics */
dev_info->min_rx_bufsize = 1;
dev_info->max_rx_pktlen = BNXT_MAX_PKT_LEN;
dev_info->rx_offload_capa = bnxt_get_rx_port_offloads(bp);
dev_info->tx_queue_offload_capa = RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
dev_info->tx_offload_capa = bnxt_get_tx_port_offloads(bp) |
dev_info->tx_queue_offload_capa;
dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
dev_info->speed_capa = bnxt_get_speed_capabilities(bp);
dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = 8,
.hthresh = 8,
.wthresh = 0,
},
.rx_free_thresh = 32,
.rx_drop_en = BNXT_DEFAULT_RX_DROP_EN,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = 32,
.hthresh = 0,
.wthresh = 0,
},
.tx_free_thresh = 32,
.tx_rs_thresh = 32,
};
eth_dev->data->dev_conf.intr_conf.lsc = 1;
dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) {
dev_info->switch_info.name = eth_dev->device->name;
dev_info->switch_info.domain_id = bp->switch_domain_id;
dev_info->switch_info.port_id =
BNXT_PF(bp) ? BNXT_SWITCH_PORT_ID_PF :
BNXT_SWITCH_PORT_ID_TRUSTED_VF;
}
/*
* TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
* need further investigation.
*/
/* VMDq resources */
vpool = 64; /* RTE_ETH_64_POOLS */
vrxq = 128; /* RTE_ETH_VMDQ_DCB_NUM_QUEUES */
for (i = 0; i < 4; vpool >>= 1, i++) {
if (max_vnics > vpool) {
for (j = 0; j < 5; vrxq >>= 1, j++) {
if (dev_info->max_rx_queues > vrxq) {
if (vpool > vrxq)
vpool = vrxq;
goto found;
}
}
/* Not enough resources to support VMDq */
break;
}
}
/* Not enough resources to support VMDq */
vpool = 0;
vrxq = 0;
found:
dev_info->max_vmdq_pools = vpool;
dev_info->vmdq_queue_num = vrxq;
dev_info->vmdq_pool_base = 0;
dev_info->vmdq_queue_base = 0;
return 0;
}
/* Configure the device based on the configuration provided */
static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
struct rte_eth_rss_conf *rss_conf = &eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
int rc;
bp->rx_queues = (void *)eth_dev->data->rx_queues;
bp->tx_queues = (void *)eth_dev->data->tx_queues;
bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
rc = bnxt_hwrm_check_vf_rings(bp);
if (rc) {
PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
return -ENOSPC;
}
/* If a resource has already been allocated - in this case
* it is the async completion ring, free it. Reallocate it after
* resource reservation. This will ensure the resource counts
* are calculated correctly.
*/
pthread_mutex_lock(&bp->def_cp_lock);
if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
bnxt_disable_int(bp);
bnxt_free_cp_ring(bp, bp->async_cp_ring);
}
rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
if (rc) {
PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
pthread_mutex_unlock(&bp->def_cp_lock);
return -ENOSPC;
}
if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
rc = bnxt_alloc_async_cp_ring(bp);
if (rc) {
pthread_mutex_unlock(&bp->def_cp_lock);
return rc;
}
bnxt_enable_int(bp);
}
pthread_mutex_unlock(&bp->def_cp_lock);
}
/* Inherit new configurations */
if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues
+ BNXT_NUM_ASYNC_CPR(bp) > bp->max_cp_rings ||
eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
bp->max_stat_ctx)
goto resource_error;
if (BNXT_HAS_RING_GRPS(bp) &&
(uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps)
goto resource_error;
if (!(eth_dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS) &&
bp->max_vnics < eth_dev->data->nb_rx_queues)
goto resource_error;
bp->rx_cp_nr_rings = bp->rx_nr_rings;
bp->tx_cp_nr_rings = bp->tx_nr_rings;
if (eth_dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
rx_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
eth_dev->data->dev_conf.rxmode.offloads = rx_offloads;
/* application provides the hash key to program */
if (rss_conf->rss_key != NULL) {
if (rss_conf->rss_key_len != HW_HASH_KEY_SIZE)
PMD_DRV_LOG(WARNING, "port %u RSS key len must be %d bytes long",
eth_dev->data->port_id, HW_HASH_KEY_SIZE);
else
memcpy(bp->rss_conf.rss_key, rss_conf->rss_key, HW_HASH_KEY_SIZE);
}
bp->rss_conf.rss_key_len = HW_HASH_KEY_SIZE;
bp->rss_conf.rss_hf = rss_conf->rss_hf;
bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
return 0;
resource_error:
PMD_DRV_LOG(ERR,
"Insufficient resources to support requested config\n");
PMD_DRV_LOG(ERR,
"Num Queues Requested: Tx %d, Rx %d\n",
eth_dev->data->nb_tx_queues,
eth_dev->data->nb_rx_queues);
PMD_DRV_LOG(ERR,
"MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
return -ENOSPC;
}
void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
{
struct rte_eth_link *link = &eth_dev->data->dev_link;
if (link->link_status)
PMD_DRV_LOG(DEBUG, "Port %d Link Up - speed %u Mbps - %s\n",
eth_dev->data->port_id,
(uint32_t)link->link_speed,
(link->link_duplex == RTE_ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex\n"));
else
PMD_DRV_LOG(INFO, "Port %d Link Down\n",
eth_dev->data->port_id);
}
/*
* Determine whether the current configuration requires support for scattered
* receive; return 1 if scattered receive is required and 0 if not.
*/
static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev)
{
uint32_t overhead = BNXT_MAX_PKT_LEN - BNXT_MAX_MTU;
uint16_t buf_size;
int i;
if (eth_dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER)
return 1;
if (eth_dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO)
return 1;
for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i];
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
RTE_PKTMBUF_HEADROOM);
if (eth_dev->data->mtu + overhead > buf_size)
return 1;
}
return 0;
}
static eth_rx_burst_t
bnxt_receive_function(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
/* Disable vector mode RX for Stingray2 for now */
if (BNXT_CHIP_SR2(bp)) {
bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
return bnxt_recv_pkts;
}
#if (defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)) && \
!defined(RTE_LIBRTE_IEEE1588)
/* Vector mode receive cannot be enabled if scattered rx is in use. */
if (eth_dev->data->scattered_rx)
goto use_scalar_rx;
/*
* Vector mode receive cannot be enabled if Truflow is enabled or if
* asynchronous completions and receive completions can be placed in
* the same completion ring.
*/
if (BNXT_TRUFLOW_EN(bp) || !BNXT_NUM_ASYNC_CPR(bp))
goto use_scalar_rx;
/*
* Vector mode receive cannot be enabled if any receive offloads outside
* a limited subset have been enabled.
*/
if (eth_dev->data->dev_conf.rxmode.offloads &
~(RTE_ETH_RX_OFFLOAD_VLAN_STRIP |
RTE_ETH_RX_OFFLOAD_KEEP_CRC |
RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_OUTER_UDP_CKSUM |
RTE_ETH_RX_OFFLOAD_RSS_HASH |
RTE_ETH_RX_OFFLOAD_VLAN_FILTER))
goto use_scalar_rx;
#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1) {
PMD_DRV_LOG(INFO,
"Using AVX2 vector mode receive for port %d\n",
eth_dev->data->port_id);
bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
return bnxt_recv_pkts_vec_avx2;
}
#endif
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
PMD_DRV_LOG(INFO,
"Using SSE vector mode receive for port %d\n",
eth_dev->data->port_id);
bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
return bnxt_recv_pkts_vec;
}
use_scalar_rx:
PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
eth_dev->data->port_id);
PMD_DRV_LOG(INFO,
"Port %d scatter: %d rx offload: %" PRIX64 "\n",
eth_dev->data->port_id,
eth_dev->data->scattered_rx,
eth_dev->data->dev_conf.rxmode.offloads);
#endif
bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
return bnxt_recv_pkts;
}
static eth_tx_burst_t
bnxt_transmit_function(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
/* Disable vector mode TX for Stingray2 for now */
if (BNXT_CHIP_SR2(bp))
return bnxt_xmit_pkts;
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64) && \
!defined(RTE_LIBRTE_IEEE1588)
uint64_t offloads = eth_dev->data->dev_conf.txmode.offloads;
/*
* Vector mode transmit can be enabled only if not using scatter rx
* or tx offloads.
*/
if (eth_dev->data->scattered_rx ||
(offloads & ~RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) ||
BNXT_TRUFLOW_EN(bp))
goto use_scalar_tx;
#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1) {
PMD_DRV_LOG(INFO,
"Using AVX2 vector mode transmit for port %d\n",
eth_dev->data->port_id);
return bnxt_xmit_pkts_vec_avx2;
}
#endif
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
PMD_DRV_LOG(INFO,
"Using SSE vector mode transmit for port %d\n",
eth_dev->data->port_id);
return bnxt_xmit_pkts_vec;
}
use_scalar_tx:
PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
eth_dev->data->port_id);
PMD_DRV_LOG(INFO,
"Port %d scatter: %d tx offload: %" PRIX64 "\n",
eth_dev->data->port_id,
eth_dev->data->scattered_rx,
offloads);
#endif
return bnxt_xmit_pkts;
}
static int bnxt_handle_if_change_status(struct bnxt *bp)
{
int rc;
/* Since fw has undergone a reset and lost all contexts,
* set fatal flag to not issue hwrm during cleanup
*/
bp->flags |= BNXT_FLAG_FATAL_ERROR;
bnxt_uninit_resources(bp, true);
/* clear fatal flag so that re-init happens */
bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
rc = bnxt_check_fw_ready(bp);
if (rc)
return rc;
rc = bnxt_init_resources(bp, true);
bp->flags &= ~BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE;
return rc;
}
static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
int rc = 0;
if (!BNXT_SINGLE_PF(bp))
return -ENOTSUP;
if (!bp->link_info->link_up)
rc = bnxt_set_hwrm_link_config(bp, true);
if (!rc)
eth_dev->data->dev_link.link_status = 1;
bnxt_print_link_info(eth_dev);
return rc;
}
static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
if (!BNXT_SINGLE_PF(bp))
return -ENOTSUP;
eth_dev->data->dev_link.link_status = 0;
bnxt_set_hwrm_link_config(bp, false);
bp->link_info->link_up = 0;
return 0;
}
static void bnxt_free_switch_domain(struct bnxt *bp)
{
int rc = 0;
if (!(BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)))
return;
rc = rte_eth_switch_domain_free(bp->switch_domain_id);
if (rc)
PMD_DRV_LOG(ERR, "free switch domain:%d fail: %d\n",
bp->switch_domain_id, rc);
}
static void bnxt_ptp_get_current_time(void *arg)
{
struct bnxt *bp = arg;
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return;
if (!ptp)
return;
bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
&ptp->current_time);
rc = rte_eal_alarm_set(US_PER_S, bnxt_ptp_get_current_time, (void *)bp);
if (rc != 0) {
PMD_DRV_LOG(ERR, "Failed to re-schedule PTP alarm\n");
bp->flags2 &= ~BNXT_FLAGS2_PTP_ALARM_SCHEDULED;
}
}
static int bnxt_schedule_ptp_alarm(struct bnxt *bp)
{
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
int rc;
if (bp->flags2 & BNXT_FLAGS2_PTP_ALARM_SCHEDULED)
return 0;
bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
&ptp->current_time);
rc = rte_eal_alarm_set(US_PER_S, bnxt_ptp_get_current_time, (void *)bp);
return rc;
}
static void bnxt_cancel_ptp_alarm(struct bnxt *bp)
{
if (bp->flags2 & BNXT_FLAGS2_PTP_ALARM_SCHEDULED) {
rte_eal_alarm_cancel(bnxt_ptp_get_current_time, (void *)bp);
bp->flags2 &= ~BNXT_FLAGS2_PTP_ALARM_SCHEDULED;
}
}
static void bnxt_ptp_stop(struct bnxt *bp)
{
bnxt_cancel_ptp_alarm(bp);
bp->flags2 &= ~BNXT_FLAGS2_PTP_TIMESYNC_ENABLED;
}
static int bnxt_ptp_start(struct bnxt *bp)
{
int rc;
rc = bnxt_schedule_ptp_alarm(bp);
if (rc != 0) {
PMD_DRV_LOG(ERR, "Failed to schedule PTP alarm\n");
} else {
bp->flags2 |= BNXT_FLAGS2_PTP_TIMESYNC_ENABLED;
bp->flags2 |= BNXT_FLAGS2_PTP_ALARM_SCHEDULED;
}
return rc;
}
static int bnxt_dev_stop(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
struct rte_eth_link link;
int ret;
eth_dev->data->dev_started = 0;
/* Prevent crashes when queues are still in use */
bnxt_stop_rxtx(eth_dev);
bnxt_disable_int(bp);
/* disable uio/vfio intr/eventfd mapping */
rte_intr_disable(intr_handle);
/* Stop the child representors for this device */
ret = bnxt_rep_stop_all(bp);
if (ret != 0)
return ret;
/* delete the bnxt ULP port details */
bnxt_ulp_port_deinit(bp);
bnxt_cancel_fw_health_check(bp);
if (BNXT_P5_PTP_TIMESYNC_ENABLED(bp))
bnxt_cancel_ptp_alarm(bp);
/* Do not bring link down during reset recovery */
if (!is_bnxt_in_error(bp)) {
bnxt_dev_set_link_down_op(eth_dev);
/* Wait for link to be reset */
if (BNXT_SINGLE_PF(bp))
rte_delay_ms(500);
/* clear the recorded link status */
memset(&link, 0, sizeof(link));
rte_eth_linkstatus_set(eth_dev, &link);
}
/* Clean queue intr-vector mapping */
rte_intr_efd_disable(intr_handle);
rte_intr_vec_list_free(intr_handle);
bnxt_hwrm_port_clr_stats(bp);
bnxt_free_tx_mbufs(bp);
bnxt_free_rx_mbufs(bp);
/* Process any remaining notifications in default completion queue */
bnxt_int_handler(eth_dev);
bnxt_shutdown_nic(bp);
bnxt_hwrm_if_change(bp, false);
bnxt_free_prev_ring_stats(bp);
rte_free(bp->mark_table);
bp->mark_table = NULL;
bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
bp->rx_cosq_cnt = 0;
/* All filters are deleted on a port stop. */
if (BNXT_FLOW_XSTATS_EN(bp))
bp->flow_stat->flow_count = 0;
eth_dev->data->scattered_rx = 0;
return 0;
}
/* Unload the driver, release resources */
int bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
pthread_mutex_lock(&bp->err_recovery_lock);
if (bp->flags & BNXT_FLAG_FW_RESET) {
PMD_DRV_LOG(ERR,
"Adapter recovering from error..Please retry\n");
pthread_mutex_unlock(&bp->err_recovery_lock);
return -EAGAIN;
}
pthread_mutex_unlock(&bp->err_recovery_lock);
return bnxt_dev_stop(eth_dev);
}
int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
int vlan_mask = 0;
int rc, retry_cnt = BNXT_IF_CHANGE_RETRY_COUNT;
if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS)
PMD_DRV_LOG(ERR,
"RxQ cnt %d > RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
do {
rc = bnxt_hwrm_if_change(bp, true);
if (rc == 0 || rc != -EAGAIN)
break;
rte_delay_ms(BNXT_IF_CHANGE_RETRY_INTERVAL);
} while (retry_cnt--);
if (rc)
return rc;
if (bp->flags & BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE) {
rc = bnxt_handle_if_change_status(bp);
if (rc)
return rc;
}
bnxt_enable_int(bp);
eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev);
rc = bnxt_start_nic(bp);
if (rc)
goto error;
rc = bnxt_alloc_prev_ring_stats(bp);
if (rc)
goto error;
eth_dev->data->dev_started = 1;
bnxt_link_update_op(eth_dev, 0);
if (rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER)
vlan_mask |= RTE_ETH_VLAN_FILTER_MASK;
if (rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
vlan_mask |= RTE_ETH_VLAN_STRIP_MASK;
rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
if (rc)
goto error;
/* Initialize bnxt ULP port details */
rc = bnxt_ulp_port_init(bp);
if (rc)
goto error;
eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev);
eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev);
bnxt_schedule_fw_health_check(bp);
if (BNXT_P5_PTP_TIMESYNC_ENABLED(bp))
bnxt_schedule_ptp_alarm(bp);
return 0;
error:
bnxt_dev_stop(eth_dev);
return rc;
}
static void
bnxt_uninit_locks(struct bnxt *bp)
{
pthread_mutex_destroy(&bp->flow_lock);
pthread_mutex_destroy(&bp->def_cp_lock);
pthread_mutex_destroy(&bp->health_check_lock);
pthread_mutex_destroy(&bp->err_recovery_lock);
if (bp->rep_info) {
pthread_mutex_destroy(&bp->rep_info->vfr_lock);
pthread_mutex_destroy(&bp->rep_info->vfr_start_lock);
}
}
static void bnxt_drv_uninit(struct bnxt *bp)
{
bnxt_free_leds_info(bp);
bnxt_free_cos_queues(bp);
bnxt_free_link_info(bp);
bnxt_free_parent_info(bp);
bnxt_uninit_locks(bp);
rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
bp->tx_mem_zone = NULL;
rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
bp->rx_mem_zone = NULL;
bnxt_free_vf_info(bp);
bnxt_free_pf_info(bp);
rte_free(bp->grp_info);
bp->grp_info = NULL;
}
static int bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
int ret = 0;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
pthread_mutex_lock(&bp->err_recovery_lock);
if (bp->flags & BNXT_FLAG_FW_RESET) {
PMD_DRV_LOG(ERR,
"Adapter recovering from error...Please retry\n");
pthread_mutex_unlock(&bp->err_recovery_lock);
return -EAGAIN;
}
pthread_mutex_unlock(&bp->err_recovery_lock);
/* cancel the recovery handler before remove dev */
rte_eal_alarm_cancel(bnxt_dev_reset_and_resume, (void *)bp);
rte_eal_alarm_cancel(bnxt_dev_recover, (void *)bp);
bnxt_cancel_fc_thread(bp);
rte_eal_alarm_cancel(bnxt_handle_vf_cfg_change, (void *)bp);
if (eth_dev->data->dev_started)
ret = bnxt_dev_stop(eth_dev);
bnxt_uninit_resources(bp, false);
bnxt_drv_uninit(bp);
return ret;
}
static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
uint32_t index)
{
struct bnxt *bp = eth_dev->data->dev_private;
uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
struct bnxt_vnic_info *vnic;
struct bnxt_filter_info *filter, *temp_filter;
uint32_t i;
if (is_bnxt_in_error(bp))
return;
/*
* Loop through all VNICs from the specified filter flow pools to
* remove the corresponding MAC addr filter
*/
for (i = 0; i < bp->nr_vnics; i++) {
if (!(pool_mask & (1ULL << i)))
continue;
vnic = &bp->vnic_info[i];
filter = STAILQ_FIRST(&vnic->filter);
while (filter) {
temp_filter = STAILQ_NEXT(filter, next);
if (filter->mac_index == index) {
STAILQ_REMOVE(&vnic->filter, filter,
bnxt_filter_info, next);
bnxt_hwrm_clear_l2_filter(bp, filter);
bnxt_free_filter(bp, filter);
}
filter = temp_filter;
}
}
}
static int bnxt_add_mac_filter(struct bnxt *bp, struct bnxt_vnic_info *vnic,
struct rte_ether_addr *mac_addr, uint32_t index,
uint32_t pool)
{
struct bnxt_filter_info *filter;
int rc = 0;
/* Attach requested MAC address to the new l2_filter */
STAILQ_FOREACH(filter, &vnic->filter, next) {
if (filter->mac_index == index) {
PMD_DRV_LOG(DEBUG,
"MAC addr already existed for pool %d\n",
pool);
return 0;
}
}
filter = bnxt_alloc_filter(bp);
if (!filter) {
PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
return -ENODEV;
}
/* bnxt_alloc_filter copies default MAC to filter->l2_addr. So,
* if the MAC that's been programmed now is a different one, then,
* copy that addr to filter->l2_addr
*/
if (mac_addr)
memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
if (!rc) {
filter->mac_index = index;
if (filter->mac_index == 0)
STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
else
STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
} else {
bnxt_free_filter(bp, filter);
}
return rc;
}
static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
struct rte_ether_addr *mac_addr,
uint32_t index, uint32_t pool)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
int rc = 0;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp)) {
PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
return -ENOTSUP;
}
if (!vnic) {
PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
return -EINVAL;
}
/* Filter settings will get applied when port is started */
if (!eth_dev->data->dev_started)
return 0;
rc = bnxt_add_mac_filter(bp, vnic, mac_addr, index, pool);
return rc;
}
int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
{
int rc = 0;
struct bnxt *bp = eth_dev->data->dev_private;
struct rte_eth_link new;
int cnt = wait_to_complete ? BNXT_MAX_LINK_WAIT_CNT :
BNXT_MIN_LINK_WAIT_CNT;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
memset(&new, 0, sizeof(new));
if (bp->link_info == NULL)
goto out;
/* Only single function PF can bring the phy down.
* In certain scenarios, device is not obliged link down even when forced.
* When port is stopped, report link down in those cases.
*/
if (!eth_dev->data->dev_started &&
(!BNXT_SINGLE_PF(bp) || bnxt_force_link_config(bp)))
goto out;
do {
/* Retrieve link info from hardware */
rc = bnxt_get_hwrm_link_config(bp, &new);
if (rc) {
new.link_speed = RTE_ETH_LINK_SPEED_100M;
new.link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
PMD_DRV_LOG(ERR,
"Failed to retrieve link rc = 0x%x!\n", rc);
goto out;
}
if (!wait_to_complete || new.link_status)
break;
rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
} while (cnt--);
out:
/* Timed out or success */
if (new.link_status != eth_dev->data->dev_link.link_status ||
new.link_speed != eth_dev->data->dev_link.link_speed) {
rte_eth_linkstatus_set(eth_dev, &new);
bnxt_print_link_info(eth_dev);
}
return rc;
}
static int bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic;
uint32_t old_flags;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
/* Filter settings will get applied when port is started */
if (!eth_dev->data->dev_started)
return 0;
if (bp->vnic_info == NULL)
return 0;
vnic = BNXT_GET_DEFAULT_VNIC(bp);
old_flags = vnic->flags;
vnic->flags |= BNXT_VNIC_INFO_PROMISC;
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
if (rc != 0)
vnic->flags = old_flags;
return rc;
}
static int bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic;
uint32_t old_flags;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
/* Filter settings will get applied when port is started */
if (!eth_dev->data->dev_started)
return 0;
if (bp->vnic_info == NULL)
return 0;
vnic = BNXT_GET_DEFAULT_VNIC(bp);
old_flags = vnic->flags;
vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
if (rc != 0)
vnic->flags = old_flags;
return rc;
}
static int bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic;
uint32_t old_flags;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
/* Filter settings will get applied when port is started */
if (!eth_dev->data->dev_started)
return 0;
if (bp->vnic_info == NULL)
return 0;
vnic = BNXT_GET_DEFAULT_VNIC(bp);
old_flags = vnic->flags;
vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
if (rc != 0)
vnic->flags = old_flags;
return rc;
}
static int bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic;
uint32_t old_flags;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
/* Filter settings will get applied when port is started */
if (!eth_dev->data->dev_started)
return 0;
if (bp->vnic_info == NULL)
return 0;
vnic = BNXT_GET_DEFAULT_VNIC(bp);
old_flags = vnic->flags;
vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
if (rc != 0)
vnic->flags = old_flags;
return rc;
}
/* Return bnxt_rx_queue pointer corresponding to a given rxq. */
static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid)
{
if (qid >= bp->rx_nr_rings)
return NULL;
return bp->eth_dev->data->rx_queues[qid];
}
/* Return rxq corresponding to a given rss table ring/group ID. */
static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr)
{
struct bnxt_rx_queue *rxq;
unsigned int i;
if (!BNXT_HAS_RING_GRPS(bp)) {
for (i = 0; i < bp->rx_nr_rings; i++) {
rxq = bp->eth_dev->data->rx_queues[i];
if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr)
return rxq->index;
}
} else {
for (i = 0; i < bp->rx_nr_rings; i++) {
if (bp->grp_info[i].fw_grp_id == fwr)
return i;
}
}
return INVALID_HW_RING_ID;
}
static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
uint16_t idx, sft;
int i, rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
if (!vnic->rss_table)
return -EINVAL;
if (!(dev_conf->rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG))
return -EINVAL;
if (reta_size != tbl_size) {
PMD_DRV_LOG(ERR, "The configured hash table lookup size "
"(%d) must equal the size supported by the hardware "
"(%d)\n", reta_size, tbl_size);
return -EINVAL;
}
for (i = 0; i < reta_size; i++) {
struct bnxt_rx_queue *rxq;
idx = i / RTE_ETH_RETA_GROUP_SIZE;
sft = i % RTE_ETH_RETA_GROUP_SIZE;
if (!(reta_conf[idx].mask & (1ULL << sft)))
continue;
rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]);
if (!rxq) {
PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n");
return -EINVAL;
}
if (BNXT_CHIP_P5(bp)) {
vnic->rss_table[i * 2] =
rxq->rx_ring->rx_ring_struct->fw_ring_id;
vnic->rss_table[i * 2 + 1] =
rxq->cp_ring->cp_ring_struct->fw_ring_id;
} else {
vnic->rss_table[i] =
vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
}
}
rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
return rc;
}
static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
uint16_t idx, sft, i;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
if (!vnic)
return -EINVAL;
if (!vnic->rss_table)
return -EINVAL;
if (reta_size != tbl_size) {
PMD_DRV_LOG(ERR, "The configured hash table lookup size "
"(%d) must equal the size supported by the hardware "
"(%d)\n", reta_size, tbl_size);
return -EINVAL;
}
for (idx = 0, i = 0; i < reta_size; i++) {
idx = i / RTE_ETH_RETA_GROUP_SIZE;
sft = i % RTE_ETH_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << sft)) {
uint16_t qid;
if (BNXT_CHIP_P5(bp))
qid = bnxt_rss_to_qid(bp,
vnic->rss_table[i * 2]);
else
qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]);
if (qid == INVALID_HW_RING_ID) {
PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n");
return -EINVAL;
}
reta_conf[idx].reta[sft] = qid;
}
}
return 0;
}
static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_conf *rss_conf)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
struct bnxt_vnic_info *vnic;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
/*
* If RSS enablement were different than dev_configure,
* then return -EINVAL
*/
if (dev_conf->rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
if (!rss_conf->rss_hf)
PMD_DRV_LOG(ERR, "Hash type NONE\n");
} else {
if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
return -EINVAL;
}
/* Update the default RSS VNIC(s) */
vnic = BNXT_GET_DEFAULT_VNIC(bp);
vnic->hash_type = bnxt_rte_to_hwrm_hash_types(rss_conf->rss_hf);
vnic->hash_mode =
bnxt_rte_to_hwrm_hash_level(bp, rss_conf->rss_hf,
RTE_ETH_RSS_LEVEL(rss_conf->rss_hf));
/* Cache the hash function */
bp->rss_conf.rss_hf = rss_conf->rss_hf;
/*
* If hashkey is not specified, use the previously configured
* hashkey
*/
if (!rss_conf->rss_key)
goto rss_config;
if (rss_conf->rss_key_len != HW_HASH_KEY_SIZE) {
PMD_DRV_LOG(ERR,
"Invalid hashkey length, should be %d bytes\n",
HW_HASH_KEY_SIZE);
return -EINVAL;
}
memcpy(vnic->rss_hash_key, rss_conf->rss_key, rss_conf->rss_key_len);
/* Cache the hash key */
memcpy(bp->rss_conf.rss_key, rss_conf->rss_key, HW_HASH_KEY_SIZE);
rss_config:
rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
return rc;
}
static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_conf *rss_conf)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
int len, rc;
uint32_t hash_types;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
/* RSS configuration is the same for all VNICs */
if (vnic && vnic->rss_hash_key) {
if (rss_conf->rss_key) {
len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
}
hash_types = vnic->hash_type;
rss_conf->rss_hf = 0;
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
rss_conf->rss_hf |= RTE_ETH_RSS_IPV4;
hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
}
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
rss_conf->rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_TCP;
hash_types &=
~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
}
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
rss_conf->rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_UDP;
hash_types &=
~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
}
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
rss_conf->rss_hf |= RTE_ETH_RSS_IPV6;
hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
}
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
rss_conf->rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_TCP;
hash_types &=
~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
}
if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
rss_conf->rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_UDP;
hash_types &=
~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
}
rss_conf->rss_hf |=
bnxt_hwrm_to_rte_rss_level(bp, vnic->hash_mode);
if (hash_types) {
PMD_DRV_LOG(ERR,
"Unknown RSS config from firmware (%08x), RSS disabled",
vnic->hash_type);
return -ENOTSUP;
}
} else {
rss_conf->rss_hf = 0;
}
return 0;
}
static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf)
{
struct bnxt *bp = dev->data->dev_private;
struct rte_eth_link link_info;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
rc = bnxt_get_hwrm_link_config(bp, &link_info);
if (rc)
return rc;
memset(fc_conf, 0, sizeof(*fc_conf));
if (bp->link_info->auto_pause)
fc_conf->autoneg = 1;
switch (bp->link_info->pause) {
case 0:
fc_conf->mode = RTE_ETH_FC_NONE;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
break;
case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
fc_conf->mode = RTE_ETH_FC_FULL;
break;
}
return 0;
}
static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf)
{
struct bnxt *bp = dev->data->dev_private;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
if (!BNXT_SINGLE_PF(bp)) {
PMD_DRV_LOG(ERR,
"Flow Control Settings cannot be modified on VF or on shared PF\n");
return -ENOTSUP;
}
switch (fc_conf->mode) {
case RTE_ETH_FC_NONE:
bp->link_info->auto_pause = 0;
bp->link_info->force_pause = 0;
break;
case RTE_ETH_FC_RX_PAUSE:
if (fc_conf->autoneg) {
bp->link_info->auto_pause =
HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
bp->link_info->force_pause = 0;
} else {
bp->link_info->auto_pause = 0;
bp->link_info->force_pause =
HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
}
break;
case RTE_ETH_FC_TX_PAUSE:
if (fc_conf->autoneg) {
bp->link_info->auto_pause =
HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
bp->link_info->force_pause = 0;
} else {
bp->link_info->auto_pause = 0;
bp->link_info->force_pause =
HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
}
break;
case RTE_ETH_FC_FULL:
if (fc_conf->autoneg) {
bp->link_info->auto_pause =
HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
bp->link_info->force_pause = 0;
} else {
bp->link_info->auto_pause = 0;
bp->link_info->force_pause =
HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
}
break;
}
return bnxt_set_hwrm_link_config(bp, true);
}
/* Add UDP tunneling port */
static int
bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
struct bnxt *bp = eth_dev->data->dev_private;
uint16_t tunnel_type = 0;
int rc = 0;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
switch (udp_tunnel->prot_type) {
case RTE_ETH_TUNNEL_TYPE_VXLAN:
if (bp->vxlan_port_cnt) {
PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
udp_tunnel->udp_port);
if (bp->vxlan_port != udp_tunnel->udp_port) {
PMD_DRV_LOG(ERR, "Only one port allowed\n");
return -ENOSPC;
}
bp->vxlan_port_cnt++;
return 0;
}
tunnel_type =
HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
break;
case RTE_ETH_TUNNEL_TYPE_GENEVE:
if (bp->geneve_port_cnt) {
PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
udp_tunnel->udp_port);
if (bp->geneve_port != udp_tunnel->udp_port) {
PMD_DRV_LOG(ERR, "Only one port allowed\n");
return -ENOSPC;
}
bp->geneve_port_cnt++;
return 0;
}
tunnel_type =
HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
break;
default:
PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
return -ENOTSUP;
}
rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
tunnel_type);
if (rc != 0)
return rc;
if (tunnel_type ==
HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN)
bp->vxlan_port_cnt++;
if (tunnel_type ==
HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE)
bp->geneve_port_cnt++;
return rc;
}
static int
bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
struct bnxt *bp = eth_dev->data->dev_private;
uint16_t tunnel_type = 0;
uint16_t port = 0;
int rc = 0;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
switch (udp_tunnel->prot_type) {
case RTE_ETH_TUNNEL_TYPE_VXLAN:
if (!bp->vxlan_port_cnt) {
PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
return -EINVAL;
}
if (bp->vxlan_port != udp_tunnel->udp_port) {
PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
udp_tunnel->udp_port, bp->vxlan_port);
return -EINVAL;
}
if (--bp->vxlan_port_cnt)
return 0;
tunnel_type =
HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
port = bp->vxlan_fw_dst_port_id;
break;
case RTE_ETH_TUNNEL_TYPE_GENEVE:
if (!bp->geneve_port_cnt) {
PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
return -EINVAL;
}
if (bp->geneve_port != udp_tunnel->udp_port) {
PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
udp_tunnel->udp_port, bp->geneve_port);
return -EINVAL;
}
if (--bp->geneve_port_cnt)
return 0;
tunnel_type =
HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
port = bp->geneve_fw_dst_port_id;
break;
default:
PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
return -ENOTSUP;
}
rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
return rc;
}
static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
{
struct bnxt_filter_info *filter;
struct bnxt_vnic_info *vnic;
int rc = 0;
uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
vnic = BNXT_GET_DEFAULT_VNIC(bp);
filter = STAILQ_FIRST(&vnic->filter);
while (filter) {
/* Search for this matching MAC+VLAN filter */
if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id)) {
/* Delete the filter */
rc = bnxt_hwrm_clear_l2_filter(bp, filter);
if (rc)
return rc;
STAILQ_REMOVE(&vnic->filter, filter,
bnxt_filter_info, next);
bnxt_free_filter(bp, filter);
PMD_DRV_LOG(INFO,
"Deleted vlan filter for %d\n",
vlan_id);
return 0;
}
filter = STAILQ_NEXT(filter, next);
}
return -ENOENT;
}
static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
{
struct bnxt_filter_info *filter;
struct bnxt_vnic_info *vnic;
int rc = 0;
uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
/* Implementation notes on the use of VNIC in this command:
*
* By default, these filters belong to default vnic for the function.
* Once these filters are set up, only destination VNIC can be modified.
* If the destination VNIC is not specified in this command,
* then the HWRM shall only create an l2 context id.
*/
vnic = BNXT_GET_DEFAULT_VNIC(bp);
filter = STAILQ_FIRST(&vnic->filter);
/* Check if the VLAN has already been added */
while (filter) {
if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id))
return -EEXIST;
filter = STAILQ_NEXT(filter, next);
}
/* No match found. Alloc a fresh filter and issue the L2_FILTER_ALLOC
* command to create MAC+VLAN filter with the right flags, enables set.
*/
filter = bnxt_alloc_filter(bp);
if (!filter) {
PMD_DRV_LOG(ERR,
"MAC/VLAN filter alloc failed\n");
return -ENOMEM;
}
/* MAC + VLAN ID filter */
/* If l2_ivlan == 0 and l2_ivlan_mask != 0, only
* untagged packets are received
*
* If l2_ivlan != 0 and l2_ivlan_mask != 0, untagged
* packets and only the programmed vlan's packets are received
*/
filter->l2_ivlan = vlan_id;
filter->l2_ivlan_mask = 0x0FFF;
filter->enables |= en;
filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
if (rc) {
/* Free the newly allocated filter as we were
* not able to create the filter in hardware.
*/
bnxt_free_filter(bp, filter);
return rc;
}
filter->mac_index = 0;
/* Add this new filter to the list */
if (vlan_id == 0)
STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
else
STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
PMD_DRV_LOG(INFO,
"Added Vlan filter for %d\n", vlan_id);
return rc;
}
static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
uint16_t vlan_id, int on)
{
struct bnxt *bp = eth_dev->data->dev_private;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
if (!eth_dev->data->dev_started) {
PMD_DRV_LOG(ERR, "port must be started before setting vlan\n");
return -EINVAL;
}
/* These operations apply to ALL existing MAC/VLAN filters */
if (on)
return bnxt_add_vlan_filter(bp, vlan_id);
else
return bnxt_del_vlan_filter(bp, vlan_id);
}
static int bnxt_del_dflt_mac_filter(struct bnxt *bp,
struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter;
int rc;
filter = STAILQ_FIRST(&vnic->filter);
while (filter) {
if (filter->mac_index == 0 &&
!memcmp(filter->l2_addr, bp->mac_addr,
RTE_ETHER_ADDR_LEN)) {
rc = bnxt_hwrm_clear_l2_filter(bp, filter);
if (!rc) {
STAILQ_REMOVE(&vnic->filter, filter,
bnxt_filter_info, next);
bnxt_free_filter(bp, filter);
}
return rc;
}
filter = STAILQ_NEXT(filter, next);
}
return 0;
}
static int
bnxt_config_vlan_hw_filter(struct bnxt *bp, uint64_t rx_offloads)
{
struct bnxt_vnic_info *vnic;
unsigned int i;
int rc;
vnic = BNXT_GET_DEFAULT_VNIC(bp);
if (!(rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER)) {
/* Remove any VLAN filters programmed */
for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
bnxt_del_vlan_filter(bp, i);
rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
if (rc)
return rc;
} else {
/* Default filter will allow packets that match the
* dest mac. So, it has to be deleted, otherwise, we
* will endup receiving vlan packets for which the
* filter is not programmed, when hw-vlan-filter
* configuration is ON
*/
bnxt_del_dflt_mac_filter(bp, vnic);
/* This filter will allow only untagged packets */
bnxt_add_vlan_filter(bp, 0);
}
PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
!!(rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER));
return 0;
}
static int bnxt_free_one_vnic(struct bnxt *bp, uint16_t vnic_id)
{
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
unsigned int i;
int rc;
/* Destroy vnic filters and vnic */
if (bp->eth_dev->data->dev_conf.rxmode.offloads &
RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
bnxt_del_vlan_filter(bp, i);
}
bnxt_del_dflt_mac_filter(bp, vnic);
rc = bnxt_hwrm_vnic_ctx_free(bp, vnic);
if (rc)
return rc;
rc = bnxt_hwrm_vnic_free(bp, vnic);
if (rc)
return rc;
rte_free(vnic->fw_grp_ids);
vnic->fw_grp_ids = NULL;
vnic->rx_queue_cnt = 0;
return 0;
}
static int
bnxt_config_vlan_hw_stripping(struct bnxt *bp, uint64_t rx_offloads)
{
struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
int rc;
/* Destroy, recreate and reconfigure the default vnic */
rc = bnxt_free_one_vnic(bp, 0);
if (rc)
return rc;
/* default vnic 0 */
rc = bnxt_setup_one_vnic(bp, 0);
if (rc)
return rc;
if (bp->eth_dev->data->dev_conf.rxmode.offloads &
RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
rc = bnxt_add_vlan_filter(bp, 0);
if (rc)
return rc;
rc = bnxt_restore_vlan_filters(bp);
if (rc)
return rc;
} else {
rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
if (rc)
return rc;
}
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
if (rc)
return rc;
PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
!!(rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP));
return rc;
}
static int
bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
{
uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
struct bnxt *bp = dev->data->dev_private;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
/* Filter settings will get applied when port is started */
if (!dev->data->dev_started)
return 0;
if (mask & RTE_ETH_VLAN_FILTER_MASK) {
/* Enable or disable VLAN filtering */
rc = bnxt_config_vlan_hw_filter(bp, rx_offloads);
if (rc)
return rc;
}
if (mask & RTE_ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
rc = bnxt_config_vlan_hw_stripping(bp, rx_offloads);
if (rc)
return rc;
}
if (mask & RTE_ETH_VLAN_EXTEND_MASK) {
if (rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_EXTEND)
PMD_DRV_LOG(DEBUG, "Extend VLAN supported\n");
else
PMD_DRV_LOG(INFO, "Extend VLAN unsupported\n");
}
return 0;
}
static int
bnxt_vlan_tpid_set_op(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
uint16_t tpid)
{
struct bnxt *bp = dev->data->dev_private;
int qinq = dev->data->dev_conf.rxmode.offloads &
RTE_ETH_RX_OFFLOAD_VLAN_EXTEND;
if (vlan_type != RTE_ETH_VLAN_TYPE_INNER &&
vlan_type != RTE_ETH_VLAN_TYPE_OUTER) {
PMD_DRV_LOG(ERR,
"Unsupported vlan type.");
return -EINVAL;
}
if (!qinq) {
PMD_DRV_LOG(ERR,
"QinQ not enabled. Needs to be ON as we can "
"accelerate only outer vlan\n");
return -EINVAL;
}
if (vlan_type == RTE_ETH_VLAN_TYPE_OUTER) {
switch (tpid) {
case RTE_ETHER_TYPE_QINQ:
bp->outer_tpid_bd =
TX_BD_LONG_CFA_META_VLAN_TPID_TPID88A8;
break;
case RTE_ETHER_TYPE_VLAN:
bp->outer_tpid_bd =
TX_BD_LONG_CFA_META_VLAN_TPID_TPID8100;
break;
case RTE_ETHER_TYPE_QINQ1:
bp->outer_tpid_bd =
TX_BD_LONG_CFA_META_VLAN_TPID_TPID9100;
break;
case RTE_ETHER_TYPE_QINQ2:
bp->outer_tpid_bd =
TX_BD_LONG_CFA_META_VLAN_TPID_TPID9200;
break;
case RTE_ETHER_TYPE_QINQ3:
bp->outer_tpid_bd =
TX_BD_LONG_CFA_META_VLAN_TPID_TPID9300;
break;
default:
PMD_DRV_LOG(ERR, "Invalid TPID: %x\n", tpid);
return -EINVAL;
}
bp->outer_tpid_bd |= tpid;
PMD_DRV_LOG(INFO, "outer_tpid_bd = %x\n", bp->outer_tpid_bd);
} else if (vlan_type == RTE_ETH_VLAN_TYPE_INNER) {
PMD_DRV_LOG(ERR,
"Can accelerate only outer vlan in QinQ\n");
return -EINVAL;
}
return 0;
}
static int
bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
struct rte_ether_addr *addr)
{
struct bnxt *bp = dev->data->dev_private;
/* Default Filter is tied to VNIC 0 */
struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
return -EPERM;
if (rte_is_zero_ether_addr(addr))
return -EINVAL;
/* Filter settings will get applied when port is started */
if (!dev->data->dev_started)
return 0;
/* Check if the requested MAC is already added */
if (memcmp(addr, bp->mac_addr, RTE_ETHER_ADDR_LEN) == 0)
return 0;
/* Destroy filter and re-create it */
bnxt_del_dflt_mac_filter(bp, vnic);
memcpy(bp->mac_addr, addr, RTE_ETHER_ADDR_LEN);
if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
/* This filter will allow only untagged packets */
rc = bnxt_add_vlan_filter(bp, 0);
} else {
rc = bnxt_add_mac_filter(bp, vnic, addr, 0, 0);
}
PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
return rc;
}
static int
bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct bnxt_vnic_info *vnic;
uint32_t i = 0;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
vnic = BNXT_GET_DEFAULT_VNIC(bp);
bp->nb_mc_addr = nb_mc_addr;
if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
goto allmulti;
}
/* TODO Check for Duplicate mcast addresses */
vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
for (i = 0; i < nb_mc_addr; i++)
rte_ether_addr_copy(&mc_addr_set[i], &bp->mcast_addr_list[i]);
if (bp->nb_mc_addr)
vnic->flags |= BNXT_VNIC_INFO_MCAST;
else
vnic->flags &= ~BNXT_VNIC_INFO_MCAST;
allmulti:
return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
}
static int
bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
{
struct bnxt *bp = dev->data->dev_private;
uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
uint8_t fw_rsvd = bp->fw_ver & 0xff;
int ret;
ret = snprintf(fw_version, fw_size, "%d.%d.%d.%d",
fw_major, fw_minor, fw_updt, fw_rsvd);
if (ret < 0)
return -EINVAL;
ret += 1; /* add the size of '\0' */
if (fw_size < (size_t)ret)
return ret;
else
return 0;
}
static void
bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct bnxt *bp = dev->data->dev_private;
struct bnxt_rx_queue *rxq;
if (is_bnxt_in_error(bp))
return;
rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mb_pool;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = rxq->nb_rx_desc;
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
qinfo->conf.rx_drop_en = rxq->drop_en;
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
}
static void
bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct bnxt *bp = dev->data->dev_private;
struct bnxt_tx_queue *txq;
if (is_bnxt_in_error(bp))
return;
txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
qinfo->conf.tx_rs_thresh = 0;
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
qinfo->conf.offloads = txq->offloads;
}
static const struct {
eth_rx_burst_t pkt_burst;
const char *info;
} bnxt_rx_burst_info[] = {
{bnxt_recv_pkts, "Scalar"},
#if defined(RTE_ARCH_X86)
{bnxt_recv_pkts_vec, "Vector SSE"},
#endif
#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
{bnxt_recv_pkts_vec_avx2, "Vector AVX2"},
#endif
#if defined(RTE_ARCH_ARM64)
{bnxt_recv_pkts_vec, "Vector Neon"},
#endif
};
static int
bnxt_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode)
{
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
size_t i;
for (i = 0; i < RTE_DIM(bnxt_rx_burst_info); i++) {
if (pkt_burst == bnxt_rx_burst_info[i].pkt_burst) {
snprintf(mode->info, sizeof(mode->info), "%s",
bnxt_rx_burst_info[i].info);
return 0;
}
}
return -EINVAL;
}
static const struct {
eth_tx_burst_t pkt_burst;
const char *info;
} bnxt_tx_burst_info[] = {
{bnxt_xmit_pkts, "Scalar"},
#if defined(RTE_ARCH_X86)
{bnxt_xmit_pkts_vec, "Vector SSE"},
#endif
#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
{bnxt_xmit_pkts_vec_avx2, "Vector AVX2"},
#endif
#if defined(RTE_ARCH_ARM64)
{bnxt_xmit_pkts_vec, "Vector Neon"},
#endif
};
static int
bnxt_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode)
{
eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
size_t i;
for (i = 0; i < RTE_DIM(bnxt_tx_burst_info); i++) {
if (pkt_burst == bnxt_tx_burst_info[i].pkt_burst) {
snprintf(mode->info, sizeof(mode->info), "%s",
bnxt_tx_burst_info[i].info);
return 0;
}
}
return -EINVAL;
}
int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
{
struct bnxt *bp = eth_dev->data->dev_private;
uint32_t rc;
uint32_t i;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
/* Return if port is active */
if (eth_dev->data->dev_started) {
PMD_DRV_LOG(ERR, "Stop port before changing MTU\n");
return -EPERM;
}
/* Exit if receive queues are not configured yet */
if (!eth_dev->data->nb_rx_queues)
return -ENOTSUP;
/* Is there a change in mtu setting? */
if (eth_dev->data->mtu == new_mtu)
return 0;
if (new_mtu > RTE_ETHER_MTU)
bp->flags |= BNXT_FLAG_JUMBO;
else
bp->flags &= ~BNXT_FLAG_JUMBO;
for (i = 0; i < bp->nr_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
uint16_t size = 0;
vnic->mru = BNXT_VNIC_MRU(new_mtu);
rc = bnxt_hwrm_vnic_cfg(bp, vnic);
if (rc)
break;
size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
size -= RTE_PKTMBUF_HEADROOM;
if (size < new_mtu) {
rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
if (rc)
return rc;
}
}
if (bnxt_hwrm_config_host_mtu(bp))
PMD_DRV_LOG(WARNING, "Failed to configure host MTU\n");
PMD_DRV_LOG(INFO, "New MTU is %d\n", new_mtu);
return rc;
}
static int
bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
{
struct bnxt *bp = dev->data->dev_private;
uint16_t vlan = bp->vlan;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
if (!BNXT_SINGLE_PF(bp)) {
PMD_DRV_LOG(ERR, "PVID cannot be modified on VF or on shared PF\n");
return -ENOTSUP;
}
bp->vlan = on ? pvid : 0;
rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
if (rc)
bp->vlan = vlan;
return rc;
}
static int
bnxt_dev_led_on_op(struct rte_eth_dev *dev)
{
struct bnxt *bp = dev->data->dev_private;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
return bnxt_hwrm_port_led_cfg(bp, true);
}
static int
bnxt_dev_led_off_op(struct rte_eth_dev *dev)
{
struct bnxt *bp = dev->data->dev_private;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
return bnxt_hwrm_port_led_cfg(bp, false);
}
static uint32_t
bnxt_rx_queue_count_op(void *rx_queue)
{
struct bnxt *bp;
struct bnxt_cp_ring_info *cpr;
uint32_t desc = 0, raw_cons, cp_ring_size;
struct bnxt_rx_queue *rxq;
struct rx_pkt_cmpl *rxcmp;
int rc;
rxq = rx_queue;
bp = rxq->bp;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
cpr = rxq->cp_ring;
raw_cons = cpr->cp_raw_cons;
cp_ring_size = cpr->cp_ring_struct->ring_size;
while (1) {
uint32_t agg_cnt, cons, cmpl_type;
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons, cp_ring_size))
break;
cmpl_type = CMP_TYPE(rxcmp);
switch (cmpl_type) {
case CMPL_BASE_TYPE_RX_L2:
case CMPL_BASE_TYPE_RX_L2_V2:
agg_cnt = BNXT_RX_L2_AGG_BUFS(rxcmp);
raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
desc++;
break;
case CMPL_BASE_TYPE_RX_TPA_END:
if (BNXT_CHIP_P5(rxq->bp)) {
struct rx_tpa_v2_end_cmpl_hi *p5_tpa_end;
p5_tpa_end = (void *)rxcmp;
agg_cnt = BNXT_TPA_END_AGG_BUFS_TH(p5_tpa_end);
} else {
struct rx_tpa_end_cmpl *tpa_end;
tpa_end = (void *)rxcmp;
agg_cnt = BNXT_TPA_END_AGG_BUFS(tpa_end);
}
raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
desc++;
break;
default:
raw_cons += CMP_LEN(cmpl_type);
}
}
return desc;
}
static int
bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
{
struct bnxt_rx_queue *rxq = rx_queue;
struct bnxt_cp_ring_info *cpr;
struct bnxt_rx_ring_info *rxr;
uint32_t desc, raw_cons, cp_ring_size;
struct bnxt *bp = rxq->bp;
struct rx_pkt_cmpl *rxcmp;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
if (offset >= rxq->nb_rx_desc)
return -EINVAL;
rxr = rxq->rx_ring;
cpr = rxq->cp_ring;
cp_ring_size = cpr->cp_ring_struct->ring_size;
/*
* For the vector receive case, the completion at the requested
* offset can be indexed directly.
*/
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
if (bp->flags & BNXT_FLAG_RX_VECTOR_PKT_MODE) {
struct rx_pkt_cmpl *rxcmp;
uint32_t cons;
/* Check status of completion descriptor. */
raw_cons = cpr->cp_raw_cons +
offset * CMP_LEN(CMPL_BASE_TYPE_RX_L2);
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
if (bnxt_cpr_cmp_valid(rxcmp, raw_cons, cp_ring_size))
return RTE_ETH_RX_DESC_DONE;
/* Check whether rx desc has an mbuf attached. */
cons = RING_CMP(rxr->rx_ring_struct, raw_cons / 2);
if (cons >= rxq->rxrearm_start &&
cons < rxq->rxrearm_start + rxq->rxrearm_nb) {
return RTE_ETH_RX_DESC_UNAVAIL;
}
return RTE_ETH_RX_DESC_AVAIL;
}
#endif
/*
* For the non-vector receive case, scan the completion ring to
* locate the completion descriptor for the requested offset.
*/
raw_cons = cpr->cp_raw_cons;
desc = 0;
while (1) {
uint32_t agg_cnt, cons, cmpl_type;
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons, cp_ring_size))
break;
cmpl_type = CMP_TYPE(rxcmp);
switch (cmpl_type) {
case CMPL_BASE_TYPE_RX_L2:
case CMPL_BASE_TYPE_RX_L2_V2:
if (desc == offset) {
cons = rxcmp->opaque;
if (rxr->rx_buf_ring[cons])
return RTE_ETH_RX_DESC_DONE;
else
return RTE_ETH_RX_DESC_UNAVAIL;
}
agg_cnt = BNXT_RX_L2_AGG_BUFS(rxcmp);
raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
desc++;
break;
case CMPL_BASE_TYPE_RX_TPA_END:
if (desc == offset)
return RTE_ETH_RX_DESC_DONE;
if (BNXT_CHIP_P5(rxq->bp)) {
struct rx_tpa_v2_end_cmpl_hi *p5_tpa_end;
p5_tpa_end = (void *)rxcmp;
agg_cnt = BNXT_TPA_END_AGG_BUFS_TH(p5_tpa_end);
} else {
struct rx_tpa_end_cmpl *tpa_end;
tpa_end = (void *)rxcmp;
agg_cnt = BNXT_TPA_END_AGG_BUFS(tpa_end);
}
raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
desc++;
break;
default:
raw_cons += CMP_LEN(cmpl_type);
}
}
return RTE_ETH_RX_DESC_AVAIL;
}
static int
bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
{
struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
struct bnxt_cp_ring_info *cpr = txq->cp_ring;
uint32_t ring_mask, raw_cons, nb_tx_pkts = 0;
struct cmpl_base *cp_desc_ring;
int rc;
rc = is_bnxt_in_error(txq->bp);
if (rc)
return rc;
if (offset >= txq->nb_tx_desc)
return -EINVAL;
/* Return "desc done" if descriptor is available for use. */
if (bnxt_tx_bds_in_hw(txq) <= offset)
return RTE_ETH_TX_DESC_DONE;
raw_cons = cpr->cp_raw_cons;
cp_desc_ring = cpr->cp_desc_ring;
ring_mask = cpr->cp_ring_struct->ring_mask;
/* Check to see if hw has posted a completion for the descriptor. */
while (1) {
struct tx_cmpl *txcmp;
uint32_t cons;
cons = RING_CMPL(ring_mask, raw_cons);
txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1))
break;
if (CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2)
nb_tx_pkts += rte_le_to_cpu_32(txcmp->opaque);
if (nb_tx_pkts > offset)
return RTE_ETH_TX_DESC_DONE;
raw_cons = NEXT_RAW_CMP(raw_cons);
}
/* Descriptor is pending transmit, not yet completed by hardware. */
return RTE_ETH_TX_DESC_FULL;
}
int
bnxt_flow_ops_get_op(struct rte_eth_dev *dev,
const struct rte_flow_ops **ops)
{
struct bnxt *bp = dev->data->dev_private;
int ret = 0;
if (!bp)
return -EIO;
if (BNXT_ETH_DEV_IS_REPRESENTOR(dev)) {
struct bnxt_representor *vfr = dev->data->dev_private;
bp = vfr->parent_dev->data->dev_private;
/* parent is deleted while children are still valid */
if (!bp) {
PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR Error\n",
dev->data->port_id);
return -EIO;
}
}
ret = is_bnxt_in_error(bp);
if (ret)
return ret;
/* PMD supports thread-safe flow operations. rte_flow API
* functions can avoid mutex for multi-thread safety.
*/
dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
if (BNXT_TRUFLOW_EN(bp))
*ops = &bnxt_ulp_rte_flow_ops;
else
*ops = &bnxt_flow_ops;
return ret;
}
static const uint32_t *
bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_ICMP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_INNER_L4_ICMP,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_UNKNOWN
};
if (!dev->rx_pkt_burst)
return NULL;
return ptypes;
}
static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
int reg_win)
{
uint32_t reg_base = *reg_arr & 0xfffff000;
uint32_t win_off;
int i;
for (i = 0; i < count; i++) {
if ((reg_arr[i] & 0xfffff000) != reg_base)
return -ERANGE;
}
win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
return 0;
}
static int bnxt_map_ptp_regs(struct bnxt *bp)
{
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
uint32_t *reg_arr;
int rc, i;
reg_arr = ptp->rx_regs;
rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
if (rc)
return rc;
reg_arr = ptp->tx_regs;
rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
if (rc)
return rc;
for (i = 0; i < BNXT_PTP_RX_REGS; i++)
ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
for (i = 0; i < BNXT_PTP_TX_REGS; i++)
ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
return 0;
}
static void bnxt_unmap_ptp_regs(struct bnxt *bp)
{
rte_write32(0, (uint8_t *)bp->bar0 +
BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
rte_write32(0, (uint8_t *)bp->bar0 +
BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
}
static uint64_t bnxt_cc_read(struct bnxt *bp)
{
uint64_t ns;
ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
BNXT_GRCPF_REG_SYNC_TIME));
ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
return ns;
}
static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
{
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
uint32_t fifo;
fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
return -EAGAIN;
fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_SEQ]);
return 0;
}
static int bnxt_clr_rx_ts(struct bnxt *bp, uint64_t *last_ts)
{
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
struct bnxt_pf_info *pf = bp->pf;
uint16_t port_id;
int i = 0;
uint32_t fifo;
if (!ptp || (bp->flags & BNXT_FLAG_CHIP_P5))
return -EINVAL;
port_id = pf->port_id;
fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
while ((fifo & BNXT_PTP_RX_FIFO_PENDING) && (i < BNXT_PTP_RX_PND_CNT)) {
rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
*last_ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
*last_ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
i++;
}
if (i >= BNXT_PTP_RX_PND_CNT)
return -EBUSY;
return 0;
}
static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
{
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
struct bnxt_pf_info *pf = bp->pf;
uint16_t port_id;
uint32_t fifo;
fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
return -EAGAIN;
port_id = pf->port_id;
rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
if (fifo & BNXT_PTP_RX_FIFO_PENDING)
return bnxt_clr_rx_ts(bp, ts);
*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
return 0;
}
static int
bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
{
uint64_t ns;
struct bnxt *bp = dev->data->dev_private;
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
if (!ptp)
return -ENOTSUP;
ns = rte_timespec_to_ns(ts);
/* Set the timecounters to a new value. */
ptp->tc.nsec = ns;
ptp->tx_tstamp_tc.nsec = ns;
ptp->rx_tstamp_tc.nsec = ns;
return 0;
}
static int
bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
{
struct bnxt *bp = dev->data->dev_private;
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
uint64_t ns, systime_cycles = 0;
int rc = 0;
if (!ptp)
return -ENOTSUP;
if (BNXT_CHIP_P5(bp))
rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
&systime_cycles);
else
systime_cycles = bnxt_cc_read(bp);
ns = rte_timecounter_update(&ptp->tc, systime_cycles);
*ts = rte_ns_to_timespec(ns);
return rc;
}
static int
bnxt_timesync_enable(struct rte_eth_dev *dev)
{
struct bnxt *bp = dev->data->dev_private;
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
uint32_t shift = 0;
int rc;
if (!ptp)
return -ENOTSUP;
ptp->rx_filter = 1;
ptp->tx_tstamp_en = 1;
ptp->rxctl = BNXT_PTP_MSG_EVENTS;
rc = bnxt_hwrm_ptp_cfg(bp);
if (rc)
return rc;
memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
ptp->tc.cc_shift = shift;
ptp->tc.nsec_mask = (1ULL << shift) - 1;
ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
ptp->rx_tstamp_tc.cc_shift = shift;
ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
ptp->tx_tstamp_tc.cc_shift = shift;
ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
if (!BNXT_CHIP_P5(bp))
bnxt_map_ptp_regs(bp);
else
rc = bnxt_ptp_start(bp);
return rc;
}
static int
bnxt_timesync_disable(struct rte_eth_dev *dev)
{
struct bnxt *bp = dev->data->dev_private;
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
if (!ptp)
return -ENOTSUP;
ptp->rx_filter = 0;
ptp->tx_tstamp_en = 0;
ptp->rxctl = 0;
bnxt_hwrm_ptp_cfg(bp);
if (!BNXT_CHIP_P5(bp))
bnxt_unmap_ptp_regs(bp);
else
bnxt_ptp_stop(bp);
return 0;
}
static int
bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp,
uint32_t flags __rte_unused)
{
struct bnxt *bp = dev->data->dev_private;
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
uint64_t rx_tstamp_cycles = 0;
uint64_t ns;
if (!ptp)
return -ENOTSUP;
if (BNXT_CHIP_P5(bp))
rx_tstamp_cycles = ptp->rx_timestamp;
else
bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
*timestamp = rte_ns_to_timespec(ns);
return 0;
}
static int
bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp)
{
struct bnxt *bp = dev->data->dev_private;
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
uint64_t tx_tstamp_cycles = 0;
uint64_t ns;
int rc = 0;
if (!ptp)
return -ENOTSUP;
if (BNXT_CHIP_P5(bp))
rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_PATH_TX,
&tx_tstamp_cycles);
else
rc = bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
*timestamp = rte_ns_to_timespec(ns);
return rc;
}
static int
bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
{
struct bnxt *bp = dev->data->dev_private;
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
if (!ptp)
return -ENOTSUP;
ptp->tc.nsec += delta;
ptp->tx_tstamp_tc.nsec += delta;
ptp->rx_tstamp_tc.nsec += delta;
return 0;
}
static int
bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
{
struct bnxt *bp = dev->data->dev_private;
int rc;
uint32_t dir_entries;
uint32_t entry_length;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
PMD_DRV_LOG(INFO, PCI_PRI_FMT "\n",
bp->pdev->addr.domain, bp->pdev->addr.bus,
bp->pdev->addr.devid, bp->pdev->addr.function);
rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
if (rc != 0)
return rc;
return dir_entries * entry_length;
}
static int
bnxt_get_eeprom_op(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *in_eeprom)
{
struct bnxt *bp = dev->data->dev_private;
uint32_t index;
uint32_t offset;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
bp->pdev->addr.domain, bp->pdev->addr.bus,
bp->pdev->addr.devid, bp->pdev->addr.function,
in_eeprom->offset, in_eeprom->length);
if (in_eeprom->offset == 0) /* special offset value to get directory */
return bnxt_get_nvram_directory(bp, in_eeprom->length,
in_eeprom->data);
index = in_eeprom->offset >> 24;
offset = in_eeprom->offset & 0xffffff;
if (index != 0)
return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
in_eeprom->length, in_eeprom->data);
return 0;
}
static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
{
switch (dir_type) {
case BNX_DIR_TYPE_CHIMP_PATCH:
case BNX_DIR_TYPE_BOOTCODE:
case BNX_DIR_TYPE_BOOTCODE_2:
case BNX_DIR_TYPE_APE_FW:
case BNX_DIR_TYPE_APE_PATCH:
case BNX_DIR_TYPE_KONG_FW:
case BNX_DIR_TYPE_KONG_PATCH:
case BNX_DIR_TYPE_BONO_FW:
case BNX_DIR_TYPE_BONO_PATCH:
/* FALLTHROUGH */
return true;
}
return false;
}
static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
{
switch (dir_type) {
case BNX_DIR_TYPE_AVS:
case BNX_DIR_TYPE_EXP_ROM_MBA:
case BNX_DIR_TYPE_PCIE:
case BNX_DIR_TYPE_TSCF_UCODE:
case BNX_DIR_TYPE_EXT_PHY:
case BNX_DIR_TYPE_CCM:
case BNX_DIR_TYPE_ISCSI_BOOT:
case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
/* FALLTHROUGH */
return true;
}
return false;
}
static bool bnxt_dir_type_is_executable(uint16_t dir_type)
{
return bnxt_dir_type_is_ape_bin_format(dir_type) ||
bnxt_dir_type_is_other_exec_format(dir_type);
}
static int
bnxt_set_eeprom_op(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *in_eeprom)
{
struct bnxt *bp = dev->data->dev_private;
uint8_t index, dir_op;
uint16_t type, ext, ordinal, attr;
int rc;
rc = is_bnxt_in_error(bp);
if (rc)
return rc;
PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
bp->pdev->addr.domain, bp->pdev->addr.bus,
bp->pdev->addr.devid, bp->pdev->addr.function,
in_eeprom->offset, in_eeprom->length);
if (!BNXT_PF(bp)) {
PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
return -EINVAL;
}
type = in_eeprom->magic >> 16;
if (type == 0xffff) { /* special value for directory operations */
index = in_eeprom->magic & 0xff;
dir_op = in_eeprom->magic >> 8;
if (index == 0)
return -EINVAL;
switch (dir_op) {
case 0x0e: /* erase */
if (in_eeprom->offset != ~in_eeprom->magic)
return -EINVAL;
return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
default:
return -EINVAL;
}
}
/* Create or re-write an NVM item: */
if (bnxt_dir_type_is_executable(type) == true)
return -EOPNOTSUPP;
ext = in_eeprom->magic & 0xffff;
ordinal = in_eeprom->offset >> 16;
attr = in_eeprom->offset & 0xffff;
return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
in_eeprom->data, in_eeprom->length);
}
static int bnxt_get_module_info(struct rte_eth_dev *dev,
struct rte_eth_dev_module_info *modinfo)
{
uint8_t module_info[SFF_DIAG_SUPPORT_OFFSET + 1];
struct bnxt *bp = dev->data->dev_private;
int rc;
/* No point in going further if phy status indicates
* module is not inserted or if it is powered down or
* if it is of type 10GBase-T
*/
if (bp->link_info->module_status >
HWRM_PORT_PHY_QCFG_OUTPUT_MODULE_STATUS_WARNINGMSG) {
PMD_DRV_LOG(NOTICE, "Port %u : Module is not inserted or is powered down\n",
dev->data->port_id);
return -ENOTSUP;
}
/* This feature is not supported in older firmware versions */
if (bp->hwrm_spec_code < 0x10202) {
PMD_DRV_LOG(NOTICE, "Port %u : Feature is not supported in older firmware\n",
dev->data->port_id);
return -ENOTSUP;
}
rc = bnxt_hwrm_read_sfp_module_eeprom_info(bp, I2C_DEV_ADDR_A0, 0, 0,
SFF_DIAG_SUPPORT_OFFSET + 1,
module_info);
if (rc)
return rc;
switch (module_info[0]) {
case SFF_MODULE_ID_SFP:
modinfo->type = RTE_ETH_MODULE_SFF_8472;
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
if (module_info[SFF_DIAG_SUPPORT_OFFSET] == 0)
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_LEN;
break;
case SFF_MODULE_ID_QSFP:
case SFF_MODULE_ID_QSFP_PLUS:
modinfo->type = RTE_ETH_MODULE_SFF_8436;
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_LEN;
break;
case SFF_MODULE_ID_QSFP28:
modinfo->type = RTE_ETH_MODULE_SFF_8636;
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
if (module_info[SFF8636_FLATMEM_OFFSET] & SFF8636_FLATMEM_MASK)
modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_LEN;
break;
default:
PMD_DRV_LOG(NOTICE, "Port %u : Unsupported module\n", dev->data->port_id);
return -ENOTSUP;
}
PMD_DRV_LOG(INFO, "Port %u : modinfo->type = %d modinfo->eeprom_len = %d\n",
dev->data->port_id, modinfo->type, modinfo->eeprom_len);
return 0;
}
static int bnxt_get_module_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *info)
{
uint8_t pg_addr[5] = { I2C_DEV_ADDR_A0, I2C_DEV_ADDR_A0 };
uint32_t offset = info->offset, length = info->length;
uint8_t module_info[SFF_DIAG_SUPPORT_OFFSET + 1];
struct bnxt *bp = dev->data->dev_private;
uint8_t *data = info->data;
uint8_t page = offset >> 7;
uint8_t max_pages = 2;
uint8_t opt_pages;
int rc;
rc = bnxt_hwrm_read_sfp_module_eeprom_info(bp, I2C_DEV_ADDR_A0, 0, 0,
SFF_DIAG_SUPPORT_OFFSET + 1,
module_info);
if (rc)
return rc;
switch (module_info[0]) {
case SFF_MODULE_ID_SFP:
module_info[SFF_DIAG_SUPPORT_OFFSET] = 0;
if (module_info[SFF_DIAG_SUPPORT_OFFSET]) {
pg_addr[2] = I2C_DEV_ADDR_A2;
pg_addr[3] = I2C_DEV_ADDR_A2;
max_pages = 4;
}
break;
case SFF_MODULE_ID_QSFP28:
rc = bnxt_hwrm_read_sfp_module_eeprom_info(bp, I2C_DEV_ADDR_A0, 0,
SFF8636_OPT_PAGES_OFFSET,
1, &opt_pages);
if (rc)
return rc;
if (opt_pages & SFF8636_PAGE1_MASK) {
pg_addr[2] = I2C_DEV_ADDR_A0;
max_pages = 3;
}
if (opt_pages & SFF8636_PAGE2_MASK) {
pg_addr[3] = I2C_DEV_ADDR_A0;
max_pages = 4;
}
if (~module_info[SFF8636_FLATMEM_OFFSET] & SFF8636_FLATMEM_MASK) {
pg_addr[4] = I2C_DEV_ADDR_A0;
max_pages = 5;
}
break;
default:
break;
}
memset(data, 0, length);
offset &= 0xff;
while (length && page < max_pages) {
uint8_t raw_page = page ? page - 1 : 0;
uint16_t chunk;
if (pg_addr[page] == I2C_DEV_ADDR_A2)
raw_page = 0;
else if (page)
offset |= 0x80;
chunk = RTE_MIN(length, 256 - offset);
if (pg_addr[page]) {
rc = bnxt_hwrm_read_sfp_module_eeprom_info(bp, pg_addr[page],
raw_page, offset,
chunk, data);
if (rc)
return rc;
}
data += chunk;
length -= chunk;
offset = 0;
page += 1 + (chunk > 128);
}
return length ? -EINVAL : 0;
}
/*
* Initialization
*/
static const struct eth_dev_ops bnxt_dev_ops = {
.dev_infos_get = bnxt_dev_info_get_op,
.dev_close = bnxt_dev_close_op,
.dev_configure = bnxt_dev_configure_op,
.dev_start = bnxt_dev_start_op,
.dev_stop = bnxt_dev_stop_op,
.dev_set_link_up = bnxt_dev_set_link_up_op,
.dev_set_link_down = bnxt_dev_set_link_down_op,
.stats_get = bnxt_stats_get_op,
.stats_reset = bnxt_stats_reset_op,
.rx_queue_setup = bnxt_rx_queue_setup_op,
.rx_queue_release = bnxt_rx_queue_release_op,
.tx_queue_setup = bnxt_tx_queue_setup_op,
.tx_queue_release = bnxt_tx_queue_release_op,
.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
.reta_update = bnxt_reta_update_op,
.reta_query = bnxt_reta_query_op,
.rss_hash_update = bnxt_rss_hash_update_op,
.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
.link_update = bnxt_link_update_op,
.promiscuous_enable = bnxt_promiscuous_enable_op,
.promiscuous_disable = bnxt_promiscuous_disable_op,
.allmulticast_enable = bnxt_allmulticast_enable_op,
.allmulticast_disable = bnxt_allmulticast_disable_op,
.mac_addr_add = bnxt_mac_addr_add_op,
.mac_addr_remove = bnxt_mac_addr_remove_op,
.flow_ctrl_get = bnxt_flow_ctrl_get_op,
.flow_ctrl_set = bnxt_flow_ctrl_set_op,
.udp_tunnel_port_add = bnxt_udp_tunnel_port_add_op,
.udp_tunnel_port_del = bnxt_udp_tunnel_port_del_op,
.vlan_filter_set = bnxt_vlan_filter_set_op,
.vlan_offload_set = bnxt_vlan_offload_set_op,
.vlan_tpid_set = bnxt_vlan_tpid_set_op,
.vlan_pvid_set = bnxt_vlan_pvid_set_op,
.mtu_set = bnxt_mtu_set_op,
.mac_addr_set = bnxt_set_default_mac_addr_op,
.xstats_get = bnxt_dev_xstats_get_op,
.xstats_get_names = bnxt_dev_xstats_get_names_op,
.xstats_reset = bnxt_dev_xstats_reset_op,
.fw_version_get = bnxt_fw_version_get,
.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
.rxq_info_get = bnxt_rxq_info_get_op,
.txq_info_get = bnxt_txq_info_get_op,
.rx_burst_mode_get = bnxt_rx_burst_mode_get,
.tx_burst_mode_get = bnxt_tx_burst_mode_get,
.dev_led_on = bnxt_dev_led_on_op,
.dev_led_off = bnxt_dev_led_off_op,
.rx_queue_start = bnxt_rx_queue_start,
.rx_queue_stop = bnxt_rx_queue_stop,
.tx_queue_start = bnxt_tx_queue_start,
.tx_queue_stop = bnxt_tx_queue_stop,
.flow_ops_get = bnxt_flow_ops_get_op,
.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
.get_eeprom_length = bnxt_get_eeprom_length_op,
.get_eeprom = bnxt_get_eeprom_op,
.set_eeprom = bnxt_set_eeprom_op,
.get_module_info = bnxt_get_module_info,
.get_module_eeprom = bnxt_get_module_eeprom,
.timesync_enable = bnxt_timesync_enable,
.timesync_disable = bnxt_timesync_disable,
.timesync_read_time = bnxt_timesync_read_time,
.timesync_write_time = bnxt_timesync_write_time,
.timesync_adjust_time = bnxt_timesync_adjust_time,
.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
};
static uint32_t bnxt_map_reset_regs(struct bnxt *bp, uint32_t reg)
{
uint32_t offset;
/* Only pre-map the reset GRC registers using window 3 */
rte_write32(reg & 0xfffff000, (uint8_t *)bp->bar0 +
BNXT_GRCPF_REG_WINDOW_BASE_OUT + 8);
offset = BNXT_GRCP_WINDOW_3_BASE + (reg & 0xffc);
return offset;
}
int bnxt_map_fw_health_status_regs(struct bnxt *bp)
{
struct bnxt_error_recovery_info *info = bp->recovery_info;
uint32_t reg_base = 0xffffffff;
int i;
/* Only pre-map the monitoring GRC registers using window 2 */
for (i = 0; i < BNXT_FW_STATUS_REG_CNT; i++) {
uint32_t reg = info->status_regs[i];
if (BNXT_FW_STATUS_REG_TYPE(reg) != BNXT_FW_STATUS_REG_TYPE_GRC)
continue;
if (reg_base == 0xffffffff)
reg_base = reg & 0xfffff000;
if ((reg & 0xfffff000) != reg_base)
return -ERANGE;
/* Use mask 0xffc as the Lower 2 bits indicates
* address space location
*/
info->mapped_status_regs[i] = BNXT_GRCP_WINDOW_2_BASE +
(reg & 0xffc);
}
if (reg_base == 0xffffffff)
return 0;
rte_write32(reg_base, (uint8_t *)bp->bar0 +
BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
return 0;
}
static void bnxt_write_fw_reset_reg(struct bnxt *bp, uint32_t index)
{
struct bnxt_error_recovery_info *info = bp->recovery_info;
uint32_t delay = info->delay_after_reset[index];
uint32_t val = info->reset_reg_val[index];
uint32_t reg = info->reset_reg[index];
uint32_t type, offset;
int ret;
type = BNXT_FW_STATUS_REG_TYPE(reg);
offset = BNXT_FW_STATUS_REG_OFF(reg);
switch (type) {
case BNXT_FW_STATUS_REG_TYPE_CFG:
ret = rte_pci_write_config(bp->pdev, &val, sizeof(val), offset);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to write %#x at PCI offset %#x",
val, offset);
return;
}
break;
case BNXT_FW_STATUS_REG_TYPE_GRC:
offset = bnxt_map_reset_regs(bp, offset);
rte_write32(val, (uint8_t *)bp->bar0 + offset);
break;
case BNXT_FW_STATUS_REG_TYPE_BAR0:
rte_write32(val, (uint8_t *)bp->bar0 + offset);
break;
}
/* wait on a specific interval of time until core reset is complete */
if (delay)
rte_delay_ms(delay);
}
static void bnxt_dev_cleanup(struct bnxt *bp)
{
bp->eth_dev->data->dev_link.link_status = 0;
bp->link_info->link_up = 0;
if (bp->eth_dev->data->dev_started)
bnxt_dev_stop(bp->eth_dev);
bnxt_uninit_resources(bp, true);
}
static int
bnxt_check_fw_reset_done(struct bnxt *bp)
{
int timeout = bp->fw_reset_max_msecs;
uint16_t val = 0;
int rc;
do {
rc = rte_pci_read_config(bp->pdev, &val, sizeof(val), PCI_SUBSYSTEM_ID_OFFSET);
if (rc < 0) {
PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_SUBSYSTEM_ID_OFFSET);
return rc;
}
if (val != 0xffff)
break;
rte_delay_ms(1);
} while (timeout--);
if (val == 0xffff) {
PMD_DRV_LOG(ERR, "Firmware reset aborted, PCI config space invalid\n");
return -1;
}
return 0;
}
static int bnxt_restore_vlan_filters(struct bnxt *bp)
{
struct rte_eth_dev *dev = bp->eth_dev;
struct rte_vlan_filter_conf *vfc;
int vidx, vbit, rc;
uint16_t vlan_id;
for (vlan_id = 1; vlan_id <= RTE_ETHER_MAX_VLAN_ID; vlan_id++) {
vfc = &dev->data->vlan_filter_conf;
vidx = vlan_id / 64;
vbit = vlan_id % 64;
/* Each bit corresponds to a VLAN id */
if (vfc->ids[vidx] & (UINT64_C(1) << vbit)) {
rc = bnxt_add_vlan_filter(bp, vlan_id);
if (rc)
return rc;
}
}
return 0;
}
static int bnxt_restore_mac_filters(struct bnxt *bp)
{
struct rte_eth_dev *dev = bp->eth_dev;
struct rte_eth_dev_info dev_info;
struct rte_ether_addr *addr;
uint64_t pool_mask;
uint32_t pool = 0;
uint32_t i;
int rc;
if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
return 0;
rc = bnxt_dev_info_get_op(dev, &dev_info);
if (rc)
return rc;
/* replay MAC address configuration */
for (i = 1; i < dev_info.max_mac_addrs; i++) {
addr = &dev->data->mac_addrs[i];
/* skip zero address */
if (rte_is_zero_ether_addr(addr))
continue;
pool = 0;
pool_mask = dev->data->mac_pool_sel[i];
do {
if (pool_mask & 1ULL) {
rc = bnxt_mac_addr_add_op(dev, addr, i, pool);
if (rc)
return rc;
}
pool_mask >>= 1;
pool++;
} while (pool_mask);
}
return 0;
}
static int bnxt_restore_mcast_mac_filters(struct bnxt *bp)
{
int ret = 0;
ret = bnxt_dev_set_mc_addr_list_op(bp->eth_dev, bp->mcast_addr_list,
bp->nb_mc_addr);
if (ret)
PMD_DRV_LOG(ERR, "Failed to restore multicast MAC addreeses\n");
return ret;
}
static int bnxt_restore_filters(struct bnxt *bp)
{
struct rte_eth_dev *dev = bp->eth_dev;
int ret = 0;
if (dev->data->all_multicast) {
ret = bnxt_allmulticast_enable_op(dev);
if (ret)
return ret;
}
if (dev->data->promiscuous) {
ret = bnxt_promiscuous_enable_op(dev);
if (ret)
return ret;
}
ret = bnxt_restore_mac_filters(bp);
if (ret)
return ret;
/* if vlans are already programmed, this can fail with -EEXIST */
ret = bnxt_restore_vlan_filters(bp);
if (ret && ret != -EEXIST)
return ret;
ret = bnxt_restore_mcast_mac_filters(bp);
if (ret)
return ret;
return ret;
}
static int bnxt_check_fw_ready(struct bnxt *bp)
{
int timeout = bp->fw_reset_max_msecs ? : BNXT_MAX_FW_RESET_TIMEOUT;
int rc = 0;
do {
rc = bnxt_hwrm_poll_ver_get(bp);
if (rc == 0)
break;
rte_delay_ms(BNXT_FW_READY_WAIT_INTERVAL);
timeout -= BNXT_FW_READY_WAIT_INTERVAL;
} while (rc && timeout > 0);
if (rc)
PMD_DRV_LOG(ERR, "FW is not Ready after reset\n");
return rc;
}
static void bnxt_dev_recover(void *arg)
{
struct bnxt *bp = arg;
int rc = 0;
pthread_mutex_lock(&bp->err_recovery_lock);
if (!bp->fw_reset_min_msecs) {
rc = bnxt_check_fw_reset_done(bp);
if (rc)
goto err;
}
/* Clear Error flag so that device re-init should happen */
bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
PMD_DRV_LOG(INFO, "Port: %u Starting recovery...\n",
bp->eth_dev->data->port_id);
rc = bnxt_check_fw_ready(bp);
if (rc)
goto err;
rc = bnxt_init_resources(bp, true);
if (rc) {
PMD_DRV_LOG(ERR,
"Failed to initialize resources after reset\n");
goto err;
}
/* clear reset flag as the device is initialized now */
bp->flags &= ~BNXT_FLAG_FW_RESET;
rc = bnxt_dev_start_op(bp->eth_dev);
if (rc) {
PMD_DRV_LOG(ERR, "Failed to start port after reset\n");
goto err_start;
}
rc = bnxt_restore_filters(bp);
if (rc)
goto err_start;
rte_eth_fp_ops[bp->eth_dev->data->port_id].rx_pkt_burst =
bp->eth_dev->rx_pkt_burst;
rte_eth_fp_ops[bp->eth_dev->data->port_id].tx_pkt_burst =
bp->eth_dev->tx_pkt_burst;
rte_mb();
PMD_DRV_LOG(INFO, "Port: %u Recovered from FW reset\n",
bp->eth_dev->data->port_id);
pthread_mutex_unlock(&bp->err_recovery_lock);
return;
err_start:
bnxt_dev_stop(bp->eth_dev);
err:
bp->flags |= BNXT_FLAG_FATAL_ERROR;
bnxt_uninit_resources(bp, false);
if (bp->eth_dev->data->dev_conf.intr_conf.rmv)
rte_eth_dev_callback_process(bp->eth_dev,
RTE_ETH_EVENT_INTR_RMV,
NULL);
pthread_mutex_unlock(&bp->err_recovery_lock);
PMD_DRV_LOG(ERR, "Port %u: Failed to recover from FW reset\n",
bp->eth_dev->data->port_id);
}
void bnxt_dev_reset_and_resume(void *arg)
{
struct bnxt *bp = arg;
uint32_t us = US_PER_MS * bp->fw_reset_min_msecs;
uint16_t val = 0;
int rc;
bnxt_dev_cleanup(bp);
PMD_DRV_LOG(INFO, "Port: %u Finished bnxt_dev_cleanup\n",
bp->eth_dev->data->port_id);
bnxt_wait_for_device_shutdown(bp);
/* During some fatal firmware error conditions, the PCI config space
* register 0x2e which normally contains the subsystem ID will become
* 0xffff. This register will revert back to the normal value after
* the chip has completed core reset. If we detect this condition,
* we can poll this config register immediately for the value to revert.
*/
if (bp->flags & BNXT_FLAG_FATAL_ERROR) {
rc = rte_pci_read_config(bp->pdev, &val, sizeof(val), PCI_SUBSYSTEM_ID_OFFSET);
if (rc < 0) {
PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_SUBSYSTEM_ID_OFFSET);
return;
}
if (val == 0xffff) {
bp->fw_reset_min_msecs = 0;
us = 1;
}
}
rc = rte_eal_alarm_set(us, bnxt_dev_recover, (void *)bp);
if (rc)
PMD_DRV_LOG(ERR, "Port %u: Error setting recovery alarm",
bp->eth_dev->data->port_id);
}
uint32_t bnxt_read_fw_status_reg(struct bnxt *bp, uint32_t index)
{
struct bnxt_error_recovery_info *info = bp->recovery_info;
uint32_t reg = info->status_regs[index];
uint32_t type, offset, val = 0;
int ret = 0;
type = BNXT_FW_STATUS_REG_TYPE(reg);
offset = BNXT_FW_STATUS_REG_OFF(reg);
switch (type) {
case BNXT_FW_STATUS_REG_TYPE_CFG:
ret = rte_pci_read_config(bp->pdev, &val, sizeof(val), offset);
if (ret < 0)
PMD_DRV_LOG(ERR, "Failed to read PCI offset %#x",
offset);
break;
case BNXT_FW_STATUS_REG_TYPE_GRC:
offset = info->mapped_status_regs[index];
/* FALLTHROUGH */
case BNXT_FW_STATUS_REG_TYPE_BAR0:
val = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
offset));
break;
}
return val;
}
static int bnxt_fw_reset_all(struct bnxt *bp)
{
struct bnxt_error_recovery_info *info = bp->recovery_info;
uint32_t i;
int rc = 0;
if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
/* Reset through primary function driver */
for (i = 0; i < info->reg_array_cnt; i++)
bnxt_write_fw_reset_reg(bp, i);
/* Wait for time specified by FW after triggering reset */
rte_delay_ms(info->primary_func_wait_period_after_reset);
} else if (info->flags & BNXT_FLAG_ERROR_RECOVERY_CO_CPU) {
/* Reset with the help of Kong processor */
rc = bnxt_hwrm_fw_reset(bp);
if (rc)
PMD_DRV_LOG(ERR, "Failed to reset FW\n");
}
return rc;
}
static void bnxt_fw_reset_cb(void *arg)
{
struct bnxt *bp = arg;
struct bnxt_error_recovery_info *info = bp->recovery_info;
int rc = 0;
/* Only Primary function can do FW reset */
if (bnxt_is_primary_func(bp) &&
bnxt_is_recovery_enabled(bp)) {
rc = bnxt_fw_reset_all(bp);
if (rc) {
PMD_DRV_LOG(ERR, "Adapter recovery failed\n");
return;
}
}
/* if recovery method is ERROR_RECOVERY_CO_CPU, KONG will send
* EXCEPTION_FATAL_ASYNC event to all the functions
* (including MASTER FUNC). After receiving this Async, all the active
* drivers should treat this case as FW initiated recovery
*/
if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
bp->fw_reset_min_msecs = BNXT_MIN_FW_READY_TIMEOUT;
bp->fw_reset_max_msecs = BNXT_MAX_FW_RESET_TIMEOUT;
/* To recover from error */
rte_eal_alarm_set(US_PER_MS, bnxt_dev_reset_and_resume,
(void *)bp);
}
}
/* Driver should poll FW heartbeat, reset_counter with the frequency
* advertised by FW in HWRM_ERROR_RECOVERY_QCFG.
* When the driver detects heartbeat stop or change in reset_counter,
* it has to trigger a reset to recover from the error condition.
* A “primary function” is the function who will have the privilege to
* initiate the chimp reset. The primary function will be elected by the
* firmware and will be notified through async message.
*/
static void bnxt_check_fw_health(void *arg)
{
struct bnxt *bp = arg;
struct bnxt_error_recovery_info *info = bp->recovery_info;
uint32_t val = 0, wait_msec;
if (!info || !bnxt_is_recovery_enabled(bp) ||
is_bnxt_in_error(bp))
return;
val = bnxt_read_fw_status_reg(bp, BNXT_FW_HEARTBEAT_CNT_REG);
if (val == info->last_heart_beat)
goto reset;
info->last_heart_beat = val;
val = bnxt_read_fw_status_reg(bp, BNXT_FW_RECOVERY_CNT_REG);
if (val != info->last_reset_counter)
goto reset;
info->last_reset_counter = val;
rte_eal_alarm_set(US_PER_MS * info->driver_polling_freq,
bnxt_check_fw_health, (void *)bp);
return;
reset:
/* Stop DMA to/from device */
bp->flags |= BNXT_FLAG_FATAL_ERROR;
bp->flags |= BNXT_FLAG_FW_RESET;
bnxt_stop_rxtx(bp->eth_dev);
PMD_DRV_LOG(ERR, "Detected FW dead condition\n");
if (bnxt_is_primary_func(bp))
wait_msec = info->primary_func_wait_period;
else
wait_msec = info->normal_func_wait_period;
rte_eal_alarm_set(US_PER_MS * wait_msec,
bnxt_fw_reset_cb, (void *)bp);
}
void bnxt_schedule_fw_health_check(struct bnxt *bp)
{
uint32_t polling_freq;
pthread_mutex_lock(&bp->health_check_lock);
if (!bnxt_is_recovery_enabled(bp))
goto done;
if (bp->flags & BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED)
goto done;
polling_freq = bp->recovery_info->driver_polling_freq;
rte_eal_alarm_set(US_PER_MS * polling_freq,
bnxt_check_fw_health, (void *)bp);
bp->flags |= BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
done:
pthread_mutex_unlock(&bp->health_check_lock);
}
static void bnxt_cancel_fw_health_check(struct bnxt *bp)
{
rte_eal_alarm_cancel(bnxt_check_fw_health, (void *)bp);
bp->flags &= ~BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
}
static bool bnxt_vf_pciid(uint16_t device_id)
{
switch (device_id) {
case BROADCOM_DEV_ID_57304_VF:
case BROADCOM_DEV_ID_57406_VF:
case BROADCOM_DEV_ID_5731X_VF:
case BROADCOM_DEV_ID_5741X_VF:
case BROADCOM_DEV_ID_57414_VF:
case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
case BROADCOM_DEV_ID_58802_VF:
case BROADCOM_DEV_ID_57500_VF1:
case BROADCOM_DEV_ID_57500_VF2:
case BROADCOM_DEV_ID_58818_VF:
/* FALLTHROUGH */
return true;
default:
return false;
}
}
/* Phase 5 device */
static bool bnxt_p5_device(uint16_t device_id)
{
switch (device_id) {
case BROADCOM_DEV_ID_57508:
case BROADCOM_DEV_ID_57504:
case BROADCOM_DEV_ID_57502:
case BROADCOM_DEV_ID_57508_MF1:
case BROADCOM_DEV_ID_57504_MF1:
case BROADCOM_DEV_ID_57502_MF1:
case BROADCOM_DEV_ID_57508_MF2:
case BROADCOM_DEV_ID_57504_MF2:
case BROADCOM_DEV_ID_57502_MF2:
case BROADCOM_DEV_ID_57500_VF1:
case BROADCOM_DEV_ID_57500_VF2:
case BROADCOM_DEV_ID_58812:
case BROADCOM_DEV_ID_58814:
case BROADCOM_DEV_ID_58818:
case BROADCOM_DEV_ID_58818_VF:
/* FALLTHROUGH */
return true;
default:
return false;
}
}
bool bnxt_stratus_device(struct bnxt *bp)
{
uint16_t device_id = bp->pdev->id.device_id;
switch (device_id) {
case BROADCOM_DEV_ID_STRATUS_NIC:
case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
/* FALLTHROUGH */
return true;
default:
return false;
}
}
static int bnxt_map_pci_bars(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct bnxt *bp = eth_dev->data->dev_private;
/* enable device (incl. PCI PM wakeup), and bus-mastering */
bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
if (!bp->bar0 || !bp->doorbell_base) {
PMD_DRV_LOG(ERR, "Unable to access Hardware\n");
return -ENODEV;
}
bp->eth_dev = eth_dev;
bp->pdev = pci_dev;
return 0;
}
static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
struct bnxt_ctx_pg_info *ctx_pg,
uint32_t mem_size,
const char *suffix,
uint16_t idx)
{
struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
const struct rte_memzone *mz = NULL;
char mz_name[RTE_MEMZONE_NAMESIZE];
rte_iova_t mz_phys_addr;
uint64_t valid_bits = 0;
uint32_t sz;
int i;
if (!mem_size)
return 0;
rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) /
BNXT_PAGE_SIZE;
rmem->page_size = BNXT_PAGE_SIZE;
rmem->pg_arr = ctx_pg->ctx_pg_arr;
rmem->dma_arr = ctx_pg->ctx_dma_arr;
rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
valid_bits = PTU_PTE_VALID;
if (rmem->nr_pages > 1) {
snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
"bnxt_ctx_pg_tbl%s_%x_%d",
suffix, idx, bp->eth_dev->data->port_id);
mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
mz = rte_memzone_lookup(mz_name);
if (!mz) {
mz = rte_memzone_reserve_aligned(mz_name,
rmem->nr_pages * 8,
bp->eth_dev->device->numa_node,
RTE_MEMZONE_2MB |
RTE_MEMZONE_SIZE_HINT_ONLY |
RTE_MEMZONE_IOVA_CONTIG,
BNXT_PAGE_SIZE);
if (mz == NULL)
return -ENOMEM;
}
memset(mz->addr, 0, mz->len);
mz_phys_addr = mz->iova;
rmem->pg_tbl = mz->addr;
rmem->pg_tbl_map = mz_phys_addr;
rmem->pg_tbl_mz = mz;
}
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x_%d",
suffix, idx, bp->eth_dev->data->port_id);
mz = rte_memzone_lookup(mz_name);
if (!mz) {
mz = rte_memzone_reserve_aligned(mz_name,
mem_size,
bp->eth_dev->device->numa_node,
RTE_MEMZONE_1GB |
RTE_MEMZONE_SIZE_HINT_ONLY |
RTE_MEMZONE_IOVA_CONTIG,
BNXT_PAGE_SIZE);
if (mz == NULL)
return -ENOMEM;
}
memset(mz->addr, 0, mz->len);
mz_phys_addr = mz->iova;
for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) {
rmem->pg_arr[i] = ((char *)mz->addr) + sz;
rmem->dma_arr[i] = mz_phys_addr + sz;
if (rmem->nr_pages > 1) {
if (i == rmem->nr_pages - 2 &&
(rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
valid_bits |= PTU_PTE_NEXT_TO_LAST;
else if (i == rmem->nr_pages - 1 &&
(rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
valid_bits |= PTU_PTE_LAST;
rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] |
valid_bits);
}
}
rmem->mz = mz;
if (rmem->vmem_size)
rmem->vmem = (void **)mz->addr;
rmem->dma_arr[0] = mz_phys_addr;
return 0;
}
static void bnxt_free_ctx_mem(struct bnxt *bp)
{
int i;
if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED))
return;
bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED;
rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz);
rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz);
rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz);
rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz);
rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz);
rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz);
rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz);
rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz);
rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz);
rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz);
for (i = 0; i < bp->ctx->tqm_fp_rings_count + 1; i++) {
if (bp->ctx->tqm_mem[i])
rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz);
}
rte_free(bp->ctx);
bp->ctx = NULL;
}
#define bnxt_roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
#define min_t(type, x, y) ({ \
type __min1 = (x); \
type __min2 = (y); \
__min1 < __min2 ? __min1 : __min2; })
#define max_t(type, x, y) ({ \
type __max1 = (x); \
type __max2 = (y); \
__max1 > __max2 ? __max1 : __max2; })
#define clamp_t(type, _x, min, max) min_t(type, max_t(type, _x, min), max)
int bnxt_alloc_ctx_mem(struct bnxt *bp)
{
struct bnxt_ctx_pg_info *ctx_pg;
struct bnxt_ctx_mem_info *ctx;
uint32_t mem_size, ena, entries;
uint32_t entries_sp, min;
int i, rc;
rc = bnxt_hwrm_func_backing_store_qcaps(bp);
if (rc) {
PMD_DRV_LOG(ERR, "Query context mem capability failed\n");
return rc;
}
ctx = bp->ctx;
if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
return 0;
ctx_pg = &ctx->qp_mem;
ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
if (ctx->qp_entry_size) {
mem_size = ctx->qp_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0);
if (rc)
return rc;
}
ctx_pg = &ctx->srq_mem;
ctx_pg->entries = ctx->srq_max_l2_entries;
if (ctx->srq_entry_size) {
mem_size = ctx->srq_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0);
if (rc)
return rc;
}
ctx_pg = &ctx->cq_mem;
ctx_pg->entries = ctx->cq_max_l2_entries;
if (ctx->cq_entry_size) {
mem_size = ctx->cq_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0);
if (rc)
return rc;
}
ctx_pg = &ctx->vnic_mem;
ctx_pg->entries = ctx->vnic_max_vnic_entries +
ctx->vnic_max_ring_table_entries;
if (ctx->vnic_entry_size) {
mem_size = ctx->vnic_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0);
if (rc)
return rc;
}
ctx_pg = &ctx->stat_mem;
ctx_pg->entries = ctx->stat_max_entries;
if (ctx->stat_entry_size) {
mem_size = ctx->stat_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0);
if (rc)
return rc;
}
min = ctx->tqm_min_entries_per_ring;
entries_sp = ctx->qp_max_l2_entries +
ctx->vnic_max_vnic_entries +
2 * ctx->qp_min_qp1_entries + min;
entries_sp = bnxt_roundup(entries_sp, ctx->tqm_entries_multiple);
entries = ctx->qp_max_l2_entries + ctx->qp_min_qp1_entries;
entries = bnxt_roundup(entries, ctx->tqm_entries_multiple);
entries = clamp_t(uint32_t, entries, min,
ctx->tqm_max_entries_per_ring);
for (i = 0, ena = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
/* i=0 is for TQM_SP. i=1 to i=8 applies to RING0 to RING7.
* i > 8 is other ext rings.
*/
ctx_pg = ctx->tqm_mem[i];
ctx_pg->entries = i ? entries : entries_sp;
if (ctx->tqm_entry_size) {
mem_size = ctx->tqm_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size,
"tqm_mem", i);
if (rc)
return rc;
}
if (i < BNXT_MAX_TQM_LEGACY_RINGS)
ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i;
else
ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_RING8;
}
ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES;
rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
if (rc)
PMD_DRV_LOG(ERR,
"Failed to configure context mem: rc = %d\n", rc);
else
ctx->flags |= BNXT_CTX_FLAG_INITED;
return rc;
}
static int bnxt_alloc_stats_mem(struct bnxt *bp)
{
struct rte_pci_device *pci_dev = bp->pdev;
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz = NULL;
uint32_t total_alloc_len;
rte_iova_t mz_phys_addr;
if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2)
return 0;
snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
"bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
pci_dev->addr.bus, pci_dev->addr.devid,
pci_dev->addr.function, "rx_port_stats");
mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
mz = rte_memzone_lookup(mz_name);
total_alloc_len =
RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) +
sizeof(struct rx_port_stats_ext) + 512);
if (!mz) {
mz = rte_memzone_reserve(mz_name, total_alloc_len,
SOCKET_ID_ANY,
RTE_MEMZONE_2MB |
RTE_MEMZONE_SIZE_HINT_ONLY |
RTE_MEMZONE_IOVA_CONTIG);
if (mz == NULL)
return -ENOMEM;
}
memset(mz->addr, 0, mz->len);
mz_phys_addr = mz->iova;
bp->rx_mem_zone = (const void *)mz;
bp->hw_rx_port_stats = mz->addr;
bp->hw_rx_port_stats_map = mz_phys_addr;
snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
"bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
pci_dev->addr.bus, pci_dev->addr.devid,
pci_dev->addr.function, "tx_port_stats");
mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
mz = rte_memzone_lookup(mz_name);
total_alloc_len =
RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) +
sizeof(struct tx_port_stats_ext) + 512);
if (!mz) {
mz = rte_memzone_reserve(mz_name,
total_alloc_len,
SOCKET_ID_ANY,
RTE_MEMZONE_2MB |
RTE_MEMZONE_SIZE_HINT_ONLY |
RTE_MEMZONE_IOVA_CONTIG);
if (mz == NULL)
return -ENOMEM;
}
memset(mz->addr, 0, mz->len);
mz_phys_addr = mz->iova;
bp->tx_mem_zone = (const void *)mz;
bp->hw_tx_port_stats = mz->addr;
bp->hw_tx_port_stats_map = mz_phys_addr;
bp->flags |= BNXT_FLAG_PORT_STATS;
/* Display extended statistics if FW supports it */
if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 ||
!(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED))
return 0;
bp->hw_rx_port_stats_ext = (void *)
((uint8_t *)bp->hw_rx_port_stats +
sizeof(struct rx_port_stats));
bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
sizeof(struct rx_port_stats);
bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 ||
bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) {
bp->hw_tx_port_stats_ext = (void *)
((uint8_t *)bp->hw_tx_port_stats +
sizeof(struct tx_port_stats));
bp->hw_tx_port_stats_ext_map =
bp->hw_tx_port_stats_map +
sizeof(struct tx_port_stats);
bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
}
return 0;
}
static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
size_t max_mac_addr = RTE_MIN(bp->max_l2_ctx, RTE_ETH_NUM_RECEIVE_MAC_ADDR);
int rc = 0;
if (bp->max_l2_ctx > RTE_ETH_NUM_RECEIVE_MAC_ADDR)
PMD_DRV_LOG(INFO, "Max number of MAC addrs supported is %d, but will be limited to %d\n",
bp->max_l2_ctx, RTE_ETH_NUM_RECEIVE_MAC_ADDR);
eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
RTE_ETHER_ADDR_LEN * max_mac_addr,
0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n");
return -ENOMEM;
}
if (!BNXT_HAS_DFLT_MAC_SET(bp)) {
if (BNXT_PF(bp))
return -EINVAL;
/* Generate a random MAC address, if none was assigned by PF */
PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n");
bnxt_eth_hw_addr_random(bp->mac_addr);
PMD_DRV_LOG(INFO,
"Assign random MAC:" RTE_ETHER_ADDR_PRT_FMT "\n",
bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2],
bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]);
rc = bnxt_hwrm_set_mac(bp);
if (rc)
return rc;
}
/* Copy the permanent MAC from the FUNC_QCAPS response */
memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
/*
* Allocate memory to hold multicast mac addresses added.
* Used to restore them during reset recovery
*/
bp->mcast_addr_list = rte_zmalloc("bnxt_mcast_addr_tbl",
sizeof(struct rte_ether_addr) *
BNXT_MAX_MC_ADDRS, 0);
if (bp->mcast_addr_list == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate multicast addr table\n");
return -ENOMEM;
}
bp->mc_list_dma_addr = rte_malloc_virt2iova(bp->mcast_addr_list);
if (bp->mc_list_dma_addr == RTE_BAD_IOVA) {
PMD_DRV_LOG(ERR, "Fail to map mcast_addr_list to physical memory\n");
return -ENOMEM;
}
return rc;
}
static int bnxt_restore_dflt_mac(struct bnxt *bp)
{
int rc = 0;
/* MAC is already configured in FW */
if (BNXT_HAS_DFLT_MAC_SET(bp))
return 0;
/* Restore the old MAC configured */
rc = bnxt_hwrm_set_mac(bp);
if (rc)
PMD_DRV_LOG(ERR, "Failed to restore MAC address\n");
return rc;
}
static void bnxt_config_vf_req_fwd(struct bnxt *bp)
{
if (!BNXT_PF(bp))
return;
memset(bp->pf->vf_req_fwd, 0, sizeof(bp->pf->vf_req_fwd));
if (!(bp->fw_cap & BNXT_FW_CAP_LINK_ADMIN))
BNXT_HWRM_CMD_TO_FORWARD(HWRM_PORT_PHY_QCFG);
BNXT_HWRM_CMD_TO_FORWARD(HWRM_FUNC_CFG);
BNXT_HWRM_CMD_TO_FORWARD(HWRM_FUNC_VF_CFG);
BNXT_HWRM_CMD_TO_FORWARD(HWRM_CFA_L2_FILTER_ALLOC);
BNXT_HWRM_CMD_TO_FORWARD(HWRM_OEM_CMD);
}
static void bnxt_alloc_error_recovery_info(struct bnxt *bp)
{
struct bnxt_error_recovery_info *info = bp->recovery_info;
if (info) {
if (!(bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS))
memset(info, 0, sizeof(*info));
return;
}
if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
return;
info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
sizeof(*info), 0);
if (!info)
bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
bp->recovery_info = info;
}
static void bnxt_check_fw_status(struct bnxt *bp)
{
uint32_t fw_status;
if (!(bp->recovery_info &&
(bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS)))
return;
fw_status = bnxt_read_fw_status_reg(bp, BNXT_FW_STATUS_REG);
if (fw_status != BNXT_FW_STATUS_HEALTHY)
PMD_DRV_LOG(ERR, "Firmware not responding, status: %#x\n",
fw_status);
}
static int bnxt_map_hcomm_fw_status_reg(struct bnxt *bp)
{
struct bnxt_error_recovery_info *info = bp->recovery_info;
uint32_t status_loc;
uint32_t sig_ver;
rte_write32(HCOMM_STATUS_STRUCT_LOC, (uint8_t *)bp->bar0 +
BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
sig_ver = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
BNXT_GRCP_WINDOW_2_BASE +
offsetof(struct hcomm_status,
sig_ver)));
/* If the signature is absent, then FW does not support this feature */
if ((sig_ver & HCOMM_STATUS_SIGNATURE_MASK) !=
HCOMM_STATUS_SIGNATURE_VAL)
return 0;
if (!info) {
info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
sizeof(*info), 0);
if (!info)
return -ENOMEM;
bp->recovery_info = info;
} else {
memset(info, 0, sizeof(*info));
}
status_loc = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
BNXT_GRCP_WINDOW_2_BASE +
offsetof(struct hcomm_status,
fw_status_loc)));
/* Only pre-map the FW health status GRC register */
if (BNXT_FW_STATUS_REG_TYPE(status_loc) != BNXT_FW_STATUS_REG_TYPE_GRC)
return 0;
info->status_regs[BNXT_FW_STATUS_REG] = status_loc;
info->mapped_status_regs[BNXT_FW_STATUS_REG] =
BNXT_GRCP_WINDOW_2_BASE + (status_loc & BNXT_GRCP_OFFSET_MASK);
rte_write32((status_loc & BNXT_GRCP_BASE_MASK), (uint8_t *)bp->bar0 +
BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
bp->fw_cap |= BNXT_FW_CAP_HCOMM_FW_STATUS;
return 0;
}
/* This function gets the FW version along with the
* capabilities(MAX and current) of the function, vnic,
* error recovery, phy and other chip related info
*/
static int bnxt_get_config(struct bnxt *bp)
{
uint16_t mtu;
int rc = 0;
bp->fw_cap = 0;
rc = bnxt_map_hcomm_fw_status_reg(bp);
if (rc)
return rc;
rc = bnxt_hwrm_ver_get(bp, DFLT_HWRM_CMD_TIMEOUT);
if (rc) {
bnxt_check_fw_status(bp);
return rc;
}
rc = bnxt_hwrm_func_reset(bp);
if (rc)
return -EIO;
rc = bnxt_hwrm_vnic_qcaps(bp);
if (rc)
return rc;
rc = bnxt_hwrm_queue_qportcfg(bp);
if (rc)
return rc;
/* Get the MAX capabilities for this function.
* This function also allocates context memory for TQM rings and
* informs the firmware about this allocated backing store memory.
*/
rc = bnxt_hwrm_func_qcaps(bp);
if (rc)
return rc;
rc = bnxt_hwrm_func_qcfg(bp, &mtu);
if (rc)
return rc;
bnxt_hwrm_port_mac_qcfg(bp);
bnxt_hwrm_parent_pf_qcfg(bp);
bnxt_hwrm_port_phy_qcaps(bp);
bnxt_alloc_error_recovery_info(bp);
/* Get the adapter error recovery support info */
rc = bnxt_hwrm_error_recovery_qcfg(bp);
if (rc)
bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
bnxt_hwrm_port_led_qcaps(bp);
return 0;
}
static int
bnxt_init_locks(struct bnxt *bp)
{
int err;
err = pthread_mutex_init(&bp->flow_lock, NULL);
if (err) {
PMD_DRV_LOG(ERR, "Unable to initialize flow_lock\n");
return err;
}
err = pthread_mutex_init(&bp->def_cp_lock, NULL);
if (err) {
PMD_DRV_LOG(ERR, "Unable to initialize def_cp_lock\n");
return err;
}
err = pthread_mutex_init(&bp->health_check_lock, NULL);
if (err) {
PMD_DRV_LOG(ERR, "Unable to initialize health_check_lock\n");
return err;
}
err = pthread_mutex_init(&bp->err_recovery_lock, NULL);
if (err)
PMD_DRV_LOG(ERR, "Unable to initialize err_recovery_lock\n");
return err;
}
/* This should be called after we have queried trusted VF cap */
static int bnxt_alloc_switch_domain(struct bnxt *bp)
{
int rc = 0;
if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) {
rc = rte_eth_switch_domain_alloc(&bp->switch_domain_id);
if (rc)
PMD_DRV_LOG(ERR,
"Failed to alloc switch domain: %d\n", rc);
else
PMD_DRV_LOG(INFO,
"Switch domain allocated %d\n",
bp->switch_domain_id);
}
return rc;
}
static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev)
{
int rc = 0;
rc = bnxt_get_config(bp);
if (rc)
return rc;
rc = bnxt_alloc_switch_domain(bp);
if (rc)
return rc;
if (!reconfig_dev) {
rc = bnxt_setup_mac_addr(bp->eth_dev);
if (rc)
return rc;
} else {
rc = bnxt_restore_dflt_mac(bp);
if (rc)
return rc;
}
bnxt_config_vf_req_fwd(bp);
rc = bnxt_hwrm_func_driver_register(bp);
if (rc) {
PMD_DRV_LOG(ERR, "Failed to register driver");
return -EBUSY;
}
if (BNXT_PF(bp)) {
if (bp->pdev->max_vfs) {
rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
if (rc) {
PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
return rc;
}
} else {
rc = bnxt_hwrm_allocate_pf_only(bp);
if (rc) {
PMD_DRV_LOG(ERR,
"Failed to allocate PF resources");
return rc;
}
}
}
if (!reconfig_dev) {
bp->rss_conf.rss_key = rte_zmalloc("bnxt_rss_key",
HW_HASH_KEY_SIZE, 0);
if (bp->rss_conf.rss_key == NULL) {
PMD_DRV_LOG(ERR, "port %u cannot allocate RSS hash key memory",
bp->eth_dev->data->port_id);
return -ENOMEM;
}
}
rc = bnxt_alloc_mem(bp, reconfig_dev);
if (rc)
return rc;
rc = bnxt_setup_int(bp);
if (rc)
return rc;
rc = bnxt_request_int(bp);
if (rc)
return rc;
rc = bnxt_init_ctx_mem(bp);
if (rc) {
PMD_DRV_LOG(ERR, "Failed to init adv_flow_counters\n");
return rc;
}
return 0;
}
static int
bnxt_parse_devarg_flow_xstat(__rte_unused const char *key,
const char *value, void *opaque_arg)
{
struct bnxt *bp = opaque_arg;
unsigned long flow_xstat;
char *end = NULL;
if (!value || !opaque_arg) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to flow_xstat devarg.\n");
return -EINVAL;
}
flow_xstat = strtoul(value, &end, 10);
if (end == NULL || *end != '\0' ||
(flow_xstat == ULONG_MAX && errno == ERANGE)) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to flow_xstat devarg.\n");
return -EINVAL;
}
if (BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)) {
PMD_DRV_LOG(ERR,
"Invalid value passed to flow_xstat devarg.\n");
return -EINVAL;
}
bp->flags |= BNXT_FLAG_FLOW_XSTATS_EN;
if (BNXT_FLOW_XSTATS_EN(bp))
PMD_DRV_LOG(INFO, "flow_xstat feature enabled.\n");
return 0;
}
static int
bnxt_parse_devarg_max_num_kflows(__rte_unused const char *key,
const char *value, void *opaque_arg)
{
struct bnxt *bp = opaque_arg;
unsigned long max_num_kflows;
char *end = NULL;
if (!value || !opaque_arg) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to max_num_kflows devarg.\n");
return -EINVAL;
}
max_num_kflows = strtoul(value, &end, 10);
if (end == NULL || *end != '\0' ||
(max_num_kflows == ULONG_MAX && errno == ERANGE)) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to max_num_kflows devarg.\n");
return -EINVAL;
}
if (bnxt_devarg_max_num_kflow_invalid(max_num_kflows)) {
PMD_DRV_LOG(ERR,
"Invalid value passed to max_num_kflows devarg.\n");
return -EINVAL;
}
bp->max_num_kflows = max_num_kflows;
if (bp->max_num_kflows)
PMD_DRV_LOG(INFO, "max_num_kflows set as %ldK.\n",
max_num_kflows);
return 0;
}
static int
bnxt_parse_devarg_app_id(__rte_unused const char *key,
const char *value, void *opaque_arg)
{
struct bnxt *bp = opaque_arg;
unsigned long app_id;
char *end = NULL;
if (!value || !opaque_arg) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to app-id "
"devargs.\n");
return -EINVAL;
}
app_id = strtoul(value, &end, 10);
if (end == NULL || *end != '\0' ||
(app_id == ULONG_MAX && errno == ERANGE)) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to app_id "
"devargs.\n");
return -EINVAL;
}
if (BNXT_DEVARG_APP_ID_INVALID(app_id)) {
PMD_DRV_LOG(ERR, "Invalid app-id(%d) devargs.\n",
(uint16_t)app_id);
return -EINVAL;
}
bp->app_id = app_id;
PMD_DRV_LOG(INFO, "app-id=%d feature enabled.\n", (uint16_t)app_id);
return 0;
}
static int
bnxt_parse_devarg_rep_is_pf(__rte_unused const char *key,
const char *value, void *opaque_arg)
{
struct bnxt_representor *vfr_bp = opaque_arg;
unsigned long rep_is_pf;
char *end = NULL;
if (!value || !opaque_arg) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_is_pf devargs.\n");
return -EINVAL;
}
rep_is_pf = strtoul(value, &end, 10);
if (end == NULL || *end != '\0' ||
(rep_is_pf == ULONG_MAX && errno == ERANGE)) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_is_pf devargs.\n");
return -EINVAL;
}
if (BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf)) {
PMD_DRV_LOG(ERR,
"Invalid value passed to rep_is_pf devargs.\n");
return -EINVAL;
}
vfr_bp->flags |= rep_is_pf;
if (BNXT_REP_PF(vfr_bp))
PMD_DRV_LOG(INFO, "PF representor\n");
else
PMD_DRV_LOG(INFO, "VF representor\n");
return 0;
}
static int
bnxt_parse_devarg_rep_based_pf(__rte_unused const char *key,
const char *value, void *opaque_arg)
{
struct bnxt_representor *vfr_bp = opaque_arg;
unsigned long rep_based_pf;
char *end = NULL;
if (!value || !opaque_arg) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_based_pf "
"devargs.\n");
return -EINVAL;
}
rep_based_pf = strtoul(value, &end, 10);
if (end == NULL || *end != '\0' ||
(rep_based_pf == ULONG_MAX && errno == ERANGE)) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_based_pf "
"devargs.\n");
return -EINVAL;
}
if (BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf)) {
PMD_DRV_LOG(ERR,
"Invalid value passed to rep_based_pf devargs.\n");
return -EINVAL;
}
vfr_bp->rep_based_pf = rep_based_pf;
vfr_bp->flags |= BNXT_REP_BASED_PF_VALID;
PMD_DRV_LOG(INFO, "rep-based-pf = %d\n", vfr_bp->rep_based_pf);
return 0;
}
static int
bnxt_parse_devarg_rep_q_r2f(__rte_unused const char *key,
const char *value, void *opaque_arg)
{
struct bnxt_representor *vfr_bp = opaque_arg;
unsigned long rep_q_r2f;
char *end = NULL;
if (!value || !opaque_arg) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_q_r2f "
"devargs.\n");
return -EINVAL;
}
rep_q_r2f = strtoul(value, &end, 10);
if (end == NULL || *end != '\0' ||
(rep_q_r2f == ULONG_MAX && errno == ERANGE)) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_q_r2f "
"devargs.\n");
return -EINVAL;
}
if (BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f)) {
PMD_DRV_LOG(ERR,
"Invalid value passed to rep_q_r2f devargs.\n");
return -EINVAL;
}
vfr_bp->rep_q_r2f = rep_q_r2f;
vfr_bp->flags |= BNXT_REP_Q_R2F_VALID;
PMD_DRV_LOG(INFO, "rep-q-r2f = %d\n", vfr_bp->rep_q_r2f);
return 0;
}
static int
bnxt_parse_devarg_rep_q_f2r(__rte_unused const char *key,
const char *value, void *opaque_arg)
{
struct bnxt_representor *vfr_bp = opaque_arg;
unsigned long rep_q_f2r;
char *end = NULL;
if (!value || !opaque_arg) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_q_f2r "
"devargs.\n");
return -EINVAL;
}
rep_q_f2r = strtoul(value, &end, 10);
if (end == NULL || *end != '\0' ||
(rep_q_f2r == ULONG_MAX && errno == ERANGE)) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_q_f2r "
"devargs.\n");
return -EINVAL;
}
if (BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r)) {
PMD_DRV_LOG(ERR,
"Invalid value passed to rep_q_f2r devargs.\n");
return -EINVAL;
}
vfr_bp->rep_q_f2r = rep_q_f2r;
vfr_bp->flags |= BNXT_REP_Q_F2R_VALID;
PMD_DRV_LOG(INFO, "rep-q-f2r = %d\n", vfr_bp->rep_q_f2r);
return 0;
}
static int
bnxt_parse_devarg_rep_fc_r2f(__rte_unused const char *key,
const char *value, void *opaque_arg)
{
struct bnxt_representor *vfr_bp = opaque_arg;
unsigned long rep_fc_r2f;
char *end = NULL;
if (!value || !opaque_arg) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_fc_r2f "
"devargs.\n");
return -EINVAL;
}
rep_fc_r2f = strtoul(value, &end, 10);
if (end == NULL || *end != '\0' ||
(rep_fc_r2f == ULONG_MAX && errno == ERANGE)) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_fc_r2f "
"devargs.\n");
return -EINVAL;
}
if (BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f)) {
PMD_DRV_LOG(ERR,
"Invalid value passed to rep_fc_r2f devargs.\n");
return -EINVAL;
}
vfr_bp->flags |= BNXT_REP_FC_R2F_VALID;
vfr_bp->rep_fc_r2f = rep_fc_r2f;
PMD_DRV_LOG(INFO, "rep-fc-r2f = %lu\n", rep_fc_r2f);
return 0;
}
static int
bnxt_parse_devarg_rep_fc_f2r(__rte_unused const char *key,
const char *value, void *opaque_arg)
{
struct bnxt_representor *vfr_bp = opaque_arg;
unsigned long rep_fc_f2r;
char *end = NULL;
if (!value || !opaque_arg) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_fc_f2r "
"devargs.\n");
return -EINVAL;
}
rep_fc_f2r = strtoul(value, &end, 10);
if (end == NULL || *end != '\0' ||
(rep_fc_f2r == ULONG_MAX && errno == ERANGE)) {
PMD_DRV_LOG(ERR,
"Invalid parameter passed to rep_fc_f2r "
"devargs.\n");
return -EINVAL;
}
if (BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r)) {
PMD_DRV_LOG(ERR,
"Invalid value passed to rep_fc_f2r devargs.\n");
return -EINVAL;
}
vfr_bp->flags |= BNXT_REP_FC_F2R_VALID;
vfr_bp->rep_fc_f2r = rep_fc_f2r;
PMD_DRV_LOG(INFO, "rep-fc-f2r = %lu\n", rep_fc_f2r);
return 0;
}
static int
bnxt_parse_dev_args(struct bnxt *bp, struct rte_devargs *devargs)
{
struct rte_kvargs *kvlist;
int ret;
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, bnxt_dev_args);
if (kvlist == NULL)
return -EINVAL;
/*
* Handler for "flow_xstat" devarg.
* Invoked as for ex: "-a 0000:00:0d.0,flow_xstat=1"
*/
ret = rte_kvargs_process(kvlist, BNXT_DEVARG_FLOW_XSTAT,
bnxt_parse_devarg_flow_xstat, bp);
if (ret)
goto err;
/*
* Handler for "max_num_kflows" devarg.
* Invoked as for ex: "-a 000:00:0d.0,max_num_kflows=32"
*/
ret = rte_kvargs_process(kvlist, BNXT_DEVARG_MAX_NUM_KFLOWS,
bnxt_parse_devarg_max_num_kflows, bp);
if (ret)
goto err;
err:
/*
* Handler for "app-id" devarg.
* Invoked as for ex: "-a 000:00:0d.0,app-id=1"
*/
rte_kvargs_process(kvlist, BNXT_DEVARG_APP_ID,
bnxt_parse_devarg_app_id, bp);
rte_kvargs_free(kvlist);
return ret;
}
/* Allocate and initialize various fields in bnxt struct that
* need to be allocated/destroyed only once in the lifetime of the driver
*/
static int bnxt_drv_init(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct bnxt *bp = eth_dev->data->dev_private;
int rc = 0;
bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
if (bnxt_vf_pciid(pci_dev->id.device_id))
bp->flags |= BNXT_FLAG_VF;
if (bnxt_p5_device(pci_dev->id.device_id))
bp->flags |= BNXT_FLAG_CHIP_P5;
if (pci_dev->id.device_id == BROADCOM_DEV_ID_58802 ||
pci_dev->id.device_id == BROADCOM_DEV_ID_58804 ||
pci_dev->id.device_id == BROADCOM_DEV_ID_58808 ||
pci_dev->id.device_id == BROADCOM_DEV_ID_58802_VF)
bp->flags |= BNXT_FLAG_STINGRAY;
if (BNXT_TRUFLOW_EN(bp)) {
/* extra mbuf field is required to store CFA code from mark */
static const struct rte_mbuf_dynfield bnxt_cfa_code_dynfield_desc = {
.name = RTE_PMD_BNXT_CFA_CODE_DYNFIELD_NAME,
.size = sizeof(bnxt_cfa_code_dynfield_t),
.align = __alignof__(bnxt_cfa_code_dynfield_t),
};
bnxt_cfa_code_dynfield_offset =
rte_mbuf_dynfield_register(&bnxt_cfa_code_dynfield_desc);
if (bnxt_cfa_code_dynfield_offset < 0) {
PMD_DRV_LOG(ERR,
"Failed to register mbuf field for TruFlow mark\n");
return -rte_errno;
}
}
rc = bnxt_map_pci_bars(eth_dev);
if (rc) {
PMD_DRV_LOG(ERR,
"Failed to initialize board rc: %x\n", rc);
return rc;
}
rc = bnxt_alloc_pf_info(bp);
if (rc)
return rc;
rc = bnxt_alloc_link_info(bp);
if (rc)
return rc;
rc = bnxt_alloc_parent_info(bp);
if (rc)
return rc;
rc = bnxt_alloc_hwrm_resources(bp);
if (rc) {
PMD_DRV_LOG(ERR,
"Failed to allocate response buffer rc: %x\n", rc);
return rc;
}
rc = bnxt_alloc_leds_info(bp);
if (rc)
return rc;
rc = bnxt_alloc_cos_queues(bp);
if (rc)
return rc;
rc = bnxt_init_locks(bp);
if (rc)
return rc;
return rc;
}
static int
bnxt_dev_init(struct rte_eth_dev *eth_dev, void *params __rte_unused)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
static int version_printed;
struct bnxt *bp;
int rc;
if (version_printed++ == 0)
PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
eth_dev->dev_ops = &bnxt_dev_ops;
eth_dev->rx_queue_count = bnxt_rx_queue_count_op;
eth_dev->rx_descriptor_status = bnxt_rx_descriptor_status_op;
eth_dev->tx_descriptor_status = bnxt_tx_descriptor_status_op;
eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
/*
* For secondary processes, we don't initialise any further
* as primary has already done this work.
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
rte_eth_copy_pci_info(eth_dev, pci_dev);
eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
bp = eth_dev->data->dev_private;
/* Parse dev arguments passed on when starting the DPDK application. */
rc = bnxt_parse_dev_args(bp, pci_dev->device.devargs);
if (rc)
goto error_free;
rc = bnxt_drv_init(eth_dev);
if (rc)
goto error_free;
rc = bnxt_init_resources(bp, false);
if (rc)
goto error_free;
rc = bnxt_alloc_stats_mem(bp);
if (rc)
goto error_free;
PMD_DRV_LOG(INFO,
"Found %s device at mem %" PRIX64 ", node addr %pM\n",
DRV_MODULE_NAME,
pci_dev->mem_resource[0].phys_addr,
pci_dev->mem_resource[0].addr);
return 0;
error_free:
bnxt_dev_uninit(eth_dev);
return rc;
}
static void bnxt_free_ctx_mem_buf(struct bnxt_ctx_mem_buf_info *ctx)
{
if (!ctx)
return;
rte_free(ctx->va);
ctx->va = NULL;
ctx->dma = RTE_BAD_IOVA;
ctx->ctx_id = BNXT_CTX_VAL_INVAL;
}
static void bnxt_unregister_fc_ctx_mem(struct bnxt *bp)
{
bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
bp->flow_stat->rx_fc_out_tbl.ctx_id,
bp->flow_stat->max_fc,
false);
bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
bp->flow_stat->tx_fc_out_tbl.ctx_id,
bp->flow_stat->max_fc,
false);
if (bp->flow_stat->rx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_in_tbl.ctx_id);
bp->flow_stat->rx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
if (bp->flow_stat->rx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_out_tbl.ctx_id);
bp->flow_stat->rx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
if (bp->flow_stat->tx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_in_tbl.ctx_id);
bp->flow_stat->tx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
if (bp->flow_stat->tx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_out_tbl.ctx_id);
bp->flow_stat->tx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
}
static void bnxt_uninit_fc_ctx_mem(struct bnxt *bp)
{
bnxt_unregister_fc_ctx_mem(bp);
bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_in_tbl);
bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_out_tbl);
bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_in_tbl);
bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_out_tbl);
}
static void bnxt_uninit_ctx_mem(struct bnxt *bp)
{
if (BNXT_FLOW_XSTATS_EN(bp))
bnxt_uninit_fc_ctx_mem(bp);
}
static void
bnxt_free_error_recovery_info(struct bnxt *bp)
{
rte_free(bp->recovery_info);
bp->recovery_info = NULL;
bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
}
static int
bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev)
{
int rc;
bnxt_free_int(bp);
bnxt_free_mem(bp, reconfig_dev);
bnxt_hwrm_func_buf_unrgtr(bp);
if (bp->pf != NULL) {
rte_free(bp->pf->vf_req_buf);
bp->pf->vf_req_buf = NULL;
}
rc = bnxt_hwrm_func_driver_unregister(bp);
bp->flags &= ~BNXT_FLAG_REGISTERED;
bnxt_free_ctx_mem(bp);
if (!reconfig_dev) {
bnxt_free_hwrm_resources(bp);
bnxt_free_error_recovery_info(bp);
rte_free(bp->mcast_addr_list);
bp->mcast_addr_list = NULL;
rte_free(bp->rss_conf.rss_key);
bp->rss_conf.rss_key = NULL;
}
bnxt_uninit_ctx_mem(bp);
bnxt_free_flow_stats_info(bp);
if (bp->rep_info != NULL)
bnxt_free_switch_domain(bp);
bnxt_free_rep_info(bp);
rte_free(bp->ptp_cfg);
bp->ptp_cfg = NULL;
return rc;
}
static int
bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
{
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
if (eth_dev->state != RTE_ETH_DEV_UNUSED)
bnxt_dev_close_op(eth_dev);
return 0;
}
static int bnxt_pci_remove_dev_with_reps(struct rte_eth_dev *eth_dev)
{
struct bnxt *bp = eth_dev->data->dev_private;
struct rte_eth_dev *vf_rep_eth_dev;
int ret = 0, i;
if (!bp)
return -EINVAL;
for (i = 0; i < bp->num_reps; i++) {
vf_rep_eth_dev = bp->rep_info[i].vfr_eth_dev;
if (!vf_rep_eth_dev)
continue;
PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci remove\n",
vf_rep_eth_dev->data->port_id);
rte_eth_dev_destroy(vf_rep_eth_dev, bnxt_representor_uninit);
}
PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n",
eth_dev->data->port_id);
ret = rte_eth_dev_destroy(eth_dev, bnxt_dev_uninit);
return ret;
}
static void bnxt_free_rep_info(struct bnxt *bp)
{
rte_free(bp->rep_info);
bp->rep_info = NULL;
rte_free(bp->cfa_code_map);
bp->cfa_code_map = NULL;
}
static int bnxt_init_rep_info(struct bnxt *bp)
{
int i = 0, rc;
if (bp->rep_info)
return 0;
bp->rep_info = rte_zmalloc("bnxt_rep_info",
sizeof(bp->rep_info[0]) * BNXT_MAX_VF_REPS(bp),
0);
if (!bp->rep_info) {
PMD_DRV_LOG(ERR, "Failed to alloc memory for rep info\n");
return -ENOMEM;
}
bp->cfa_code_map = rte_zmalloc("bnxt_cfa_code_map",
sizeof(*bp->cfa_code_map) *
BNXT_MAX_CFA_CODE, 0);
if (!bp->cfa_code_map) {
PMD_DRV_LOG(ERR, "Failed to alloc memory for cfa_code_map\n");
bnxt_free_rep_info(bp);
return -ENOMEM;
}
for (i = 0; i < BNXT_MAX_CFA_CODE; i++)
bp->cfa_code_map[i] = BNXT_VF_IDX_INVALID;
rc = pthread_mutex_init(&bp->rep_info->vfr_lock, NULL);
if (rc) {
PMD_DRV_LOG(ERR, "Unable to initialize vfr_lock\n");
bnxt_free_rep_info(bp);
return rc;
}
rc = pthread_mutex_init(&bp->rep_info->vfr_start_lock, NULL);
if (rc) {
PMD_DRV_LOG(ERR, "Unable to initialize vfr_start_lock\n");
bnxt_free_rep_info(bp);
return rc;
}
return rc;
}
static int bnxt_rep_port_probe(struct rte_pci_device *pci_dev,
struct rte_eth_devargs *eth_da,
struct rte_eth_dev *backing_eth_dev,
const char *dev_args)
{
struct rte_eth_dev *vf_rep_eth_dev;
char name[RTE_ETH_NAME_MAX_LEN];
struct bnxt *backing_bp = backing_eth_dev->data->dev_private;
uint16_t max_vf_reps = BNXT_MAX_VF_REPS(backing_bp);
uint16_t num_rep;
int i, ret = 0;
struct rte_kvargs *kvlist = NULL;
if (eth_da->type == RTE_ETH_REPRESENTOR_NONE)
return 0;
if (eth_da->type != RTE_ETH_REPRESENTOR_VF) {
PMD_DRV_LOG(ERR, "unsupported representor type %d\n",
eth_da->type);
return -ENOTSUP;
}
num_rep = eth_da->nb_representor_ports;
if (num_rep > max_vf_reps) {
PMD_DRV_LOG(ERR, "nb_representor_ports = %d > %d MAX VF REPS\n",
num_rep, max_vf_reps);
return -EINVAL;
}
if (num_rep >= RTE_MAX_ETHPORTS) {
PMD_DRV_LOG(ERR,
"nb_representor_ports = %d > %d MAX ETHPORTS\n",
num_rep, RTE_MAX_ETHPORTS);
return -EINVAL;
}
if (!(BNXT_PF(backing_bp) || BNXT_VF_IS_TRUSTED(backing_bp))) {
PMD_DRV_LOG(ERR,
"Not a PF or trusted VF. No Representor support\n");
/* Returning an error is not an option.
* Applications are not handling this correctly
*/
return 0;
}
if (bnxt_init_rep_info(backing_bp))
return 0;
for (i = 0; i < num_rep; i++) {
struct bnxt_representor representor = {
.vf_id = eth_da->representor_ports[i],
.switch_domain_id = backing_bp->switch_domain_id,
.parent_dev = backing_eth_dev
};
if (representor.vf_id >= max_vf_reps) {
PMD_DRV_LOG(ERR, "VF-Rep id %d >= %d MAX VF ID\n",
representor.vf_id, max_vf_reps);
continue;
}
/* representor port net_bdf_port */
snprintf(name, sizeof(name), "net_%s_representor_%d",
pci_dev->device.name, eth_da->representor_ports[i]);
kvlist = rte_kvargs_parse(dev_args, bnxt_dev_args);
if (kvlist) {
/*
* Handler for "rep_is_pf" devarg.
* Invoked as for ex: "-a 000:00:0d.0,
* rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
*/
ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_IS_PF,
bnxt_parse_devarg_rep_is_pf,
(void *)&representor);
if (ret) {
ret = -EINVAL;
goto err;
}
/*
* Handler for "rep_based_pf" devarg.
* Invoked as for ex: "-a 000:00:0d.0,
* rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
*/
ret = rte_kvargs_process(kvlist,
BNXT_DEVARG_REP_BASED_PF,
bnxt_parse_devarg_rep_based_pf,
(void *)&representor);
if (ret) {
ret = -EINVAL;
goto err;
}
/*
* Handler for "rep_based_pf" devarg.
* Invoked as for ex: "-a 000:00:0d.0,
* rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
*/
ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_R2F,
bnxt_parse_devarg_rep_q_r2f,
(void *)&representor);
if (ret) {
ret = -EINVAL;
goto err;
}
/*
* Handler for "rep_based_pf" devarg.
* Invoked as for ex: "-a 000:00:0d.0,
* rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
*/
ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_F2R,
bnxt_parse_devarg_rep_q_f2r,
(void *)&representor);
if (ret) {
ret = -EINVAL;
goto err;
}
/*
* Handler for "rep_based_pf" devarg.
* Invoked as for ex: "-a 000:00:0d.0,
* rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
*/
ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_R2F,
bnxt_parse_devarg_rep_fc_r2f,
(void *)&representor);
if (ret) {
ret = -EINVAL;
goto err;
}
/*
* Handler for "rep_based_pf" devarg.
* Invoked as for ex: "-a 000:00:0d.0,
* rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
*/
ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_F2R,
bnxt_parse_devarg_rep_fc_f2r,
(void *)&representor);
if (ret) {
ret = -EINVAL;
goto err;
}
}
ret = rte_eth_dev_create(&pci_dev->device, name,
sizeof(struct bnxt_representor),
NULL, NULL,
bnxt_representor_init,
&representor);
if (ret) {
PMD_DRV_LOG(ERR, "failed to create bnxt vf "
"representor %s.", name);
goto err;
}
vf_rep_eth_dev = rte_eth_dev_allocated(name);
if (!vf_rep_eth_dev) {
PMD_DRV_LOG(ERR, "Failed to find the eth_dev"
" for VF-Rep: %s.", name);
ret = -ENODEV;
goto err;
}
PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci probe\n",
backing_eth_dev->data->port_id);
backing_bp->rep_info[representor.vf_id].vfr_eth_dev =
vf_rep_eth_dev;
backing_bp->num_reps++;
}
rte_kvargs_free(kvlist);
return 0;
err:
/* If num_rep > 1, then rollback already created
* ports, since we'll be failing the probe anyway
*/
if (num_rep > 1)
bnxt_pci_remove_dev_with_reps(backing_eth_dev);
rte_errno = -ret;
rte_kvargs_free(kvlist);
return ret;
}
static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
struct rte_eth_dev *backing_eth_dev;
uint16_t num_rep;
int ret = 0;
if (pci_dev->device.devargs) {
ret = rte_eth_devargs_parse(pci_dev->device.devargs->args,
&eth_da);
if (ret)
return ret;
}
num_rep = eth_da.nb_representor_ports;
PMD_DRV_LOG(DEBUG, "nb_representor_ports = %d\n",
num_rep);
/* We could come here after first level of probe is already invoked
* as part of an application bringup(OVS-DPDK vswitchd), so first check
* for already allocated eth_dev for the backing device (PF/Trusted VF)
*/
backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
if (backing_eth_dev == NULL) {
ret = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
sizeof(struct bnxt),
eth_dev_pci_specific_init, pci_dev,
bnxt_dev_init, NULL);
if (ret || !num_rep)
return ret;
backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
}
PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci probe\n",
backing_eth_dev->data->port_id);
if (!num_rep)
return ret;
/* probe representor ports now */
ret = bnxt_rep_port_probe(pci_dev, &eth_da, backing_eth_dev,
pci_dev->device.devargs->args);
return ret;
}
static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
{
struct rte_eth_dev *eth_dev;
eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
if (!eth_dev)
return 0; /* Invoked typically only by OVS-DPDK, by the
* time it comes here the eth_dev is already
* deleted by rte_eth_dev_close(), so returning
* +ve value will at least help in proper cleanup
*/
PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n", eth_dev->data->port_id);
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
if (eth_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)
return rte_eth_dev_destroy(eth_dev,
bnxt_representor_uninit);
else
return rte_eth_dev_destroy(eth_dev,
bnxt_dev_uninit);
} else {
return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
}
}
static struct rte_pci_driver bnxt_rte_pmd = {
.id_table = bnxt_pci_id_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
RTE_PCI_DRV_INTR_RMV |
RTE_PCI_DRV_PROBE_AGAIN, /* Needed in case of VF-REPs
* and OVS-DPDK
*/
.probe = bnxt_pci_probe,
.remove = bnxt_pci_remove,
};
static bool
is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
{
if (strcmp(dev->device->driver->name, drv->driver.name))
return false;
return true;
}
bool is_bnxt_supported(struct rte_eth_dev *dev)
{
return is_device_supported(dev, &bnxt_rte_pmd);
}
RTE_LOG_REGISTER_SUFFIX(bnxt_logtype_driver, driver, NOTICE);
RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");