c9cc554ba4
Maximum burst size of Vectorized Rx burst routine is set to
MLX5_VPMD_RX_MAX_BURST(64). This limits the performance of any
application that would like to gather more than 64 packets from
the single Rx burst for batch processing (i.e. VPP).
The situation gets worse with a mix of zipped and unzipped CQEs.
They are processed separately and the Rx burst function returns
small number of packets every call.
Repeat the cycle of gathering packets from the vectorized Rx routine
until a requested number of packets are collected or there are no
more CQEs left to process.
Fixes: 6cb559d67b
("net/mlx5: add vectorized Rx/Tx burst for x86")
Cc: stable@dpdk.org
Signed-off-by: Alexander Kozyrev <akozyrev@mellanox.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com>
Acked-by: Matan Azrad <matan@mellanox.com>
739 lines
26 KiB
C
739 lines
26 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2017 6WIND S.A.
|
|
* Copyright 2017 Mellanox Technologies, Ltd
|
|
*/
|
|
|
|
#ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
|
|
#define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <smmintrin.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_prefetch.h>
|
|
|
|
#include <mlx5_prm.h>
|
|
|
|
#include "mlx5_defs.h"
|
|
#include "mlx5.h"
|
|
#include "mlx5_utils.h"
|
|
#include "mlx5_rxtx.h"
|
|
#include "mlx5_rxtx_vec.h"
|
|
#include "mlx5_autoconf.h"
|
|
|
|
#ifndef __INTEL_COMPILER
|
|
#pragma GCC diagnostic ignored "-Wcast-qual"
|
|
#endif
|
|
|
|
/**
|
|
* Store free buffers to RX SW ring.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue structure.
|
|
* @param pkts
|
|
* Pointer to array of packets to be stored.
|
|
* @param pkts_n
|
|
* Number of packets to be stored.
|
|
*/
|
|
static inline void
|
|
rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
|
|
{
|
|
const uint16_t q_mask = (1 << rxq->elts_n) - 1;
|
|
struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
|
|
unsigned int pos;
|
|
uint16_t p = n & -2;
|
|
|
|
for (pos = 0; pos < p; pos += 2) {
|
|
__m128i mbp;
|
|
|
|
mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
|
|
_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
|
|
}
|
|
if (n & 1)
|
|
pkts[pos] = elts[pos];
|
|
}
|
|
|
|
/**
|
|
* Decompress a compressed completion and fill in mbufs in RX SW ring with data
|
|
* extracted from the title completion descriptor.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue structure.
|
|
* @param cq
|
|
* Pointer to completion array having a compressed completion at first.
|
|
* @param elts
|
|
* Pointer to SW ring to be filled. The first mbuf has to be pre-built from
|
|
* the title completion descriptor to be copied to the rest of mbufs.
|
|
*
|
|
* @return
|
|
* Number of mini-CQEs successfully decompressed.
|
|
*/
|
|
static inline uint16_t
|
|
rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
|
|
struct rte_mbuf **elts)
|
|
{
|
|
volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
|
|
struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
|
|
unsigned int pos;
|
|
unsigned int i;
|
|
unsigned int inv = 0;
|
|
/* Mask to shuffle from extracted mini CQE to mbuf. */
|
|
const __m128i shuf_mask1 =
|
|
_mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */
|
|
-1, -1, /* skip vlan_tci */
|
|
6, 7, /* data_len, bswap16 */
|
|
-1, -1, 6, 7, /* pkt_len, bswap16 */
|
|
-1, -1, -1, -1 /* skip packet_type */);
|
|
const __m128i shuf_mask2 =
|
|
_mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */
|
|
-1, -1, /* skip vlan_tci */
|
|
14, 15, /* data_len, bswap16 */
|
|
-1, -1, 14, 15, /* pkt_len, bswap16 */
|
|
-1, -1, -1, -1 /* skip packet_type */);
|
|
/* Restore the compressed count. Must be 16 bits. */
|
|
const uint16_t mcqe_n = t_pkt->data_len +
|
|
(rxq->crc_present * RTE_ETHER_CRC_LEN);
|
|
const __m128i rearm =
|
|
_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
|
|
const __m128i rxdf =
|
|
_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
|
|
const __m128i crc_adj =
|
|
_mm_set_epi16(0, 0, 0,
|
|
rxq->crc_present * RTE_ETHER_CRC_LEN,
|
|
0,
|
|
rxq->crc_present * RTE_ETHER_CRC_LEN,
|
|
0, 0);
|
|
const uint32_t flow_tag = t_pkt->hash.fdir.hi;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
const __m128i zero = _mm_setzero_si128();
|
|
const __m128i ones = _mm_cmpeq_epi32(zero, zero);
|
|
uint32_t rcvd_byte = 0;
|
|
/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
|
|
const __m128i len_shuf_mask =
|
|
_mm_set_epi8(-1, -1, -1, -1,
|
|
-1, -1, -1, -1,
|
|
14, 15, 6, 7,
|
|
10, 11, 2, 3);
|
|
#endif
|
|
/*
|
|
* A. load mCQEs into a 128bit register.
|
|
* B. store rearm data to mbuf.
|
|
* C. combine data from mCQEs with rx_descriptor_fields1.
|
|
* D. store rx_descriptor_fields1.
|
|
* E. store flow tag (rte_flow mark).
|
|
*/
|
|
for (pos = 0; pos < mcqe_n; ) {
|
|
__m128i mcqe1, mcqe2;
|
|
__m128i rxdf1, rxdf2;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
__m128i byte_cnt, invalid_mask;
|
|
#endif
|
|
|
|
for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
|
|
if (likely(pos + i < mcqe_n))
|
|
rte_prefetch0((void *)(cq + pos + i));
|
|
|
|
/* A.1 load mCQEs into a 128bit register. */
|
|
mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
|
|
mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
|
|
/* B.1 store rearm data to mbuf. */
|
|
_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
|
|
_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
|
|
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
|
|
rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
|
|
rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
|
|
rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
|
|
rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
|
|
rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
|
|
rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
|
|
/* D.1 store rx_descriptor_fields1. */
|
|
_mm_storeu_si128((__m128i *)
|
|
&elts[pos]->rx_descriptor_fields1,
|
|
rxdf1);
|
|
_mm_storeu_si128((__m128i *)
|
|
&elts[pos + 1]->rx_descriptor_fields1,
|
|
rxdf2);
|
|
/* B.1 store rearm data to mbuf. */
|
|
_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
|
|
_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
|
|
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
|
|
rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
|
|
rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
|
|
rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
|
|
rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
|
|
rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
|
|
rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
|
|
/* D.1 store rx_descriptor_fields1. */
|
|
_mm_storeu_si128((__m128i *)
|
|
&elts[pos + 2]->rx_descriptor_fields1,
|
|
rxdf1);
|
|
_mm_storeu_si128((__m128i *)
|
|
&elts[pos + 3]->rx_descriptor_fields1,
|
|
rxdf2);
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
invalid_mask = _mm_set_epi64x(0,
|
|
(mcqe_n - pos) *
|
|
sizeof(uint16_t) * 8);
|
|
invalid_mask = _mm_sll_epi64(ones, invalid_mask);
|
|
mcqe1 = _mm_srli_si128(mcqe1, 4);
|
|
byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
|
|
byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
|
|
byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
|
|
byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
|
|
rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
|
|
#endif
|
|
if (rxq->mark) {
|
|
/* E.1 store flow tag (rte_flow mark). */
|
|
elts[pos]->hash.fdir.hi = flow_tag;
|
|
elts[pos + 1]->hash.fdir.hi = flow_tag;
|
|
elts[pos + 2]->hash.fdir.hi = flow_tag;
|
|
elts[pos + 3]->hash.fdir.hi = flow_tag;
|
|
}
|
|
if (rxq->dynf_meta) {
|
|
int32_t offs = rxq->flow_meta_offset;
|
|
const uint32_t meta =
|
|
*RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
|
|
|
|
/* Check if title packet has valid metadata. */
|
|
if (meta) {
|
|
MLX5_ASSERT(t_pkt->ol_flags &
|
|
rxq->flow_meta_mask);
|
|
*RTE_MBUF_DYNFIELD(elts[pos], offs,
|
|
uint32_t *) = meta;
|
|
*RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
|
|
uint32_t *) = meta;
|
|
*RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
|
|
uint32_t *) = meta;
|
|
*RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
|
|
uint32_t *) = meta;
|
|
}
|
|
}
|
|
pos += MLX5_VPMD_DESCS_PER_LOOP;
|
|
/* Move to next CQE and invalidate consumed CQEs. */
|
|
if (!(pos & 0x7) && pos < mcqe_n) {
|
|
mcq = (void *)(cq + pos);
|
|
for (i = 0; i < 8; ++i)
|
|
cq[inv++].op_own = MLX5_CQE_INVALIDATE;
|
|
}
|
|
}
|
|
/* Invalidate the rest of CQEs. */
|
|
for (; inv < mcqe_n; ++inv)
|
|
cq[inv].op_own = MLX5_CQE_INVALIDATE;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
rxq->stats.ipackets += mcqe_n;
|
|
rxq->stats.ibytes += rcvd_byte;
|
|
#endif
|
|
rxq->cq_ci += mcqe_n;
|
|
return mcqe_n;
|
|
}
|
|
|
|
/**
|
|
* Calculate packet type and offload flag for mbuf and store it.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue structure.
|
|
* @param cqes[4]
|
|
* Array of four 16bytes completions extracted from the original completion
|
|
* descriptor.
|
|
* @param op_err
|
|
* Opcode vector having responder error status. Each field is 4B.
|
|
* @param pkts
|
|
* Pointer to array of packets to be filled.
|
|
*/
|
|
static inline void
|
|
rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
|
|
__m128i op_err, struct rte_mbuf **pkts)
|
|
{
|
|
__m128i pinfo0, pinfo1;
|
|
__m128i pinfo, ptype;
|
|
__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
|
|
rxq->hw_timestamp * PKT_RX_TIMESTAMP);
|
|
__m128i cv_flags;
|
|
const __m128i zero = _mm_setzero_si128();
|
|
const __m128i ptype_mask =
|
|
_mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
|
|
const __m128i ptype_ol_mask =
|
|
_mm_set_epi32(0x106, 0x106, 0x106, 0x106);
|
|
const __m128i pinfo_mask =
|
|
_mm_set_epi32(0x3, 0x3, 0x3, 0x3);
|
|
const __m128i cv_flag_sel =
|
|
_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
(uint8_t)((PKT_RX_IP_CKSUM_GOOD |
|
|
PKT_RX_L4_CKSUM_GOOD) >> 1),
|
|
0,
|
|
(uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
|
|
0,
|
|
(uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
|
|
(uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
|
|
0);
|
|
const __m128i cv_mask =
|
|
_mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
|
|
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
|
|
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
|
|
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
|
|
const __m128i mbuf_init =
|
|
_mm_load_si128((__m128i *)&rxq->mbuf_initializer);
|
|
__m128i rearm0, rearm1, rearm2, rearm3;
|
|
uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
|
|
|
|
/* Extract pkt_info field. */
|
|
pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
|
|
pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
|
|
pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
|
|
/* Extract hdr_type_etc field. */
|
|
pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
|
|
pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
|
|
ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
|
|
if (rxq->mark) {
|
|
const __m128i pinfo_ft_mask =
|
|
_mm_set_epi32(0xffffff00, 0xffffff00,
|
|
0xffffff00, 0xffffff00);
|
|
const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
|
|
__m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
|
|
__m128i flow_tag, invalid_mask;
|
|
|
|
flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
|
|
/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
|
|
invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
|
|
ol_flags = _mm_or_si128(ol_flags,
|
|
_mm_andnot_si128(invalid_mask,
|
|
fdir_flags));
|
|
/* Mask out invalid entries. */
|
|
fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
|
|
/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
|
|
ol_flags = _mm_or_si128(ol_flags,
|
|
_mm_andnot_si128(
|
|
_mm_cmpeq_epi32(flow_tag,
|
|
pinfo_ft_mask),
|
|
fdir_id_flags));
|
|
}
|
|
/*
|
|
* Merge the two fields to generate the following:
|
|
* bit[1] = l3_ok
|
|
* bit[2] = l4_ok
|
|
* bit[8] = cv
|
|
* bit[11:10] = l3_hdr_type
|
|
* bit[14:12] = l4_hdr_type
|
|
* bit[15] = ip_frag
|
|
* bit[16] = tunneled
|
|
* bit[17] = outer_l3_type
|
|
*/
|
|
ptype = _mm_and_si128(ptype, ptype_mask);
|
|
pinfo = _mm_and_si128(pinfo, pinfo_mask);
|
|
pinfo = _mm_slli_epi32(pinfo, 16);
|
|
/* Make pinfo has merged fields for ol_flags calculation. */
|
|
pinfo = _mm_or_si128(ptype, pinfo);
|
|
ptype = _mm_srli_epi32(pinfo, 10);
|
|
ptype = _mm_packs_epi32(ptype, zero);
|
|
/* Errored packets will have RTE_PTYPE_ALL_MASK. */
|
|
op_err = _mm_srli_epi16(op_err, 8);
|
|
ptype = _mm_or_si128(ptype, op_err);
|
|
pt_idx0 = _mm_extract_epi8(ptype, 0);
|
|
pt_idx1 = _mm_extract_epi8(ptype, 2);
|
|
pt_idx2 = _mm_extract_epi8(ptype, 4);
|
|
pt_idx3 = _mm_extract_epi8(ptype, 6);
|
|
pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
|
|
!!(pt_idx0 & (1 << 6)) * rxq->tunnel;
|
|
pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
|
|
!!(pt_idx1 & (1 << 6)) * rxq->tunnel;
|
|
pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
|
|
!!(pt_idx2 & (1 << 6)) * rxq->tunnel;
|
|
pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
|
|
!!(pt_idx3 & (1 << 6)) * rxq->tunnel;
|
|
/* Fill flags for checksum and VLAN. */
|
|
pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
|
|
pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
|
|
/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
|
|
cv_flags = _mm_slli_epi32(pinfo, 9);
|
|
cv_flags = _mm_or_si128(pinfo, cv_flags);
|
|
/* Move back flags to start from byte[0]. */
|
|
cv_flags = _mm_srli_epi32(cv_flags, 8);
|
|
/* Mask out garbage bits. */
|
|
cv_flags = _mm_and_si128(cv_flags, cv_mask);
|
|
/* Merge to ol_flags. */
|
|
ol_flags = _mm_or_si128(ol_flags, cv_flags);
|
|
/* Merge mbuf_init and ol_flags. */
|
|
rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
|
|
rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
|
|
rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
|
|
rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
|
|
/* Write 8B rearm_data and 8B ol_flags. */
|
|
_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
|
|
_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
|
|
_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
|
|
_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
|
|
}
|
|
|
|
/**
|
|
* Receive burst of packets. An errored completion also consumes a mbuf, but the
|
|
* packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
|
|
* before returning to application.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue structure.
|
|
* @param[out] pkts
|
|
* Array to store received packets.
|
|
* @param pkts_n
|
|
* Maximum number of packets in array.
|
|
* @param[out] err
|
|
* Pointer to a flag. Set non-zero value if pkts array has at least one error
|
|
* packet to handle.
|
|
* @param[out] no_cq
|
|
* Pointer to a boolean. Set true if no new CQE seen.
|
|
*
|
|
* @return
|
|
* Number of packets received including errors (<= pkts_n).
|
|
*/
|
|
static inline uint16_t
|
|
rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
|
|
uint64_t *err, bool *no_cq)
|
|
{
|
|
const uint16_t q_n = 1 << rxq->cqe_n;
|
|
const uint16_t q_mask = q_n - 1;
|
|
volatile struct mlx5_cqe *cq;
|
|
struct rte_mbuf **elts;
|
|
unsigned int pos;
|
|
uint64_t n;
|
|
uint16_t repl_n;
|
|
uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
|
|
uint16_t nocmp_n = 0;
|
|
uint16_t rcvd_pkt = 0;
|
|
unsigned int cq_idx = rxq->cq_ci & q_mask;
|
|
unsigned int elts_idx;
|
|
unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
|
|
const __m128i owner_check =
|
|
_mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
|
|
const __m128i opcode_check =
|
|
_mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
|
|
const __m128i format_check =
|
|
_mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
|
|
const __m128i resp_err_check =
|
|
_mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
uint32_t rcvd_byte = 0;
|
|
/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
|
|
const __m128i len_shuf_mask =
|
|
_mm_set_epi8(-1, -1, -1, -1,
|
|
-1, -1, -1, -1,
|
|
12, 13, 8, 9,
|
|
4, 5, 0, 1);
|
|
#endif
|
|
/* Mask to shuffle from extracted CQE to mbuf. */
|
|
const __m128i shuf_mask =
|
|
_mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */
|
|
12, 13, 14, 15, /* rss, bswap32 */
|
|
10, 11, /* vlan_tci, bswap16 */
|
|
4, 5, /* data_len, bswap16 */
|
|
-1, -1, /* zero out 2nd half of pkt_len */
|
|
4, 5 /* pkt_len, bswap16 */);
|
|
/* Mask to blend from the last Qword to the first DQword. */
|
|
const __m128i blend_mask =
|
|
_mm_set_epi8(-1, -1, -1, -1,
|
|
-1, -1, -1, -1,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, -1);
|
|
const __m128i zero = _mm_setzero_si128();
|
|
const __m128i ones = _mm_cmpeq_epi32(zero, zero);
|
|
const __m128i crc_adj =
|
|
_mm_set_epi16(0, 0, 0, 0, 0,
|
|
rxq->crc_present * RTE_ETHER_CRC_LEN,
|
|
0,
|
|
rxq->crc_present * RTE_ETHER_CRC_LEN);
|
|
const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
|
|
|
|
MLX5_ASSERT(rxq->sges_n == 0);
|
|
MLX5_ASSERT(rxq->cqe_n == rxq->elts_n);
|
|
cq = &(*rxq->cqes)[cq_idx];
|
|
rte_prefetch0(cq);
|
|
rte_prefetch0(cq + 1);
|
|
rte_prefetch0(cq + 2);
|
|
rte_prefetch0(cq + 3);
|
|
pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
|
|
repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
|
|
if (repl_n >= rxq->rq_repl_thresh)
|
|
mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
|
|
/* See if there're unreturned mbufs from compressed CQE. */
|
|
rcvd_pkt = rxq->decompressed;
|
|
if (rcvd_pkt > 0) {
|
|
rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
|
|
rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
|
|
rxq->rq_pi += rcvd_pkt;
|
|
rxq->decompressed -= rcvd_pkt;
|
|
pkts += rcvd_pkt;
|
|
}
|
|
elts_idx = rxq->rq_pi & q_mask;
|
|
elts = &(*rxq->elts)[elts_idx];
|
|
/* Not to overflow pkts array. */
|
|
pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
|
|
/* Not to cross queue end. */
|
|
pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
|
|
pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
|
|
if (!pkts_n) {
|
|
*no_cq = !rcvd_pkt;
|
|
return rcvd_pkt;
|
|
}
|
|
/* At this point, there shouldn't be any remained packets. */
|
|
MLX5_ASSERT(rxq->decompressed == 0);
|
|
/*
|
|
* A. load first Qword (8bytes) in one loop.
|
|
* B. copy 4 mbuf pointers from elts ring to returing pkts.
|
|
* C. load remained CQE data and extract necessary fields.
|
|
* Final 16bytes cqes[] extracted from original 64bytes CQE has the
|
|
* following structure:
|
|
* struct {
|
|
* uint8_t pkt_info;
|
|
* uint8_t flow_tag[3];
|
|
* uint16_t byte_cnt;
|
|
* uint8_t rsvd4;
|
|
* uint8_t op_own;
|
|
* uint16_t hdr_type_etc;
|
|
* uint16_t vlan_info;
|
|
* uint32_t rx_has_res;
|
|
* } c;
|
|
* D. fill in mbuf.
|
|
* E. get valid CQEs.
|
|
* F. find compressed CQE.
|
|
*/
|
|
for (pos = 0;
|
|
pos < pkts_n;
|
|
pos += MLX5_VPMD_DESCS_PER_LOOP) {
|
|
__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
|
|
__m128i cqe_tmp1, cqe_tmp2;
|
|
__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
|
|
__m128i op_own, op_own_tmp1, op_own_tmp2;
|
|
__m128i opcode, owner_mask, invalid_mask;
|
|
__m128i comp_mask;
|
|
__m128i mask;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
__m128i byte_cnt;
|
|
#endif
|
|
__m128i mbp1, mbp2;
|
|
__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
|
|
unsigned int p1, p2, p3;
|
|
|
|
/* Prefetch next 4 CQEs. */
|
|
if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
|
|
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
|
|
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
|
|
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
|
|
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
|
|
}
|
|
/* A.0 do not cross the end of CQ. */
|
|
mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
|
|
mask = _mm_sll_epi64(ones, mask);
|
|
p = _mm_andnot_si128(mask, p);
|
|
/* A.1 load cqes. */
|
|
p3 = _mm_extract_epi16(p, 3);
|
|
cqes[3] = _mm_loadl_epi64((__m128i *)
|
|
&cq[pos + p3].sop_drop_qpn);
|
|
rte_compiler_barrier();
|
|
p2 = _mm_extract_epi16(p, 2);
|
|
cqes[2] = _mm_loadl_epi64((__m128i *)
|
|
&cq[pos + p2].sop_drop_qpn);
|
|
rte_compiler_barrier();
|
|
/* B.1 load mbuf pointers. */
|
|
mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
|
|
mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
|
|
/* A.1 load a block having op_own. */
|
|
p1 = _mm_extract_epi16(p, 1);
|
|
cqes[1] = _mm_loadl_epi64((__m128i *)
|
|
&cq[pos + p1].sop_drop_qpn);
|
|
rte_compiler_barrier();
|
|
cqes[0] = _mm_loadl_epi64((__m128i *)
|
|
&cq[pos].sop_drop_qpn);
|
|
/* B.2 copy mbuf pointers. */
|
|
_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
|
|
_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
|
|
rte_cio_rmb();
|
|
/* C.1 load remained CQE data and extract necessary fields. */
|
|
cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
|
|
cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
|
|
cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
|
|
cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
|
|
cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
|
|
cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
|
|
cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
|
|
cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
|
|
cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
|
|
cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
|
|
cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
|
|
cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
|
|
/* C.2 generate final structure for mbuf with swapping bytes. */
|
|
pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
|
|
pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
|
|
/* C.3 adjust CRC length. */
|
|
pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
|
|
pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
|
|
/* C.4 adjust flow mark. */
|
|
pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
|
|
pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
|
|
/* D.1 fill in mbuf - rx_descriptor_fields1. */
|
|
_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
|
|
_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
|
|
/* E.1 extract op_own field. */
|
|
op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
|
|
/* C.1 load remained CQE data and extract necessary fields. */
|
|
cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
|
|
cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
|
|
cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
|
|
cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
|
|
cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
|
|
cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
|
|
cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
|
|
cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
|
|
cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
|
|
cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
|
|
cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
|
|
cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
|
|
/* C.2 generate final structure for mbuf with swapping bytes. */
|
|
pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
|
|
pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
|
|
/* C.3 adjust CRC length. */
|
|
pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
|
|
pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
|
|
/* C.4 adjust flow mark. */
|
|
pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
|
|
pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
|
|
/* E.1 extract op_own byte. */
|
|
op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
|
|
op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
|
|
/* D.1 fill in mbuf - rx_descriptor_fields1. */
|
|
_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
|
|
_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
|
|
/* E.2 flip owner bit to mark CQEs from last round. */
|
|
owner_mask = _mm_and_si128(op_own, owner_check);
|
|
if (ownership)
|
|
owner_mask = _mm_xor_si128(owner_mask, owner_check);
|
|
owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
|
|
owner_mask = _mm_packs_epi32(owner_mask, zero);
|
|
/* E.3 get mask for invalidated CQEs. */
|
|
opcode = _mm_and_si128(op_own, opcode_check);
|
|
invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
|
|
invalid_mask = _mm_packs_epi32(invalid_mask, zero);
|
|
/* E.4 mask out beyond boundary. */
|
|
invalid_mask = _mm_or_si128(invalid_mask, mask);
|
|
/* E.5 merge invalid_mask with invalid owner. */
|
|
invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
|
|
/* F.1 find compressed CQE format. */
|
|
comp_mask = _mm_and_si128(op_own, format_check);
|
|
comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
|
|
comp_mask = _mm_packs_epi32(comp_mask, zero);
|
|
/* F.2 mask out invalid entries. */
|
|
comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
|
|
comp_idx = _mm_cvtsi128_si64(comp_mask);
|
|
/* F.3 get the first compressed CQE. */
|
|
comp_idx = comp_idx ?
|
|
__builtin_ctzll(comp_idx) /
|
|
(sizeof(uint16_t) * 8) :
|
|
MLX5_VPMD_DESCS_PER_LOOP;
|
|
/* E.6 mask out entries after the compressed CQE. */
|
|
mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
|
|
mask = _mm_sll_epi64(ones, mask);
|
|
invalid_mask = _mm_or_si128(invalid_mask, mask);
|
|
/* E.7 count non-compressed valid CQEs. */
|
|
n = _mm_cvtsi128_si64(invalid_mask);
|
|
n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
|
|
MLX5_VPMD_DESCS_PER_LOOP;
|
|
nocmp_n += n;
|
|
/* D.2 get the final invalid mask. */
|
|
mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
|
|
mask = _mm_sll_epi64(ones, mask);
|
|
invalid_mask = _mm_or_si128(invalid_mask, mask);
|
|
/* D.3 check error in opcode. */
|
|
opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
|
|
opcode = _mm_packs_epi32(opcode, zero);
|
|
opcode = _mm_andnot_si128(invalid_mask, opcode);
|
|
/* D.4 mark if any error is set */
|
|
*err |= _mm_cvtsi128_si64(opcode);
|
|
/* D.5 fill in mbuf - rearm_data and packet_type. */
|
|
rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
|
|
if (rxq->hw_timestamp) {
|
|
pkts[pos]->timestamp =
|
|
rte_be_to_cpu_64(cq[pos].timestamp);
|
|
pkts[pos + 1]->timestamp =
|
|
rte_be_to_cpu_64(cq[pos + p1].timestamp);
|
|
pkts[pos + 2]->timestamp =
|
|
rte_be_to_cpu_64(cq[pos + p2].timestamp);
|
|
pkts[pos + 3]->timestamp =
|
|
rte_be_to_cpu_64(cq[pos + p3].timestamp);
|
|
}
|
|
if (rxq->dynf_meta) {
|
|
/* This code is subject for futher optimization. */
|
|
int32_t offs = rxq->flow_meta_offset;
|
|
|
|
*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
|
|
cq[pos].flow_table_metadata;
|
|
*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
|
|
cq[pos + p1].flow_table_metadata;
|
|
*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
|
|
cq[pos + p2].flow_table_metadata;
|
|
*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
|
|
cq[pos + p3].flow_table_metadata;
|
|
if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
|
|
pkts[pos]->ol_flags |= rxq->flow_meta_mask;
|
|
if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
|
|
pkts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
|
|
if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
|
|
pkts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
|
|
if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
|
|
pkts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Add up received bytes count. */
|
|
byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
|
|
byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
|
|
byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
|
|
rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
|
|
#endif
|
|
/*
|
|
* Break the loop unless more valid CQE is expected, or if
|
|
* there's a compressed CQE.
|
|
*/
|
|
if (n != MLX5_VPMD_DESCS_PER_LOOP)
|
|
break;
|
|
}
|
|
/* If no new CQE seen, return without updating cq_db. */
|
|
if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) {
|
|
*no_cq = true;
|
|
return rcvd_pkt;
|
|
}
|
|
/* Update the consumer indexes for non-compressed CQEs. */
|
|
MLX5_ASSERT(nocmp_n <= pkts_n);
|
|
rxq->cq_ci += nocmp_n;
|
|
rxq->rq_pi += nocmp_n;
|
|
rcvd_pkt += nocmp_n;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
rxq->stats.ipackets += nocmp_n;
|
|
rxq->stats.ibytes += rcvd_byte;
|
|
#endif
|
|
/* Decompress the last CQE if compressed. */
|
|
if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
|
|
MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
|
|
rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
|
|
&elts[nocmp_n]);
|
|
/* Return more packets if needed. */
|
|
if (nocmp_n < pkts_n) {
|
|
uint16_t n = rxq->decompressed;
|
|
|
|
n = RTE_MIN(n, pkts_n - nocmp_n);
|
|
rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
|
|
rxq->rq_pi += n;
|
|
rcvd_pkt += n;
|
|
rxq->decompressed -= n;
|
|
}
|
|
}
|
|
rte_compiler_barrier();
|
|
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
|
|
*no_cq = !rcvd_pkt;
|
|
return rcvd_pkt;
|
|
}
|
|
|
|
#endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */
|