numam-dpdk/app/test-pmd/flowgen.c
Joyce Kong 1f8cc1a388 app: remove unneeded atomic header include
Remove the unnecessary rte_atomic.h included in app modules.

Signed-off-by: Joyce Kong <joyce.kong@arm.com>
Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com>
2021-11-17 11:07:06 +01:00

216 lines
5.9 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2014-2020 Mellanox Technologies, Ltd
*/
#include <stdarg.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_string_fns.h>
#include <rte_flow.h>
#include "testpmd.h"
static uint32_t cfg_ip_src = RTE_IPV4(10, 254, 0, 0);
static uint32_t cfg_ip_dst = RTE_IPV4(10, 253, 0, 0);
static uint16_t cfg_udp_src = 1000;
static uint16_t cfg_udp_dst = 1001;
static struct rte_ether_addr cfg_ether_src =
{{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x00 }};
static struct rte_ether_addr cfg_ether_dst =
{{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x01 }};
#define IP_DEFTTL 64 /* from RFC 1340. */
RTE_DEFINE_PER_LCORE(int, _next_flow);
/*
* Multi-flow generation mode.
*
* We originate a bunch of flows (varying destination IP addresses), and
* terminate receive traffic. Received traffic is simply discarded, but we
* still do so in order to maintain traffic statistics.
*/
static void
pkt_burst_flow_gen(struct fwd_stream *fs)
{
unsigned pkt_size = tx_pkt_length - 4; /* Adjust FCS */
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_mempool *mbp;
struct rte_mbuf *pkt = NULL;
struct rte_ether_hdr *eth_hdr;
struct rte_ipv4_hdr *ip_hdr;
struct rte_udp_hdr *udp_hdr;
uint16_t vlan_tci, vlan_tci_outer;
uint64_t ol_flags = 0;
uint16_t nb_rx;
uint16_t nb_tx;
uint16_t nb_dropped;
uint16_t nb_pkt;
uint16_t nb_clones = nb_pkt_flowgen_clones;
uint16_t i;
uint32_t retry;
uint64_t tx_offloads;
uint64_t start_tsc = 0;
int next_flow = RTE_PER_LCORE(_next_flow);
get_start_cycles(&start_tsc);
/* Receive a burst of packets and discard them. */
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
nb_pkt_per_burst);
inc_rx_burst_stats(fs, nb_rx);
fs->rx_packets += nb_rx;
for (i = 0; i < nb_rx; i++)
rte_pktmbuf_free(pkts_burst[i]);
mbp = current_fwd_lcore()->mbp;
vlan_tci = ports[fs->tx_port].tx_vlan_id;
vlan_tci_outer = ports[fs->tx_port].tx_vlan_id_outer;
tx_offloads = ports[fs->tx_port].dev_conf.txmode.offloads;
if (tx_offloads & RTE_ETH_TX_OFFLOAD_VLAN_INSERT)
ol_flags |= RTE_MBUF_F_TX_VLAN;
if (tx_offloads & RTE_ETH_TX_OFFLOAD_QINQ_INSERT)
ol_flags |= RTE_MBUF_F_TX_QINQ;
if (tx_offloads & RTE_ETH_TX_OFFLOAD_MACSEC_INSERT)
ol_flags |= RTE_MBUF_F_TX_MACSEC;
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
if (!nb_pkt || !nb_clones) {
nb_clones = nb_pkt_flowgen_clones;
/* Logic limitation */
if (nb_clones > nb_pkt_per_burst)
nb_clones = nb_pkt_per_burst;
pkt = rte_mbuf_raw_alloc(mbp);
if (!pkt)
break;
pkt->data_len = pkt_size;
pkt->next = NULL;
/* Initialize Ethernet header. */
eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
rte_ether_addr_copy(&cfg_ether_dst, &eth_hdr->dst_addr);
rte_ether_addr_copy(&cfg_ether_src, &eth_hdr->src_addr);
eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
/* Initialize IP header. */
ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
memset(ip_hdr, 0, sizeof(*ip_hdr));
ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
ip_hdr->type_of_service = 0;
ip_hdr->fragment_offset = 0;
ip_hdr->time_to_live = IP_DEFTTL;
ip_hdr->next_proto_id = IPPROTO_UDP;
ip_hdr->packet_id = 0;
ip_hdr->src_addr = rte_cpu_to_be_32(cfg_ip_src);
ip_hdr->dst_addr = rte_cpu_to_be_32(cfg_ip_dst +
next_flow);
ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_size -
sizeof(*eth_hdr));
ip_hdr->hdr_checksum = rte_ipv4_cksum(ip_hdr);
/* Initialize UDP header. */
udp_hdr = (struct rte_udp_hdr *)(ip_hdr + 1);
udp_hdr->src_port = rte_cpu_to_be_16(cfg_udp_src);
udp_hdr->dst_port = rte_cpu_to_be_16(cfg_udp_dst);
udp_hdr->dgram_cksum = 0; /* No UDP checksum. */
udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_size -
sizeof(*eth_hdr) -
sizeof(*ip_hdr));
pkt->nb_segs = 1;
pkt->pkt_len = pkt_size;
pkt->ol_flags &= RTE_MBUF_F_EXTERNAL;
pkt->ol_flags |= ol_flags;
pkt->vlan_tci = vlan_tci;
pkt->vlan_tci_outer = vlan_tci_outer;
pkt->l2_len = sizeof(struct rte_ether_hdr);
pkt->l3_len = sizeof(struct rte_ipv4_hdr);
} else {
nb_clones--;
rte_mbuf_refcnt_update(pkt, 1);
}
pkts_burst[nb_pkt] = pkt;
if (++next_flow >= nb_flows_flowgen)
next_flow = 0;
}
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_pkt);
/*
* Retry if necessary
*/
if (unlikely(nb_tx < nb_pkt) && fs->retry_enabled) {
retry = 0;
while (nb_tx < nb_pkt && retry++ < burst_tx_retry_num) {
rte_delay_us(burst_tx_delay_time);
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
&pkts_burst[nb_tx], nb_pkt - nb_tx);
}
}
fs->tx_packets += nb_tx;
inc_tx_burst_stats(fs, nb_tx);
nb_dropped = nb_pkt - nb_tx;
if (unlikely(nb_dropped > 0)) {
/* Back out the flow counter. */
next_flow -= nb_dropped;
while (next_flow < 0)
next_flow += nb_flows_flowgen;
fs->fwd_dropped += nb_dropped;
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_pkt);
}
RTE_PER_LCORE(_next_flow) = next_flow;
get_end_cycles(fs, start_tsc);
}
static int
flowgen_begin(portid_t pi)
{
printf(" number of flows for port %u: %d\n", pi, nb_flows_flowgen);
return 0;
}
struct fwd_engine flow_gen_engine = {
.fwd_mode_name = "flowgen",
.port_fwd_begin = flowgen_begin,
.port_fwd_end = NULL,
.packet_fwd = pkt_burst_flow_gen,
};